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Abstract. Two experiments on visual scanning strategies are reported in this article. In

Experiment 1, subjects were presented with random distributions of identical dots. The task

was to look exactly once at each dot, with a starting dot speci�ed. This setting allowed a

quantitative analysis of scan-path structures and hence made it possible to compare empirical

scan paths to computer-generated ones. Five di�erent scan-path models were implemented

as computer simulations and the similarity of their scan paths to the empirical ones was

measured. Experiment 2 was identical to Experiment 1 with the exception that it used

items with di�erent color and form attributes instead of identical dots. Here, the in
uence

of the distribution of colors and forms on empirical scan paths was investigated. The most

promising scan-path models of Experiment 1 were adapted to the stimuli of Experiment

2. The results of both experiments indicate that a simple, scan path minimizing algorithm

(\Traveling Salesman Strategy (TSS)") is most e�ective at reproducing human scan paths.

We also found an in
uence of color information on empirical scan paths and successfully

adapted the TSS-based model to this �nding.



1 Introduction

When we are viewing a complex scene, we can very easily extract all relevant information from

it. In some cases, we might hardly be aware of the fact that such scene perception is a serial

process involving eye movements. The high eÆciency of this process is not only based on the

high speed of human eye movements, but also on our strategies to direct them. These visual

scanning strategies have been optimized during a long period of evolution. They are crucial

for both our understanding of the human visual system and the construction of technical

vision systems. The two experiments reported here focus on a fundamental question: What

factors determine the sequence in which we inspect a given set of items?

There are numerous approaches that have tried to provide at least partial answers to this

question. Most experiments in the \classic" paradigm of visual search use simple, abstract

stimuli (e.g., Treisman & Sato, 1990; Wolfe, Cave & Franzel, 1989). Subjects are typically

presented with a set of abstract items, such as letters or geometrical objects, and have to

decide whether a designated target item is among them. While most studies rely on reaction

times and error rates as the only indicators for search performance, several researchers have

also investigated the visual scan paths taken during search. Williams & Reingold (in press),

for example, used a triple conjunction search task in which the presented items varied in

the three dimensions color, form, and orientation. The authors analyzed the proportion of

�xations on each distractor type. They found that the highest proportion of �xations was

directed towards those distractors that were of the same color as the target. This �nding

suggests that it is possible to use color information for choosing an eÆcient scan path: Only

the subset of items with the appropriate color has to be searched.

Eye-movement patterns during visual search and viewing images have been used as a basis

for modeling visual scanning strategies. Several investigations were conducted by computer

scientists intending to \teach" arti�cial vision systems to behave like the human visual

system. Some models of human eye movements in realistic scenes use spatial �lters in order

to determine an image's most salient points - the ones that are most likely to attract �xations.
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These �lters may be sensitive to contour features like sharp angles (Kattner, 1994) or to local

symmetries (Locher & Nodine, 1987; Menkhaus, 1997; Nattkemper, 1997). Rao and Ballard

(1995) proposed a model of parallel search employing time-dependent �lters. The location

of the �rst �xation is determined by a coarse analysis (low spatial frequencies) of the given

scene, and the following �xations are based on an analysis of increasingly higher spatial

frequencies. Another approach (Rimey & Brown, 1991) uses a Hidden Markov Model that is

capable of learning eÆcient eye-movement behavior. It optimizes its scan paths iteratively

towards highest eÆciency of gathering information in a given scene.

To date, however, even the best attempts at computer vision are far from reaching the

performance of the human visual system. One important reason for this fact might be that

we do not completely understand the fundamental cognitive mechanisms which guide our

attention so eÆciently during the exploration of a scene. It seems that the scenes used in the

modeling studies mentioned above are too complex to yield insight into these mechanisms.

In real-world scenes, a viewer's attention is guided by high-level factors, for instance, by the

functional or conceptual relationships between items or the relevance of items to the viewer.

It is almost impossible to parametrize such high-level factors and to obtain quantitative,

clearly interpretable results from this kind of experiments.

Another problem is that neither the search tasks nor the viewing tasks described above

are particularly well-suited to investigate scanning strategies. Gaze trajectories in these tasks

yield only coarse information about the exact structure of scan paths, i.e. the sequence of

items that receive attention. This is because visual attention can be shifted without employ-

ing eye movements. During rapid processes of scanning, small \covert" shifts of attention are

likely to occur (for a review, see e.g. Posner, 1980; Wright & Ward, 1994). Therefore, gaze

trajectories in search or viewing tasks do not indicate the whole sequence of attended items

but { depending on task complexity and item density { only a small subset of it.

In order to obtain more comprehensive information about visual scan paths, we measured

subjects' eye movements in a simpli�ed scenario and with a simpli�ed task: Subjects viewed

a random distribution of identical dots with one exception: One of these dots { the starting
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dot { was conspicuously brighter than the others. The task was to look exactly once at

each dot in the display, starting at the speci�ed dot. This task is similar to the one used by

Beckwith & Restle (1966), who asked subjects to count large sets of objects. By analyzing

reaction times for di�erent types of object con�gurations, the authors found that subjects

grouped the objects into subsets in order to count them eÆciently and to avoid mistakes. In

our experiments, however, we eliminated any possible interference of a concurrent counting

task with the scanning process. Furthermore, we used eye tracking to measure the exact

sequence of dots attended to, instead of only global reaction times.

On the one hand, the chosen task is rather arti�cial. In everyday life we are not used to

strictly avoiding repeated attention to the same object, because the \cost" of a redundant

eye movement is small (see Ballard, Hayhoe & Pelz, 1995). Although there is evidence for

an attentional mechanism called inhibition of return (Posner & Cohen, 1984; Klein, 1988;

Tipper, Weaver, Jerreat & Burak, 1994), this mechanism alone is not suÆcient to generate

self-avoiding and complete scan paths as demanded in our task. Therefore, subjects' scan

paths are likely to be in
uenced by cognitive processes operating at a higher level than

those being usually involved in natural situations, e.g., free exploration of surroundings. In

particular, path planning processes are expected to take place, because subjects have to hold

in memory which dots they have already visited during task completion (Beckwith & Restle,

1966).

On the other hand, our task enabled us to investigate scan paths purely based on the

stimulus geometry, i.e. on the locations of the dots. Neither item features nor relations

between them (other than geometrical relations) biased the observed strategies. Moreover,

the demand of attending exactly once to each item brought about an enhanced comparability

of scan paths taken on the same stimulus. Restricting the analysis to those paths that met

this demand, made it easy to de�ne a measure of similarity: The degree of similarity of a

path A to another path B was calculated as the number of \jumps" (edges) between dots

that appear in path A as well as in path B.

Experiment 1 investigated geometrical regularities of scan paths with the aim of �nd-
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ing possible \mechanisms" that control human scanning strategies. Several models of such

mechanisms were developed and implemented as computer simulations. The simulated scan

paths were then compared to the empirical ones in order to evaluate the plausibility of the

proposed mechanisms. Another important question was: Are there any preferred directions

of scan paths? In other words, would the rotation of the stimuli exert an in
uence on the

scan paths?

Experiment 2 went one step further towards a more naturalistic setting: While the sub-

jects' task remained the same as in Experiment 1, the displayed items were given di�erent

color and form attributes. Beckwith & Restle (1966) showed that the distribution of color

and form attributes in
uenced the time needed for counting a set of objects, with color

having a substantially stronger e�ect than form. With the help of eye tracking, Experiment

2 directly investigated the in
uence of color and form on empirical scan paths. In addition,

the most successful models of Experiment 1 were re�ned in such a way as to account for this

additional in
uence.

2 Experiment 1: Geometrical Factors

2.1 Method

2.1.1 Subjects

Twelve subjects from di�erent faculties of the University of Bielefeld took part in Experiment

1. All of them had normal or corrected-to-normal vision, none of them was color-blind or

had pupil anomalies. The subjects were paid for their participation.

2.1.2 Apparatus

Stimuli were presented on a 17" ViewSonic 7 monitor. The subjects' eye movements were

measured with the OMNITRACK 1 system (see Stampe, 1993). It uses two video cameras

as inputs of information about the position of the head relative to the environment and the
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position of the pupil relative to the head. This technique allows the subjects to move their

head from the straight-ahead position up to 15o in all directions, and therefore provides

natural viewing conditions. Gaze positions are recorded at a frequency of 60 Hz. Fixations

are calculated using a speed threshold in a 5-cycle time window, which means that only

�xations with a duration of at least 83 ms are detected. The absolute spatial precision of

the gaze-position measurement ranges from 0:7o to 1:0o. By using a new calibration interface

based on arti�cial neural networks (Parametrized Self-Organizing Maps), we improved the

system's precision to 0:5o. This made it possible to even recruit subjects wearing spectacles

(see Pomplun, Velichkovsky & Ritter, 1994).

2.1.3 Stimuli

Subjects were presented with sets of 30 dots (diameter of 0.5 degrees of visual angle) ran-

domly distributed within a square area (18 degrees per side) on a black background. The

dots were of the same color (blue), with the starting dot being clearly brighter than the

others (see Figure 1, left, for a sample stimulus).

||||| insert �gure 1 about here |||||

Five di�erent dot con�gurations (stimuli) were randomly generated. In order to investi-

gate directional e�ects on the scan paths, for instance top-to-bottom or left-to-right strategies

corresponding to the subjects' direction of reading, each con�guration was shown in four dif-

ferent orientations (rotated by 0o, 90o, 180o, and 270o). This resulted in a set of 20 stimuli

used in this study.

2.1.4 Procedure

A written instruction informed the subjects about their task. They had to look at each dot

in the display once, beginning with the starting dot. They were told not to miss any dots
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or to look at any of them more than once. Furthermore, subjects had to attend to each dot

for at least half a second to make sure that they actually performed a saccade rather than

a covert shift of attention towards the dot (see above). After task completion subjects were

to press a mouse button. The experiment started with two practice trials followed by the

eye tracker calibration procedure and the 20 recording trials in random order. Each trial was

preceded by a short calibration for drift correction using a single target at the center of the

screen.

2.2 Results

The recorded gaze trajectories were converted to item-based scan paths. In other words, the

temporal order of attended dots had to be reconstructed, because our analysis was intended

to refer to these rather than to �xation points. It turned out that this could not be done

automatically. The occurrence of additional �xations (conceivably used by the subjects to

get their bearings), imprecise saccades as well as errors in measurement required human

postprocessing. Consequently, an assistant { who was naive as to the purpose of the study

{ did the allocation of �xations to dots manually, on the basis of the individual trajecto-

ries with sequentially numbered �xations superimposed on the stimuli. As a result of this

semi-interpretative analysis, only 139 of the 240 converted paths (57.9%) turned out to be

acceptable in terms of the task, i.e. they visited each dot exactly once. The further analyses

were restricted to these acceptable paths.

Figure 1 presents a visualization of accumulated data (right) for a sample stimulus (left).

Thicker lines between dots indicate transitions (edges) used by a larger number of subjects.

The lines are bisected due to the two possible directions to move along these edges. Each

half refers to those transitions that started at the dot next to it. Halves representing fewer

than three transitions are not displayed for the sake of clarity. Figure 1 illustrates that in

the absence of any conspicuous order (upper left part of the display) we �nd high variability

of chosen edges, whereas the linearly arranged dots on the right and at the bottom of the
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display were almost always scanned in the same order.

In addition, the quantitative analysis of the data allowed us to investigate the e�ect

of rotating the stimuli: Were there directional in
uences on the scan paths, for example

according to the subjects' reading direction? This was analyzed by comparing similarities

(as de�ned above) between the scan paths of di�erent subjects. If the scan paths for the

same stimuli shown in the same orientation were more similar to each other than the ones

for di�erent orientations of the same stimuli, this would indicate that the rotation exerted

an e�ect. Actually, the average similarity value for the same orientation turned out to be

19.43 edges per path, while the value between di�erent orientations was 19.42, constituting

no signi�cant di�erence, t < 1. Consequently, it was justi�ed not to assume any directional

in
uence. So we averaged the data for each of the �ve original stimuli over its four di�erent

orientations for subsequent analyses.

2.3 Evaluation of Scan-Path Models

Which scanning strategies are promising to model? We developed and tested �ve di�erent

models. Since the empirical data showed no signi�cant dependence on the orientation of the

stimuli, none of the models developed below include this factor.

In order to obtain baseline data for the evaluation of the models, we calculated a compos-

ite path with maximal similarity to the observed paths (\optimum �t") for each stimulus.

An iterative algorithm determined this path within the huge set of all possible acceptable

paths, regardless of whether the path actually appeared in any one subject's data. The

average similarity of optimum-�t paths to empirical paths turned out to be 21.89, which

exceeded the similarity of empirical ones to each other (19.43, cf. above). The calculation

of optimum-�t paths also shows that no simulation can produce paths of higher similarity

to the empirical data than 21.89, which is considerably lower than the \perfect similarity"

value 29 (all acceptable paths consist of 29 edges). This discrepancy demonstrates the high

intrinsic variability of scan paths.
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Serving as a second baseline, the similarity of completely randomly generated scan paths

to the subjects' paths was computed, yielding a value of as low as 1.75. An example of the

optimum-�t path as well as the scan paths computed by the models are given in Figure 2,

referring to the sample stimulus in Figure 1. The �ve models that were analyzed are described

below.

||||| insert �gure 2 about here |||||

2.3.1 The \Greedy" Heuristic

One model that suggests itself for analysis is based on what can be termed the \Greedy"

heuristic. The \Greedy" algorithm always jumps to the dot which is geometrically nearest

to the actual \gaze" position and which is still to be visited. Although it produces plausible,

locally optimized sections of scan paths, the Greedy strategy has one drawback: On its way

through the stimulus, it leaves aside items of high eccentricity. As a consequence, these

items have to be \collected" later, which leads to unnaturally long saccades at the end of

the scan path. The lack of memory constitutes a fundamental di�erence from empirically

observed strategies. Nevertheless, even this simple model achieves a similarity value of 17.36,

indicating that its strategy of always choosing the nearest item, i.e. the local minimization

of scan paths, is already tremendously better than the pure random strategy.

2.3.2 The \Traveling Salesman" Algorithm

The shortcoming of the Greedy heuristic motivates the implementation of a TSS (\Traveling

Salesman Strategy") algorithm. The Traveling Salesman Problem is a basic paradigm in

computer science. A salesman who has to successively visit a certain number of cities wants

to save time and energy, so his problem is to �nd the shortest path connecting all the cities.

In the present context, this means that the TSS Model algorithmically minimizes the global
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length of scan paths rather than just the length of the next jump. However, unlike standard

TSS, the paths of this algorithm do not return to the starting dot. In this formulation, only

the �rst dot is constrained. The results show that this simulation gets much closer to the

actual human strategies than the Greedy heuristic: The similarity value is 20.87, which is

fairly close to the optimum-�t value of 21.89. This �nding suggests that not only the local

optimization of scan paths { as operationalized in the Greedy algorithm { plays an important

role in human scan path selection, but also their global optimization.

2.3.3 The Clustering Model

The fact that the TSS Model has yielded the best result so far motivates the investigation

of a re�ned variant of it. This so-called Clustering Model is based on the assumption that

human scan paths are generated by clusterwise processing of items (cf. Beckwith & Restle,

1966).

The model divides the process of scan-path computation into two steps. In the �rst step,

the con�guration of items is divided into clusters. A clustering algorithm maximizes the

between-cluster distances and minimizes the within-cluster distances with the help of a cost

function. We set the parameters of this iterative procedure in such a way that it generates

clusters that may have either \compact" or linear shape. Five to seven clusters with four

to seven items each are calculated, which is perceptually plausible (Atkinson, Campbell &

Francis, 1976; Miller, 1956).

The second step consists in a TSS algorithm calculating local scan paths of minimal

length connecting the dots within each cluster, as well as a global scan path of minimal

length connecting all clusters. Afterwards, the within-cluster scan paths are linked together

in the sequence speci�ed by the between-cluster scan path. Thus, this model processes all

dots within a cluster before proceeding to the next one (\hierarchical TSS").

A similarity analysis showed that the Clustering Model selects paths slightly more similar

to the empirically observed ones (21.12) than does the TSS Model. This may suggest that

clustering is a component of human scanning strategies.
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2.3.4 Using a Self-Organizing Map

When simulating cognitive processes we should also consider neural network approaches, be-

cause their functional structure is biologically motivated. An appropriate neural paradigm

is provided by Kohonen's self-organizing maps (SOMs), which are capable of projecting a

high-dimensional data space onto a lower-dimensional one (see Kohonen, 1990; Ritter, Mar-

tinetz & Schulten, 1992; Wieners, 1995). SOMs are networks of simulated neurons, usually

a one-dimensional chain or a two-dimensional layer. They learn in an unsupervised way to

partition a given feature or input space into disjoint classes or areas and to represent their

class by a \typical" feature vector.

The feature space is a region of a classical vector space, where each vector (v1; v2; : : : ; vn)
T

shows n di�erent features or input signals. These vectors are presented to the network in

random order, and a neuron \�res" if its stored feature, i.e. position vector, is the best

approximation to the active input position to the network. Thus we create a map { the neural

network { in which each mapped point { each neuron { represents a region of input patterns.

If we also ensure that the topology of the input space is preserved, i.e. that neighboring

feature vectors are mapped to neighboring neurons, or neighboring neurons stand for similar

features, we get a low-dimensional structure representing a possibly high-dimensional input.

This is done as follows:

1. Choose a random input vector v from feature space.

2. Select a neuron j with jv � wjj � jv � wij; 8i 6= j, i.e. the neuron with the best

representation wj of v; this is called the winner.

3. Change all neuron weights wi towards the input vector v, with an adaptive step size

hij that is a decay function of the network distance between neuron i and the winner

j. Here, � is an additional global adaptive step size parameter.

wnew
i

= wold
i

+ � � hij � (v � wi) ; � 2 [0; 1] (1)
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The change of neuron weights adjusts wold
i

towards a better representation vector and the

smooth distribution of change around the winner produces the desired topology preservation.

In our case, we are only interested in a mapping from discrete 2D points onto a linear chain

representing �xation order. Hence, the feature space is only the discrete set of dot positions

in IR2, one of them labeled as starting dot. Since the chain must begin at the starting dot,

the �rst neuron is de�ned to be the winner if the starting dot is presented, irrespective of

the actual feature-vector di�erence. In order to make sure that all dots are represented by

neurons after the learning process, the network contains a number of additional nodes. Now,

the probability to skip a dot is very low, but more than one neuron may become mapped to

the same position. This must be resolved by a post-processing step to extract the simulated

scan path from the chain of neurons.

The paths generated by this model look quite natural at �rst sight. Their similarity to

the human ones, however, is substantially lower (19.45) than the results obtained by the

TSS-based models.

2.3.5 A Scan-Path Model on the Basis of Receptive Fields

Another model uses neurons with a special type of receptive �elds which are assumed to exist

in the visual cortex. In a neural network, natural or arti�cial, the term receptive �eld stands

for the region of input space that a�ects a particular neuron (see, e.g., Hubel & Wiesel, 1962;

Lennie, Trevarthen, van Essen &W�assle, 1990). Further, the in
uence of stimuli in this region

is not necessarily homogeneous, but dependent on variables such as the distance of the input

vector from the center of the region. There may also be excitatory and inhibitory subregions,

where a stimulus will respectively increase or decrease the activation of the neuron.

In our model, the receptive �elds consist of an inhibitory axis and two laterally located,

excitatory areas of circular shape (see Figure 3). We use 100000 receptive �elds that are

randomly distributed over the input space. Their sizes vary randomly between 80% and

120% of the relevant input space, i.e. the whole area in which dots are presented. There are
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eight possible orientations which are randomly assigned to the receptive �elds. It is obvious

from this description that the receptive �elds are closely packed and overlap each other.

||||| insert �gure 3 about here |||||

The activation of a neuron is highest if no dot is in the inhibitory region of the neuron's

receptive �eld and as many dots as possible are in the lateral excitatory regions. The neuron

with the highest activation (the \winner" neuron) thus indicates the \clearest" linear gap

between two laterally located accumulations of dots. Therefore, the inhibitory axis of this

neuron's receptive �eld can be considered to indicate a perceptually plausible bisection of

the stimulus.

This �rst bisection separates the set of dots into two subsets. Each subset serves as the

input to a new group of neurons with smaller receptive �elds, calculating further bisections.

This procedure is repeated until none of the sections contains more than four dots, since

the number four is a plausible estimate of the number of dots that can be perceived at the

same time (cf. Atkinson, Campbell & Francis, 1976; Miller, 1956). Figure 4 (left) presents

the model's hierarchical partitioning of the sample stimulus previously shown in Figures 1

and 2. The bisections are visualized by straight lines with numbers indicating their level in

the hierarchy. The calculation of this structure { a binary tree structure { is our attempt to

simulate a subject's perceptual processing of the visual scene.

||||| insert �gure 4 about here |||||

Finally, the scan path is derived by a TSS algorithm calculating the shortest scan path

that begins at the starting dot. In the present context, however, it is not the geometrical

distance that is minimized, but a linear combination of the geometrical distance and the tree

distance between the dots. The tree distance between two dots A and B is the number of steps
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that have to be taken within the tree structure to get from the subset (leaf) containing A to

the one containing B. If we choose the coeÆcients of the linear combination in such a way

that the tree distance is more relevant than the geometrical distance, the model generates

the scan path shown in Figure 4 (right). It strictly follows the hierarchical tree structure,

which leads to geometrical deviations.

As long as the model's linear coeÆcients are chosen such that the tree distance exerts

a signi�cant e�ect, neither the appearance of the simulated scan paths nor their calculated

similarity to the empirical paths is convincing. When balancing the weights of the tree

distances and the geometrical distances, we obtained scan paths with a similarity to the

human paths of 18.73. This approach, at least in this rather simple form, does not yield

more plausible scan paths than does the TSS Model. The hierarchical partitioning does not

seem to correspond to human strategies.

||||| insert �gure 5 about here |||||

Figure 5 displays a summary of the accuracies with which the various models simulate hu-

man scanning patterns, plus the optimum-�t value. A one-way analysis of variance (ANOVA)

was conducted, excluding the optimum-�t value, which was a global value that did not vary

across subjects. The ANOVA revealed a signi�cant main e�ect showing di�erences between

the �ve similarity values, F (4; 44) = 32:338; p < 0:001. Pairwise t-tests with Bonferroni-

adjusted probability values were conducted to examine these di�erences more closely. It

turned out that all of the models reached signi�cantly higher similarity than the Greedy

heuristic, all t(11) > 3:620; p < 0:005. The Receptive Fields Model did not signi�cantly

di�er in results from the Kohonen Model. These two models, in turn, were outperformed by

both the TSS Model and the Clustering Model, all t(11) > 4:842; p < 0:006. Finally, the TSS

Model showed no signi�cant di�erence from the Clustering Model.
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2.4 Discussion

Basically, the results of Experiment 1 show that the simple TSS Model and Clustering

Model yield better scan paths than the neural models, and that even the \primitive" Greedy

algorithm is not far behind. This �nding should not be interpreted as evidence for a general

incapability of neural models to explain scan-path mechanisms. The neural models tested in

Experiment 1 were of a very primitive nature. Multi-layered and/or hierarchical networks

might be able to generate scan paths more similar to the empirically observed ones. Moreover,

discretion is advisable in the interpretation of these data, since they are based on only �ve

di�erent dot con�gurations. Nevertheless, from the results above we can conclude that it is

diÆcult to generate better simulations of human scan paths than those created by the simple

TSS-based models. Thus the minimization of scan-path length seems to be a basic principle

in human scanning strategies.

Another important result of Experiment 1 is the independence of scan paths from rota-

tions of the stimuli. In other words, the order in which a subject scans a set of dots does

not seem to change when the display is rotated by 90, 180, or 270 degrees. It is well-known

from visual search experiments (e.g. Zelinsky, 1996; Pomplun, 1998) that subjects prefer to

scan a display according to their reading direction, if they are allowed to freely choose the

starting point. However, this was not observed in the present study. A possible reason is that

the speci�ed starting point induced rotation-invariant scanning strategies.

3 Experiment 2: Color and Form Attributes

The objective of Experiment 2 was to investigate the in
uence of color and form attributes

on scan paths. Subjects were presented with distributions of geometrical objects (squares,

triangles, and circles) in di�erent colors (yellow, blue, and green). We might expect color

and form to in
uence the structure of chosen scan paths, because subjects are likely to take

advantage of the additional structural information. As their main concern is to remember

14



which of the items they have already visited, the introduction of color and form features

might allow them to use perceptual groups of identical attributes as \scan-path units" which

need less e�ort to remember than single items. This assumption is supported by the results

of Beckwith & Restle's (1966) counting task. They found shorter reaction times when object

colors were clustered, i.e. di�erent colors were spatially segregated. They also found an

analogous { but weaker { e�ect for clustering the objects by form. To examine potential

corresponding e�ects on scan-path structure, the stimuli in Experiment 2 had three di�erent

levels of color and form clustering.

If subjects make use of the color and/or form information, these e�ects should be inte-

grated into the models. It is plausible to assume that the attributes lead to a reduction in

scan-path variability, which could enable the models to yield better results than in Experi-

ment 1. Here we took advantage of the �ndings of Experiment 1: Since the paths generated

by the TSS and the Clustering Models were most similar to the empirical data, we focused

on the adaptation of these two approaches to the stimuli used in Experiment 2.

In order to make the two experiments easier to compare, the design and procedure of

Experiment 2 corresponded to Experiment 1. Based on the results of Experiment 1, however,

we did not further investigate the e�ect of stimulus rotation. In addition, the introduction

of color and form attributes required to change the way of indicating the starting item. In

Experiment 2, we used a dynamic cue, namely a 
ashing red circle around the starting item,

appearing for a short period after stimulus onset. This method of marking the starting item

did not alter its color or form attributes. The subjects' task was the same as in Experiment

1, namely to look once, and only once, at each item.

3.1 Method

3.1.1 Subjects

Twenty new subjects from di�erent faculties of the University of Bielefeld took part in

Experiment 2. All of them had normal or corrected-to-normal vision, none of them was
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color-blind or had pupil anomalies. They were paid for their participation.

3.1.2 Apparatus

The apparatus was the same as in Experiment 1.

3.1.3 Stimuli

The stimuli consisted of 30 simple geometrical items (diameter of about 0.7o) of three di�erent

colors (fully saturated blue, green, and yellow) and three di�erent forms (triangle, square,

and circle) on a black background. Their spatial distribution was randomly generated within

a display of 18o by 18o with a minimum distance of 1.5o between the centers of neighboring

items in order to avoid item overlap or contiguity (see Figure 6).

In each stimulus array, there were a balanced number of items with each color and form.

The distribution of colors and forms was not always homogeneously random, as they were

clustered to varying degrees in most trials. To explain the clustering algorithm, a formalized

description of the stimulus patterns is necessary: A pattern is a set of N items (objects)

o(n) =

0
BBBBBBBBB@

o(n)
x

o(n)
y

o(n)
c

o
(n)
f

1
CCCCCCCCCA

; n = 1; : : : ; N; (2)

where (o(n)
x
; o(n)

y
) is the pixel position of the item's center on the screen, o(n)

c
is the item's

color (1 = blue, 2 = green, 3 = yellow), and o
(n)
f

is the item's form (1 = square, 2 = triangle,

3 = circle).

Now the variable color clustering �c is introduced. It can be de�ned as the ratio between

the mean distance �df;dif between all pairs of items with di�erent colors and the mean distance

�df;id between those with identical colors:

�f =
�df;dif
�df;id

(3)
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(n1)
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(n2)
y )2 (6)

For example, �c = 2 would mean that, on average, items of di�erent colors are twice as

distant from each other than items of the same color. In our setting of 30 items and three

di�erent colors this would correspond to a strongly segregated distribution containing large

single-colored areas. �c = 1 would mean that there is no clustering at all. We de�ne the

parameter form clustering (�f ) analogously.

||||| insert �gure 6 about here |||||

Figure 6 illustrates the correspondence between �c, �f , and the distribution of colors

and forms in four di�erent sample stimuli. While the images (a) to (c) display stimuli with

increasing color clustering and no form clustering, picture (d) shows a stimulus with high

color and high form clustering. These examples demonstrate an important feature of �c

and �f for the present experiment: Color and form clustering can be varied independently

from each other. Even in an array with both high color and form clustering, the separate

concentrations of colors and forms usually do not correspond.

An iterative algorithm for generating color and form distributions with given parameters

of color clustering �c and form clustering �f can easily be implemented. Starting with a

random distribution, this algorithm randomly selects pairs of items and exchanges their

color or form attributes { if this exchange shifts the distribution's clustering levels towards

the given parameters. The algorithm terminates as soon as the di�erence between the actual

and the desired �c and �f falls below a certain threshold, which was set to 0.05 in the present

experiment.
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Three di�erent levels of color and form clustering were used, namely \no clustering" (1.0),

\weak clustering" (1.3), and \strong clustering" (1.7). Examples of stimuli at these levels

can be seen in Figure 6. The nine possible combinations of di�erent levels of color and form

clustering constituted the stimulus categories of Experiment 2. Five stimuli of each category

were used, leading to a total of 45 di�erent stimuli. For two seconds after stimulus onset, a


ashing red circle was shown around one of the items, signifying the starting item which was

always the same across subjects for each given stimulus.

3.1.4 Procedure

The procedure was the same as in Experiment 1, except that 45 trials were conducted in

random order.

3.2 Results

As in Experiment 1, an assistant converted the recorded �xations into scan paths connecting

the items in the display. The assistant was only shown the locations of the items, but not

their color or form attributes. Just as in Experiment 1, the superimposed visualization of

the subject's �xations and their temporal order allowed the assistant to mark the individual

scan path item by item.

The proportion of acceptable paths was 93.3%, which was substantially higher than in

Experiment 1 (57.9%). Apparently, the additional color and form information helped the

subjects not to \get lost" during task completion. The individual features of the items seemed

to facilitate reliable memorization and recognition. The incorrect paths were approximately

equally distributed among the nine categories of stimuli, and so were excluded from the

analysis.

For a qualitative analysis, we can inspect the calculated scan paths of maximal similarity

to the empirical ones (optimum �t). The upper row of Figure 7 presents these paths for

an unclustered, a strongly color-clustered, and a strongly form-clustered stimulus. There is
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no obvious evidence for the in
uence of color or form attributes on the subjects' strategy.

Although there are some longer sections of scan paths exclusively visiting items of the same

color or form, these items are always located closely together. This qualitative �nding sug-

gests that the location of items remains the most important factor to determine the structure

of scan paths.

||||| insert �gure 7 about here |||||

The quantitative investigation of the e�ects of color and form required a measure of

color and form clustering within the empirically observed scan paths. An appropriate choice

seemed to be the mean runlength with regard to these dimensions. In the present context, a

\run" is de�ned as a sequence of items of the same color or form within a scan path. The

runlengths ranged from one to ten, as there were always exactly ten items of each color and

form in each stimulus array. In order to calculate a mean runlength across multiple paths,

we employed a weighted mean to equally account for every single transition between items.

Since longer runs comprise more transitions, we weighted each run with its runlength.

How can we test whether this measure indeed re
ects the in
uence of item attributes

rather than the geometrical structure of the stimulus? Even a subject who completely ignores

color and form would generate longer runs with increasing strength of clustering in the

stimulus. This is due to the fact that, according to the results of Experiment 1, subjects

seem to prefer short scan paths, so neighboring items are disproportionately likely to be

scanned successively. Clustering moves items with the same features closer together and

thus increases the average color and form runlengths in empirical scan paths.

Fortunately, there is a \color and form blind" model, which yields paths of high similarity

to the empirical ones, namely the TSS Model. We applied the TSS Model to each stimulus

used in Experiment 2 to generate baseline predictions about the color and form runlengths

in that stimulus. In a comparative analysis of observed scan paths, we then divided all color

and form runlengths by the TSS-predicted runlengths, obtaining relative runlengths. Rather

19



than absolute runlengths, relative runlengths reveal the in
uence of item attributes on a

subject's scan path. Relative color runlength 1, for instance, would indicate no di�erence to

the TSS Model and thus no in
uence of color attributes on empirical scan paths. Longer

relative runlengths would indicate increasing in
uence.

Figure 8 shows the subjects' relative color and form runlengths at the three levels of color

and form clustering respectively. A two-way ANOVA revealed signi�cant main e�ects of \di-

mension" (color vs. form), F (1; 19) = 9:967; p = 0:005, and \strength of clustering" (no vs.

weak vs. strong clustering), F (2; 38) = 4:765; p = 0:014. There was also a signi�cant inter-

action between the two factors, F (2; 38) = 5:807; p = 0:007, which was due to the fact that

clustering had a signi�cant e�ect on relative color runlength, F (2; 38) = 5:556; p = 0:008,

but not on relative form runlength, F (2; 38) = 2:359; p = 0:108. For the color dimension,

pairwise t-tests with Bonferroni-adjusted probabilities revealed a signi�cant di�erence be-

tween \no clustering" (1.092) and \strong clustering" (1.213), t(19) = 3:936; p = 0:003. The

di�erences to the \weak clustering" condition (1.131), however, were not signi�cant, both

t(19) < 1:665; p > 0:336. Finally, the overall relative color runlength (1.145) di�ered reliably

from the value 1, t(19) = 3:406; p = 0:003, whereas overall relative form runlength (0.999)

did not, t < 1.

||||| insert �gure 8 about here |||||

All in all, these �ndings suggest that subjects use color information to guide their scan

paths, because the color runlength in their scan paths is longer than predicted by the TSS

Model. This e�ect of color guidance increases with the strength of color clustering in the

stimuli. Subjects' form runlengths, however, do not exceed the predicted ones and do not

depend on form clustering in the stimuli. Hence, we assume that subjects do not use form

information when performing the task.
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3.3 Re�nement of Scan Path Models

The results of Experiment 1 motivated the adaptation of both the TSS Model and the Clus-

tering Model to stimuli containing items with color and form attributes. Since the Clustering

Model can be viewed as a re�nement of the TSS Model, we started with adjusting the TSS

Model.

How can we bias the TSS algorithm to react to color in the same way as the average

subject does? Basically, it should still calculate scan paths of minimal length, but in do-

ing so should weight the purely geometrical distances by the color (in)congruence (\color

distance") between the neighboring items. This weighting is achieved by multiplying the

distance between two items of di�erent colors by a constant factor (color weight) and leaving

the distance between items of the same color identical to their geometrical distance.

Understandably, the algorithm's behavior will strongly depend on the color weight. It is

obvious that a color weight of 1 would lead to a standard TSS algorithm, which would not

be in
uenced by color information at all. In contrast, a color weight of, for instance, 1000

would make the algorithm use a minimum of transitions between di�erent colors. At �rst, the

algorithms would visit all items of the starting item's color A, then inspect all items of color

B, and �nally those of color C. Within the color groups it would behave like a conventional

\traveling salesman" algorithm, taking the shortest passages possible. By adjusting the color

weight it is possible to control the in
uence of colors and hence the average color runlength

produced by the TSS algorithm. Since the goal is to adapt the TSS Model to the empirical

data, i.e. to produce the same runlengths as generated by the subjects, the color weight

needs to be adjusted for the best match.

What is the response of the TSS algorithm to increasing the color weight? As might

be expected, it reveals a tendency towards the avoidance of transitions between items of

di�erent colors, because these transitions increase the overall length of the scan path above

proportion. Figure 9 shows color runlength as a function of the color weight ranging from

1.0 to 1.5. The mean runlengths are displayed separately for each of the three levels of color
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clustering in the stimuli. Additionally, the empirically obtained runlengths for these levels

are shown as horizontal lines.

||||| insert �gure 9 about here |||||

We �nd the TSS runlengths to increase approximately linearly with increasing color

weight. Higher levels of clustering lead to steeper runlength slopes. Surprisingly, we cannot

determine a single value of the color weight to yield the \best" runlengths for all levels of

clustering. For each level, the intersection between the runlength curve of the TSS Model

and the subjects' runlength occurs at a di�erent color weight. These are the values 1.11 for

the \no clustering" condition, 1.23 for \weak clustering", and 1.33 for \strong clustering".

Loosely speaking, the subjects seem to apply higher color weights with increasing color

clustering in the display.

In light of these data, we must consider if the introduction of color weights, as described

above, is an adequate method of modeling the observed color e�ects. Since the model needs

di�erent color weights depending on the strength of color clustering, we have to pose the

question whether this approach is really plausible. An alternative idea would be to assign

color weights for sequences of transitions rather than for single transitions. Starting with the

value 1.0, the color weight for a whole group of successive transitions within the same color

would decrease linearly with the number of items in that group. This arrangement would

make the choice of longer color runs increasingly attractive to the TSS algorithm. However,

testing this approach yielded a result that was in some respects inverse to the previous one:

For increasing levels of color clustering, the alternative method needed decreasing weights

for long color runs in order to produce scan paths of good similarity to the empirical ones.

To solve this problem, we could try to combine the two approaches or to use more complex

functions to determine the relevant distances between items. A basic rule of modeling is,

however, to use as few freely adjustable parameters as possible. The more of these parameters

are integrated into a model, the easier it is for the model to �t any data, which weakens
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potential conclusions drawn from the model's performance. Therefore, we kept our desired

model { the Color TSS Model { as simple as possible by extending our initial approach.

Figure 9 suggests a linear dependence of the required color weight on the strength of color

clustering. Recall that the three levels of color clustering correspond respectively to the

values 1.0, 1.3, and 1.7 on the cluster measure (�c), with a maximum deviation of 0.05. We

determined the parameters of the linear function to yield runlengths most similar to the

empirical ones:

color weight = 0:264 �c + 0:799 (7)

Three sample paths generated by the resulting Color TSS Model are shown in the lower

row of Figure 7. In fact, some subtle di�erences to the TSS paths (middle row) can be found

indicating that the new model better corresponds to the empirically observed strategies

(upper row). A similarity analysis showed that the scan paths generated by the Color TSS

Model were indeed more similar to the observed patterns (similarity value 19.51) than those

produced by the unadjusted TSS Model (19.18).

Finally, we adapted the Clustering Model to the stimuli of Experiment 2. This was

achieved analogously to the adaptation of the TSS Model. We implemented the stimulus-

dependent color weight for both the �rst step (calculation of clusters) and the second step

(cluster-based TSS) performed by the Clustering Model. The same functional relationship

between color weight and color clustering in the stimulus which was calculated for the Color

TSS Model (Equation 7) led to optimal runlength values for the Clustering Model as well.

The improvement of the Clustering Model achieved by its adjustment to color attributes

turned out to be considerably smaller than for the TSS Model. We measured the similarity

to the subjects' scan paths in Experiment 2 for both the unadjusted Clustering Model and

the new Color Clustering Model. While the Color Clustering Model produced results slightly

more similar to the empirical paths (19.03) than those generated by the original Clustering

Model (18.95), it could neither compete with the TSS Model nor with the Color TSS Model.
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Figure 10 shows a survey of similarities between the models' paths and the empirical ones,

in ascending order. Additionally, the values for the Greedy Model (17.25) and the optimum

�t (20.65) are presented. A one-way analysis of variance showed a signi�cant main e�ect,

i.e. di�erences between the �ve models, F (4; 76) = 65:743; p < 0:001. Pairwise t-tests with

Bonferroni-adjusted probabilities revealed that, as in Experiment 1, the Greedy heuristic

yielded a signi�cantly lower value than all other models, all t(19) > 9:432; p < 0:001. While

there were no reliable di�erences between the Clustering Model, the Color Clustering Model,

and the TSS Model, the Color TSS Model produced a signi�cantly higher value than all its

competitors, all t(19) > 3:508; p < 0:024.

||||| insert �gure 10 about here |||||

4 General Discussion

Experiment 1 provided us with some fundamental insights into visual scanning strategies.

First, the results suggest that the present scanning task does not induce any preferred di-

rection for scanning, e.g. top to bottom or left to right. The reason might be that using

a random distribution of items and a speci�ed starting point makes this kind of schematic

strategy rather ineÆcient. Second, the �ve scan-path models di�er substantially in their abil-

ities to reproduce empirical scan paths. The TSS Model and the closely related Clustering

Model yield clearly better results than their competitors, showing that the minimization

of overall scan-path length might be an important determinant of human gaze trajectories.

This does not imply that arti�cial neural networks are unable to generate human-like scan

paths. Further research is necessary to determine adequate structures of neural networks for

modeling human scanning behavior.

Experiment 2 con�rmed the results of Experiment 1. Moreover, it yielded information

about the in
uence of color and form attributes on empirical scan paths. While subjects
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seem to ignore the items' forms, they use the items' colors in the scanning process, as

demonstrated by disproportionately long color runs in their scan paths. The in
uence of

color grows with increasing strength of color clustering in the stimulus. This color guidance is

possibly employed to reduce memory load for generating self-avoiding scan paths. It requires

less e�ort to keep in memory the clusters already visited and the items visited within the

current cluster than to keep in memory the visited area of the display on the basis of single

items, especially if suitably large clusters are available. The perceptual grouping by form,

however, does not seem to be strong enough to signi�cantly in
uence the subjects' scanning

strategies.

These results are in line with those obtained by Beckwith & Restle (1966), who found that

clustering items by color or form reduced the time needed to count them, with color having a

substantially stronger e�ect than form. Our �ndings are also compatible with eye-movement

studies investigating saccadic selectivity in visual search tasks (e.g. Williams & Reingold,

in press). Distractor items that are identical to the target in any dimension attract more

�xations than others. Again, this e�ect is disproportionately large for the color dimension.

Conclusions concerning di�erences across dimensions, however, may not generalize be-

yond the set of items used in the experiment. In Experiment 2, other item sets, e.g. bars in

di�erent orientations, might have led to form-biased scan paths. Reducing the discriminabil-

ity between colors would at some point have eliminated the in
uence of color on the scan

paths. From the present data we can only con�dently conclude that fully saturated colors

a�ect scanning strategies, whereas regular geometrical forms do not.

Disproving our assumption, the e�ect of color on scan paths did not reduce their variabil-

ity. The optimum-�t value was actually lower in Experiment 2 (20.65) than in Experiment

1 (21.89), indicating higher di�erences between individual paths in Experiment 2 than in

Experiment 1. This is probably due to the fact that, in Experiment 2, the e�ect of color

varies considerably between subjects, which increases the range of applied strategies. The

large standard error for relative color runlengths (see Figure 8) illustrates these individual

di�erences.
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Based on the empirically obtained color e�ect, the TSS and Clustering Models have been

adapted to colored items. When using a weight for transitions between items of di�erent

colors to achieve this adaptation, this weight has to increase linearly with the strength of

color clustering in the stimuli. Loosely speaking, the e�ect of color attributes on empirical

scan paths seems to vary linearly with the amout of color clustering in the stimulus. We

found the adaptation of the TSS Model { the Color TSS Model { to be a small but clear

improvement over the standard TSS Model. The Color TSS Model is also superior to the

Clustering Model and its re�ned variant, the Color Clustering Model, and hence can be

considered the \winner" of our competition.

Neither Experiment 1 nor Experiment 2 showed a signi�cant di�erence in performance

between the \color-blind" TSS and Clustering Models. Only the adaptation to colored items

was achieved more e�ectively for the TSS Model. This does not mean that human subjects do

not apply clustering strategies. In fact, the \winning" Color TSS Model performs clustering

itself, since it �ts its scan paths to the color clusters given in the stimulus. While this method

of clustering could to some extent be adapted to human strategies, this could not be done

with the more complex and less 
exible algorithm used by the Clustering Model.

Altogether, the diÆculties encountered in surpassing the plain TSS Model indicate that

the geometrical optimization of scan paths, i.e. the minimization of their length, is the main

common principle of human scanning strategies under the given task, even when additional

color and form information is provided. Further research is needed to verify the applicability

of the �ndings to real-world situations. For this purpose, stimuli could be photographs of

real-world scenes { like the breakfast scenes used by Rao & Ballard (1995) { and the task

could be to memorize the scene or to detect a certain item. Will scan-path minimization still

be the dominant factor to determine the scan-path structure? Will the scanning strategies

be in
uenced by the distribution of color and form attributes or by �gural or functional

interpretation? Answering these questions will be an important step towards understanding

the principles our visual system employs when creating gaze trajectories. In this context, the

present work can be considered a starting point for a promising line of research.
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Figure 1: Sample stimulus (left) and corresponding visualized results (right)



Figure 2: Scan paths generated by the di�erent models, plus the optimum-�t path, for the

sample stimulus shown in Figure 1.



Figure 3: Illustration of the simulated receptive �elds. The planar input space is represented

by the dimensions x and y; positive values of input weight signify excitatory connections,

negative values signify inhibitory connections.



Figure 4: The model's hierarchical bisections (left) and the resulting scan path (right), for

the sample stimulus shown in Figure 1



Figure 5: Similarity between the paths generated by the di�erent models and the empirical

scan paths, shown in ascending order, plus the optimum-�t value



Figure 6: Examples of item distributions with di�erent levels of color/form clustering: (a)

no color and form clustering (1.0/1.0), (b) weak color and no form clustering (1.3/1.0),

(c) strong color and no form clustering (1.7/1.0), and (d) strong color and form clustering

(1.7/1.7). Circles indicate the starting items.



Figure 7: Scan paths generated by subjects (optimum-�t paths), the TSS Model, and the

Color TSS Model. Circles indicate the starting items.



Figure 8: Mean relative color and form runlengths as functions of the strength of color and

form clustering respectively.
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Figure 9: Color runlength generated by the TSS Model as a function of the strength of color

clustering and the introduced color weight. Horizontal lines indicate empirical runlengths.



Figure 10: Similarity between the empirical scan paths of Experiment 2 and those yielded

by the di�erent models, plus the optimum-�t path


