
TERM MATCHING AND BIT-SLICED INDEX ARITHMETIC

A Dissertation Presented

by

Denis Rinfret

Submitted to the O±ce of Graduate Studies, University of Massachusetts
Boston, in partial ful¯llment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

June 2002

Computer Science Program

c° 2002 by Denis Rinfret
All rights reserved

TERM MATCHING AND BIT-SLICED INDEX ARITHMETIC

A Dissertation Presented

by

Denis Rinfret

Approved as to style and content by:

Patrick O'Neil, Professor
Chairperson of Committee

Elizabeth O'Neil, Professor
Member

Dan A. Simovici, Professor
Member

Betty J. Salzberg, Professor
Member

Dan A. Simovici, Program Director
Computer Science Program

Peter Fejer, Chairperson
Computer Science Department

ABSTRACT

TERM MATCHING AND BIT-SLICED INDEX ARITHMETIC

June 2002

Denis Rinfret, B.S., Universit¶e du Qu¶ebec µa Trois-Riviµeres
Ph.D., University of Massachusetts Boston

Directed by Professor Patrick O'Neil

The bit-sliced index (BSI) was originally de¯ned in [OQ97]. The current paper

introduces the concept of BSI arithmetic. For any two BSI's X and Y on a table

T , we show how to e±ciently generate new BSI's S, U , V , W , and Z such that

S = X + Y , U = X ¡ Y , V = X £ Y , W = c £ X (where c is a constant integer),

Z = MIN(X;Y); this means that if a row r in T has a value x represented in

BSI X and a value y in BSI Y , the value for r in BSI S will be x + y, the value

in U will be x ¡ y, the value in V will be x £ y, the value in W will be c £ x,

and the value in Z will be MIN(x; y). Since a bitmap representing a set of rows

is the simplest bit-sliced index, BSI arithmetic is the most straightforward way

to determine multisets of rows (with duplicates) resulting from the SQL clauses

UNION ALL (addition), EXCEPT ALL (subtraction), and INTERSECT ALL (minimum)

(see [OO00a, IBM] for de¯nitions of these clauses). Another contribution of the

current work is to generalize BSI range restrictions from [OQ97] to a new non-

Boolean form: to determine the top k BSI-valued rows, for any meaningful value

k between one and the total number of rows in T . Together with bit-sliced addi-

tion, this permits us to solve a common basic problem of text retrieval: given an

iv

object-relational table T of rows representing documents, with a collection type

column K representing keyword terms, we demonstrate an e±cient algorithm to

¯nd k documents that share the largest number of terms with some query list Q of

terms. This problem is called \simple term matching". A more complicated prob-

lem, called \weighted term matching", uses document and term weights, and the

cosine similarity function to compute similarities between documents and queries.

A great deal of published work on such problems exists in the Information Retrieval

(IR) ¯eld. The algorithm we introduce, which we call Bit-Sliced Term Matching,

or BSTM, uses an approach favorably comparable in performance to the most e±-

cient known IR algorithm, a major improvement on current DBMS text searching

algorithms, with the advantage that it uses only indexing we propose for native

database operations.

v

µA ma mµere . . .

vi

Table of Contents

1 Introduction : 1
1.1 IR Term-Matching Algorithm . 3

1.1.1 Simple Term Matching Algorithms 5
1.1.2 Weighted Term Matching 5

1.2 Some Problems with IRTM Algorithms 8
1.3 Multisets . 9
1.4 What Bit-Sliced Index Arithmetic Brings 11

2 Fundamental Concepts : 13
2.1 Bitmap Indexes . 13

2.1.1 Segments and Segment Relative Addressing 14
2.1.2 ORDRIDs and ORDRID-lists 15
2.1.3 Operations on Bitmaps . 15

2.2 Bit-Sliced Indexes . 17

3 Bit-Sliced Index Arithmetic : 22
3.1 Addition . 22
3.2 Subtraction . 25
3.3 Shifting and Multiplication by a Constant 26
3.4 Multiplication . 30
3.5 Minimum . 34

4 Term Matching : 37
4.1 Weights Indexing . 37
4.2 Bit-Sliced Weighted Term Matching 39

4.2.1 Top K Documents . 40
4.2.2 Proof of Algorithm 4.3 . 45

4.3 Memory Usage of BSTM . 47

vii

5 Experimental Results : 49
5.1 Results Analysis . 50

5.1.1 Query-Weights Equal to 1 51
5.1.2 Query-Weights Equal to Powers of 2 52
5.1.3 Unrestricted Query-Weights 52

6 Other Applications and Future Work : 59
6.1 Multi-Column Queries With BSTM 61
6.2 Arithmetic Queries . 62
6.3 Preference Queries . 63
6.4 Nearest Neighbor Searches . 65
6.5 Other Possible Applications . 66

A Tools Used to Produce This Thesis : 67

B Experimental Results Data : 68

References : 72

viii

List of Figures

1.1 Ranked Query Example. 3
1.2 Example of Inverted Lists in a Hash Table. 4
1.3 Example of Inverted Lists in a B-tree Index. 4
1.4 Simple Term Matching Algorithm 5
1.5 Weighted Term Matching Algorithm 6
1.6 Cosine Similarity Measure . 7
1.7 Multisets Example Queries . 10
1.8 Results of Queries 1.1 and 1.2 . 11

2.1 Bitmap Index Leaf Entry . 14
2.2 First 10 Entries of the counts Array 16
2.3 BSI Example . 17
2.4 1-slice BSI B-tree Leaf Entry . 19
2.5 BSI B-tree Leaf Entry . 19
2.6 Partial BSI B-tree Representation 20

3.1 Addition of Bitmaps Example . 23
3.2 Addition of Two Bitmaps . 23
3.3 Addition of BSIs . 24
3.4 BSI Subtraction Examples . 26
3.5 BSI Negation Algorithm . 26
3.6 BSI Subtraction . 27
3.7 Shallow vs. Deep Shifting . 28
3.8 BSI Shifting . 29
3.9 BSI Multiplication by a Constant 30
3.10 Fast Multiplication (Booth's Algorithm) 32
3.11 Fast Multiplication Example . 32
3.12 BSI Multiplication . 33
3.13 BSI Minimum . 35

4.1 Weight Indexes Construction . 38

ix

4.2 Bit-Sliced Weighted Term Matching Algorithm 39
4.3 Top K Documents Algorithm . 41
4.4 Top K Documents Example . 42
4.5 Top K Documents Algorithm Example 42
4.6 Top K Documents Algorithm Example, Variation 1 44
4.7 Top K Documents Algorithm Example, Variation 2 44

5.1 Notation Used in Experiments . 49
5.2 Time vs. # of Query Terms . 54
5.3 Time vs. # of Query Terms . 54
5.4 Time vs. # Documents . 55
5.5 Time vs. # Documents . 55
5.6 Ratio Time IR/Time BSI . 56
5.7 Time vs. # Documents . 56
5.8 Ratio Time IR/Time BSI . 57
5.9 Time vs. # of Query Terms . 57
5.10 Time vs. # Documents . 58
5.11 Ratio Time IR/Time BSI . 58

B.1 Data for Query-Weights Equal to 1 69
B.2 Data for Query-Weights Equal to Powers of 2 70
B.3 Data for Unrestricted Query-Weights 71

x

CHAPTER 1

Introduction

To begin with, I will review the concept of Term Matching (TM) and Ranked
Queries, as de¯ned in Information Retrieval (IR). I will describe basic and more
advanced algorithms from the IR ¯eld solving the TM problem, and discuss some
drawbacks of those methods. The motivation of this thesis comes from these draw-
backs, and I will propose new algorithms using data structures already available
natively in up-to-date Object Relational Database Management Systems (OR-
DBMS). This work is based on a paper written with Patrick O'Neil and Betty
O'Neil, published in SIGMOD 2001 [ROO01]. It did not include work on Weighted
TM, except a short section on how it could be done. This dissertation focuses on
weighted TM, since it is a generalization of simple TM, and it is more useful than
simple TM in practice. This work includes also a chapter on future work, which
could lead to other interesting research projects.

A Ranked Query is a query in which we want to not only get a set of rows back
from a DBMS based on some criteria, but we also want to get a rank for each of
the elements returned by the query. Commonly, the rank is a percentage value.
For each element returned, we get a number between 1 and 100, the higher the
value, the more meaningful the element is. The elements are returned in order by
their rank, most signi¯cant ¯rst. Ranked queries are often more interesting than
non-ranked queries, especially when dealing with user initiated queries and large
return sets. For example, when making a search on the World Wide Web, getting a
few hundreds or thousands (or more) unranked links can be quite time consuming,
but if the links are sorted by their signi¯cance, looking only at the ¯rst few links
may be enough to ¯nd what we need. Ranked queries are obviously worthwhile.

Term Matching (TM) algorithms are a way to allow ranked queries to be ex-
ecuted on a textual database ¤ . If the documents in the database are very large,
it can be useful to break the long documents into pages or passages, since execut-
ing a ranked query on small documents can be faster (less terms per document
to process). It can also help a user by pointing him to a particular passage of a
document, instead of presenting him a document of possibly hundreds of pages,
¤ The techniques introduced in this work can be extended to non-textual databases, but we

will look at that later.

1

and telling him that a passage of the document is meaningful, without knowing
exactly where that passage is in the document. See [KZS99] for more on passage
ranking. In the remainder of this work, I will refer to a document as a piece of
text, either a full document, or a piece (a passage) of a larger document.

For every document in the database, terms are obtained by parsing the docu-
ments. The terms are usually words or expressions extracted from the documents,
where some preprocessing can be done before the indexes are built on the database.
Here is a list of possible term preprocessing steps:

1. document format ¯ltering (remove HTML tags like <H1> and </P> and re-
move image anchors)

2. stop-words removal (\a", \and", \of", \the", and \to" can be removed from
the indexes since they are very common and do not provide much information
on the documents)

3. variant endings removal (with Lovin's stemming algorithm) (\enumerate",
\enumeration", and \enumerated" all indexed as \enumerat")

4. synonyms replacement (index \gumbo" as \okra" in a cooking recipes data-
base)

5. di®erent spellings and misspellings replacement (index \colour" as \color",
or \retreival" as \retrieval")

6. expression detection (index \computer science" as an expression-term, not
only as the two word-terms \computer" and \science")

7. language and alphabet translation (consider \Qu¶ebec" and \Quebec" as only
one term)

Preprocessing terms is a complicated subject in itself, and the algorithms discussed
in this work apply to terms after the preprocessing stage.

Figure 1.1 provides an example of a ranked query and a corresponding result
set. The query asks to ¯nd the best recipes (the recipes with the highest ranks, i.e.
the recipes with the highest similarity with the given set of query terms) having
lentil, onion, tomato, garlic and cumin in it, and returns the recipes in order by
their ranking. RANK is a ranking function, and RK is alias for the ranks column.
The Lentil and Vegetable Soup recipe has a higher rank than the Marinara Tomato
Sauce because the former would have all ¯ve ingredients in it, while the later has
only two (tomato and garlic) ingredients out of ¯ve in it. The former is \closer"
to the query than the later.

2

SELECT TOP 10 RANK(*) RK, RID, TITLE FROM RECIPES
WHERE f\lentil", \onion", \tomato", \garlic", \cumin"g IN INGREDIENTS
GROUP BY RID
ORDER BY RK DESC

RESULTS

RK RID TITLE
100 230 Lentil and Vegetable Soup
92 87 Dhal
80 22 Spicy Tomato Chutney
73 121 Lentil Salad
...

...
...

32 345 Marinara Tomato Sauce
...

...
...

Figure 1.1: Ranked Query Example.

The book Managing Gigabytes [WMB99a] o®ers good coverage of the term
matching and other Information Retrieval problems.

1.1 IR Term-Matching Algorithm

Information Retrieval Term Matching (IRTM) algorithms make use of inverted
¯les to ¯nd top ranked documents. There are di®erent variations and re¯nements
on the de¯nition of inverted ¯les, but let's start with a simple one, given by Perry
and Willet in [PW83].

De¯nition 1.1 (Simple Inverted File) An inverted ¯le to a document collec-
tion consists of a set of lists, called inverted lists, each of which contains pointers
to the document records which have been indexed by one particular term in the set
of terms used for the characterization of the documents in the collection. (From
the introduction of [PW83]).

In the above de¯nition, \the set of terms used for the characterization of the
documents in the collection" is the set of terms after the preprocessing steps have
been applied to the document terms in the collection. For each such term, a
list of pointers to document records (i.e. a list of row IDs or RIDs), is put in

3

3,47,87,101,187,230,...

..."lentil",37 "onion",214

4,8,18,22,34,35,...12,43,87,121,188,230,...

"cumin",57 ...

Figure 1.2: Example of Inverted Lists in a Hash Table.

...

......

... ..."de"

...

"cr"

"cream"12:3,54,56,... "cumin"57:3,47,87,... "curcuma"31:22,87,157,...

Figure 1.3: Example of Inverted Lists in a B-tree Index.

the inverted ¯le, often called a vocabulary or a lexicon, to be retrieved easily.
Hash tables with terms as keys, and disk pointers to inverted lists as values can
be used as vocabularies. Figure 1.2 shows an example of that. In most IRTM
implementations, the shortest inverted lists are processed ¯rst, and the longest
inverted lists last. B-tree indexes can also be used instead of hash table, also with
terms as keys, and inverted lists as values. See Figure 1.3 for an example of a part
of the bottom two levels of such a B-tree.

Usually, the number of terms in the list is stored just before the list, or just
before the list pointer. It allows for a selection of terms by list length, i.e. by
within-database term frequency. Terms with low frequencies are processed ¯rst
because they are more meaningful and discriminating. This selection process is
similar to the one used when computing the conjunction of more than lists of
documents. It is better to keep the list of candidates small. [KZS99] has a good
discussion of this subject.

In my work, I use a Bitmap Index, which is a B-tree index with terms as keys,
and bitmaps as values. See Chapter 2 for more on bitmap indexes. Both index
types contain the same information, but algorithms built on such bitmap indexes
can make use of more parallelism to compute ranked queries. These algorithms,
along with the algorithms and data structures used for weighted term matching,
are part of the new concept called Bit-Sliced Index Arithmetic, which is the subject
of this work.

4

Algorithm 1.1 STM. Given a query Q consisting of a set of terms, ¯nd
the top k best matching documents. There is one accumulator Ad for every
document d in the database. Every Ad value is initialized with 0.

for each term t 2 Q do
¯nd I in the vocabulary, the inverted list for t
for each document d 2 I do

Ad = Ad + 1
¯nd k largest Ad values (using a heap sort)
return top k (d;Ad) pairs

Figure 1.4: Simple Term Matching Algorithm

1.1.1 Simple Term Matching Algorithms

The ¯rst kind of term matching, called Simple Term Matching, was described in
[PW83] as \algorithm D". I will also refer to it as the Simple Term Matching
(STM) algorithm. It is simple because the similarity measure used to compute
the ranking of documents is simple: for every term in the query, if a document
contains the term, then add 1 to the accumulator for that document. So, in other
words, the ranking of a document is equal to the number of terms in common
between the set of query terms and the set of document terms. Using the cooking
recipes example again, the ranking of a recipe would be the number of ingredients
from the query ingredients it contains. The \Lentil and Vegetable Soup" would be
the most signi¯cant recipe since it has all ¯ve ingredients given in the query. Its
ranking computed with the simple similarity measure would be 5 and it would be
the maximal score, so some scaling is necessary to obtain rankings between 0 and
100. The STM algorithm is given in Figure 1.4.

1.1.2 Weighted Term Matching

The retrieval e®ectiveness, or the measurement of ranking performance, of the sim-
ple similarity measure described above is not as good as other more complex mea-
sures. The recall (the proportion of relevant documents that have been retrieved)
and precision (the proportion of retrieved documents that are relevant)[MZ96] are
not very high. The simple similarity measure provides a quick and easy way to
get a ranking on documents, but with more complicated measures signi¯cant im-
provement on both recall precision can be obtained.

5

Algorithm 1.2 WTM. Given a query Q consisting of a set of (term, weight)
pairs, ¯nd the top k best matching documents. There is one accumulator Ad
for every document d in the database. Every Ad value is initialized with 0.
sim is some similarity measure.

for each (term, weight) pair (t; wt) 2 Q do
¯nd I in the vocabulary, the inverted list for t
for each (document, weight) pair (d; wd) 2 I do

Ad = Ad + sim((t; wt); (d; wd))
¯nd k largest Ad values (using a heap sort)
return top k (d;Ad) pairs

Figure 1.5: Weighted Term Matching Algorithm

To increase the retrieval e®ectiveness, Weighted Term Matching (WTM) algo-
rithms are used. Instead of treating every term in every document as equal as in
simple TM, weights are assigned to every (term, document) pair. In the inverted
lists, (document, weight) pairs appear instead of document numbers only. Then
some similarity measure is applied, instead of simply adding 1 to an accumula-
tor, to compute the ranking of every document, similarly to the STM algorithm
described earlier. Figure 1.5 shows the WTM algorithm.

Alternative similarity measures were studied in a paper written by Zobel and
Mo®at [ZM98]. Unfortunately, they were not able to pick a winner out of all the
similarity measures. They conducted an exhaustive investigation of all standard
similarity measures by considering di®erent combining functions (inner product,
cosine measure, Jacquard formulation, ...), di®erent ways to assign term weights,
document-term weights, relative term frequencies and document and query lengths.
Although there were no clear winner, the Cosine Similarity Measure is believed to
be a good overall measure, and many researchers right now are using it in their
work (e.g. [KZS99, MZ96] to name only two). I will use the formulation and
notation given in [KZS99], which I include in Figure 1.6, throughout this work.
Note that the expression Wd;t is not used in the de¯nition, but it is going to be
useful later on in Chapter 4.

6

Cosine(d; q) =
P
t2q^d(wq;t ¢ wd;t)

Wd

where

² q is a query (a set of terms)

² d is a document (a set of terms)

² Wd =
qP

t2dw2
d;t

² wd;t = loge(fd;t + 1)

² wq;t = loge(fq;t + 1) ¢ loge(Nft + 1)

² fx;t is the number of occurrences or frequency of term t in x

² N is the number of documents

² ft is the number of distinct documents containing t

² the expression loge(Nft + 1) is the \inverse document frequency", a rep-
resentation of the rareness of t in the collection.

² Wd;t = wd;t
Wd

Figure 1.6: Cosine Similarity Measure

7

1.2 Some Problems with IRTM Algorithms

A very important problem with the IR term matching algorithms given above in
Figures 1.4 and 1.5 is scalability. When there is a large number of documents to
match a query against, the accumulator array can get very large since it needs
one accumulator per document. Four bytes per accumulator are used [WMB99b],
so when the number of documents gets large, say one million documents, then
4 Mbytes of RAM are necessary to hold those accumulators. When running in
a multi-user environment, if many queries are done at the same time, the RAM
could ¯ll up quickly since di®erent queries cannot share their accumulators.

The need to limit the number of accumulators is obvious. [KZS99] has a good
solution to that problem. Instead of using a static data structure (the accumulator
array), as in Algorithm 1.2, they create accumulators dynamically (in a hash table).
In the ¯rst phase, they process inverted lists starting by the shortest lists, i.e. by
rarest (probably most signi¯cant) terms ¯rst. In this phase, new accumulators
are created freely. When they get to more common terms, they stop adding new
accumulators, but they keep updating the already existing accumulators. The
reasoning behind this process is that if a document doesn't contain any of the
rarest, most signi¯cant terms, it cannot itself be a signi¯cant document since the
common terms' weights cannot add up high enough to make a document without
rare terms signi¯cant. They continue to update the existing accumulators because
the more common terms can help discriminate which documents containing rare
terms are more signi¯cant. This is a heuristic, but in their experimental results,
they found that limiting the number of accumulators to about 5% of the total
number of documents had no impact on retrieval e®ectiveness. In [MZ96], this
strategy is called the continue strategy. [MZ96] also has a quit strategy, which stops
processing inverted lists immediately when the maximum number of accumulators
has been reached, without continuing to update the existing accumulators. It is
shown that the retrieval e®ectiveness of the continue strategy is better than the
quit strategy.

One problem with using hash tables is that the document ID has to be stored
with the accumulator, while in an array, the document ID is the index into the
array. Each accumulator entry takes 8 bytes (4 bytes for the accumulator proper
and 4 bytes for the document ID) instead of just 4 bytes. 5% of 1 million documents
gives 50,000 accumulators, and supposing the hash table ¯ll factor is about 63%(=
1 ¡ e ¡ 1, to keep the collision chain small [OO00b]), almost 80,000 hash table entries
are necessary at 8 bytes each, therefore, about 618 Kbytes per query are needed
for the hash table. As we will see later in Section 4.3, using a bit-sliced index (BSI)
to store the accumulators and BSI arithmetic to compute the accumulator values
will not require much more space than the IRTM with hashed accumulators.

8

Another important problem is the inverted ¯le processing costs, as written in
the abstract of [MZ96]:

Query processing costs in large text databases are dominated be the
need to retrieve and scan the inverted list of each query term. Retrieval
time for inverted lists can be greatly reduced by the use of compression,
but this adds to the CPU time required.

An inverted list is processed document by document, so when it gets long, especially
when a term is common and the number of documents is large, retrieval and
processing costs can get large. Many I/Os per inverted list may be needed, and
processing documents one-by-one can be costly in terms of CPU time. In [MZ96],
Self-Indexing Inverted Files are de¯ned. They compress inverted lists to reduce
disk space usage. The problem compressed inverted lists is the need to decompress
the whole list to access a piece of data near the end of the list since decompression
can start only at the beginning of the list. By building self-indexing inverted ¯les,
data can be accessed anywhere in a list without decompressing the whole list. The
details of this process are beyond the scope of this work; refer to the paper for
more.

One problem with those self-indexing inverted ¯les is that it is not clear how
inserts and updates can be done on such ¯les, but this problem is probably not
common since indexes in information retrieval are usually assumed to be read-only,
like in a Data Warehouse. Another problem is the need to process each inverted
list document by document. Parallelism techniques are not as easily applied here
as in the BSI arithmetic algorithms, as we will see later. BSI arithmetic algorithms
uses the SIMD (Single-Instruction, Many-Data) trick to gain parallelism. We could
decide to have one di®erent thread running for each inverted list involved in the
query, but this is di±cult to do because threads processing rare terms could create
new accumulators, while the others could not, and it is not known in advance ex-
actly which terms are part of the rare terms and which are not. Also, many threads
accessing the accumulators at the same time would create many race conditions,
so a lot of locking and unlocking would need to be done. I do not think the use
of parallelism could be useful here. As we will see later, two di®erent forms of
parallelism can be used with BSI arithmetic algorithms.

1.3 Multisets

Another problem solved by BSI arithmetic is how to compute multisets of rows in
a database. This problem is strongly related to the simple term matching problem
stated above. Their implementation, except for the query processing step, is the

9

Q 1.1 SELECT COUNT(*) CT, CAR_ID FROM
(SELECT CAR_ID FROM CARS WHERE COLOR = 'RED' UNION ALL
SELECT CAR_ID FROM CARS WHERE MAKE = 'FERRARI' UNION ALL
SELECT CAR_ID FROM CARS WHERE YEAR >= '1996' UNION ALL
SELECT CAR_ID FROM CARS WHERE LOCATION = 'CANADA')

AS RANKED_CARS
GROUP BY CAR_ID;

Q 1.2 SELECT TOP 10 COUNT(*) CT, CAR_ID FROM
(SELECT CAR_ID FROM CARS WHERE COLOR = 'RED' UNION ALL
SELECT CAR_ID FROM CARS WHERE MAKE = 'FERRARI' UNION ALL
SELECT CAR_ID FROM CARS WHERE YEAR >= '1996' UNION ALL
SELECT CAR_ID FROM CARS WHERE LOCATION = 'CANADA')

AS TOP10_CARS
GROUP BY CAR_ID
ORDER BY CT DESC;

Figure 1.7: Multisets Example Queries

same. It is not possible in standard SQL-99 to specify queries de¯ned with a TOP
modi¯er, so I will use DB2 [IBM] notation to provide examples in this section.

Consider Query 1.1 in Figure 1.7. It asks to retrieve some CARS data based on
four subqueries. CAR ID is a unique ID. The four sets will be UNIONed ALL, i.e.
the four sets will be unioned, keeping duplicates in the multisets. For example, if
there is a 1998 Ferrari red car located outside Canada in the CARS table, then its
corresponding CAR ID will appear 3 times in the multiset, while a 1997 blue Chevy
car located outside Canada will have its corresponding CAR ID appear just once in
the multiset. The query ¯nishes by doing a GROUP BY CAR ID, and by computing
the count of each group. What we end up with is a table in the style of Figure 1.8.
One column has CAR ID values, and the other counts, i.e. the CAR ID multiplicities
in the multiset created by the UNION ALL of the subqueries.

If Query 1.1 is modi¯ed to obtain Query 1.2, the result set is reordered to get
the highest multiplicities ¯rst, and then the top ten rows are selected. The idea is
to get the ten most signi¯cant rows, ten rows that best match the query. A row
with a high multiplicity is assumed to be more relevant since it is \closer" to the
query. A \1998 Ferrari red car located outside Canada" is closer to the query than
a \1997 blue Chevy car located outside Canada", thus more interesting. This is
just the Simple Term Matching approach, a natural result in SQL with UNION ALL
queries.

10

RANKED CARS

CT CAR ID
1 5
3 24
2 49
1 73
1 98
4 111
1 132
2 155
1 161
...

...

TOP10 CARS

CT CAR ID
4 111
4 666
3 24
3 179
3 221
3 387
3 453
3 687
3 721
2 49

Figure 1.8: Results of Queries 1.1 and 1.2

Examples of queries where multiplicities are subtracted, using EXCEPT ALL, and
the minimum multiplicity of two multisets is determined, using INTERSECT ALL,
can also be constructed. Note that in the case of EXCEPT ALL and INTERSECT ALL,
any negative numbers in the result multiset must be replaced with zeroes, since
rows do not appear with negative multiplicities in SQL. Refer to [OO00c, IBM] for
more on these predicates.

1.4 What Bit-Sliced Index Arithmetic Brings

Bit-sliced index arithmetic brings a radically di®erent way of building multisets
of rows and implementing term matching algorithms, using native data structures
and indexes of up-to-date Object-Relational Database Systems (ORDBMS). It has
been shown in [OQ97], Improved query performance with variant indexes, that
bitmap and bit-sliced indexes are useful in many di®erent ways other than term
matching. Boolean conditions evaluation, range searches, and aggregate functions
computation all bene¯t from the use of bitmap and bit-sliced indexes.

Ranked queries can use BSI arithmetic to get better scalability. On the tests
performed comparing the Bit-Sliced Index Term Matching (BSTM) and Informa-
tion Retrieval Term Matching (IRTM) approaches (see Chapter 5), when varying
the number of documents to search on and ¯xing the number of terms per query,
IRTM is constantly between about 2 to 2.5 times slower than BSTM for 5, 10 and
20 terms per query, and between 1.3 and 1.7 times slower than BSTM for 30, 40

11

and 50 terms. Users of search engines very rarely ask for more than 10 terms in
one searchy. Also, parallelization of the algorithms is easier with BSI arithmetic
than with IRTM. The di®erence between the two approaches will increase when
concurrent programming on multi-CPU computers or on clusters of computers will
be used to implement the algorithms.

Chapter 2 reviews some fundamental concepts for those not very familiar with
bitmaps and bit-sliced indexes and discusses their implementation. Chapter 3 is an
introduction to BSI arithmetic, covering basic arithmetic operations on BSIs. New
Term Matching algorithms are covered in Chapter 4, with experimental results
comparing IRTM with the new algorithms in Chapter 5. Chapter 6 discusses how
BSI arithmetic can be extended to other applications. It includes some ideas about
how a search engine could allow users to make Term Matching queries. Multi-
column queries, arithmetic queries, and preference queries using BSI arithmetic
are discussed. Nearest-Neighbor searches could also bene¯t from BSI arithmetic.

y[MZ96] \Query of perhaps 3-10 terms are the norm for general-purpose retrieval systems".

12

CHAPTER 2

Fundamental Concepts

In this chapter, bitmap and bit-sliced indexes are presented. Bitmap indexes were
¯rst introduced in [ON87], and bit-sliced indexes in [OQ97]. Variations on these
de¯nitions were studied in [CI98, CI99, WB98, Wu99].

2.1 Bitmap Indexes

De¯nition 2.1 (Bitmap Index) [ON87, OQ97] To create a bitmap index, all
N rows of the underlying table T must be assigned ordinal numbers: 1; 2; : : : ; N ,
called Ordinal row-positions, or simply Ordinal positions. Then for any index
value xi of an index X on T , a list of rows in T that have the value xi can be
represented by an Ordinal-position-list such as: 4; 7; 11; 15; 17; : : :, or equivalently
by a verbatim bitmap, 00010010001000101 : : :. Note that sparse verbatim bitmaps
(having a small number of 1's relative to 0's) will be compressed, to save disk and
memory space.

Ordinal row-positions 1; : : : ; N can be assigned to table pages in ¯xed size
blocks of size J , 1 through J on the ¯rst page, J + 1 through 2J on the second
page, etc., where J is the maximum number of rows of T that will ¯t on a page (i.e.,
the maximum occurs for the shortest rows). This makes it possible to determine
the zero-based page number pn for a row with Ordinal position n by the formula
pn = (N ¡ 1)=J . A known page number can then be accessed very quickly when
long extents of the table are mapped to contiguous physical disk addresses. Since
variable-length rows might lead to fewer rows on a page, some pages might have no
rows for the larger Ordinal numbers assigned; for this reason, an Existence Bitmap
(EBM) is maintained for the table, containing 1 bits in Ordinal positions where
rows exist, and 0 bits otherwise. The EBM can also be useful if rows are deleted,
making it possible to defer index updates.

It is a common misunderstanding that every row-list in a bitmap index must
be carried in verbatim bitmap form. In reality, some form of compression is al-
ways used for sparse bitmaps (although verbatim bitmaps are preferred down to a
relatively sparse ratio of 1's to 0's such as 1/50, because many operations on verba-

13

x_i DiskPtr#Segs Seg# Seg#...DiskPtrSeg#DiskPtrSeg#DiskPtr

010011101011...

Verbatim Bitmap Segments ORDRID List Segments

tablespace 1

51:2,17,59,198,212,... 24:74,129,189,284,412,......

tablespace 2

100110100110...

Figure 2.1: Bitmap Index Leaf Entry

tim bitmaps are more CPU e±cient than on compressed forms). In the prototype
system we implemented, called the RIDBIT project, bitmap compression simply
involves converting sparse bitmap pages into ordered lists of segment-relative or-
dinal positions called ORDRIDs (de¯ned below). We ¯rst describe segmentation,
which was introduced in [ON87, OQ97] and is used in the RIDBIT project.

2.1.1 Segments and Segment Relative Addressing

We break the rows of table T into equal-size blocks so that the bitmap fragment for
the set of rows in each block will ¯t on a single disk page. These blocks of rows are
called segments, following the MODEL 204 nomenclature of [ON87]. The RIDBIT
project uses 4KByte disk pages, so segments contain S = 8 £ 4000 = 32; 000 rows.
(We use S = 32; 000 as a rough estimate; the true number is larger, but not quite
215 = 32; 768, because we leave space on the bitmap page for a count of 1-bits to
tell us when compression is needed, and for the disk page overhead.)

A B-tree index entry for an index value xi has the format shown in Figure 2.1.
The entry in Figure 2.1 can grow to the length available on the B-tree leaf page
where it resides, and another entry with the same index value xi can follow on a
successive leaf page if more segments make it necessary. Each Seginfo block (the
(Seg#, DiskPtr) pairs) represents a segment in the bitmap anchor, Seg# being the
segment number of the segment it represents, and DiskPtr the disk pointer to the
ORDRID-list or bitmap. See the next section for a description of an ORDRID-list.
The Seginfo blocks for an index entry are held in order by Seg#, and if a segment
contains no row for xi, then the Seginfo block for that segment will be missing in
Figure 2.1. (This fact can be used at an early execution point to exclude segments
from consideration that have no Seginfo block in one of the index entries.)

14

2.1.2 ORDRIDs and ORDRID-lists

Since the S bits of a segment bitmap must ¯t on a 4 KByte page, S < 215 , and
a segment-relative ORDRID will ¯t in two bytes (in what follows we will refer to
a segment-Relative ORDRID simply as an ORDRID). This short length provides
a signi¯cant advantage in disk space and I/O speed during a range search. An
ORDRID value k in segment m can be translated into a Table-Relative Ordinal
position t by the formula t = m £ S+k. An ORDRID-list for a segment of an index
entry (pointed to by DiskPtr in Figure 2.1) contains ORDRIDs in ordered sequence.
ORDRID lists are also stored in order on disk, and usually many ORDRID-lists will
¯t on a page. If the dividing line between sparse bitmap and ORDRID-list occurs
at a bit density 1/50, then the longest ORDRID-list will take up at most 16/50 of a
disk page, and contiguous lists can be stored in a disk-resident B-tree with at least
three entries per leaf page. ORDRID-lists use a separate continuum of pages (not
intermixed with Index B-tree pages or Bitmaps) for fastest disk access, and are
ordered by index-value and segment number, that is: xi k Seg#. The DiskPtr used
to address ORDRID-lists has the same format used in row addressing, consisting of
(Disk Page#, Slot#), where Slot# addresses an o®set directory entry that locates
the ORDRID-list on the page.

To avoid having segments that keep getting converted back and forth between
the verbatim bitmap and ORDRID-list forms, possibly because many updates are
performed and the density keeps oscillating around 1/50, two ratios can be used:
if the density drops below 1/64, convert the verbatim bitmap to an ORDRID-list,
and if the density increases above 1/50, convert the ORDRID-list to a verbatim
bitmap. This technique provides an hybrid density zone where the segment could
be in any form.

Note that when we refer to a Bitmap index, this is a generic name meaning
that Bitmaps are a possible form of representation, and does not mean that every
row representation for every index value xi is a Bitmap: it may be a Bitmap or an
ORDRID-list, or a segment-by-segment combination of the two forms, whichever is
most appropriate based on the density of rows for that value in the given segment.
Similarly, when we speak of a Bitmap in a Bitmap index, an ORDRID-list might
be the actual representation; we will di®erentiate between bitmap and ORDRID-
list when the di®erence is important to our discussion. As a side note, the name
RIDBIT comes from the compression of ORDRID-Bitmap.

2.1.3 Operations on Bitmaps

Pseudo-code for logical operations AND, OR, NOT, and COUNT on bitmaps were
provided in [OQ97], so we limit ourselves here to short descriptions. Given two

15

i i2 counts[i]
0 00000000 0
1 00000001 1
2 00000010 1
3 00000011 2
4 00000100 1
5 00000101 2
6 00000110 2
7 00000111 3
8 00001000 1
9 00001001 2

Figure 2.2: First 10 Entries of the counts Array

verbatim bitmaps B1 and B2, we can create the bitmap B3 = B1 AND B2 by
treating memory-resident segment fragments of these bitmaps as arrays of long
ints in C, and looping through the fragments, setting BC

3 [i] = BC
1 [i] & BC

2 [i],
where BC

n [i] refer to the ith long int in the C array representation of Bn. The
logic can stream through successive segment fragments from disk (for B1 and B2)
and to disk (B3), until the operation is complete. The bitmap B3 = B1 OR B2
is computed in the same way, and B3 = NOT B1 is computed by setting BC

3 [i] =
:BC

1 [i] & EBMC [i] in the loop. Note that the e±ciency of bitmap operations
arises from a type of parallelism in Boolean operations in CPU registers, speci¯cally
SIMD (Single-Instruction- Multiple-Data), where many bits (32, or 64) are dealt
with in a single AND, OR, or NOT operation occurring in the simplest possible
loop. To ¯nd the number of rows represented in a bitmap B1, COUNT (B1),
another SIMD trick is used: the bitmap fragment to be counted is overlaid with a
short int array, and then the loop through the fragment uses the short ints as
indexes into an auxiliary array, called counts, containing 28 = 256 1-byte integers,
where counts[i] is equal to the number of bits on in the binary representation of
i, aggregating these into a count variable. Figure 2.2 shows the ¯rst few entries
in the counts array. This technique saves a good amount of CPU resources, at
the cost of using a little more memory space. The counts array is only 256 bytes
long, worthwhile compared to the approach of counting the bits one-by-one. It is
worth noting that 256 bytes will ¯t in cache too on modern processors, so many
RAM look ups can be avoided.

We perform logical operations AND and OR on two segment ORDRID-lists B1
and B2 by looping through the two lists in order to perform a merge-intersect or
merge-union into an ORDRID-list B3; in the case of OR, the resulting ORDRID-

16

ID C C2 B7 B6 B5 B4 B3 B2 B1 B0

1 5 00000101 0 0 0 0 0 1 0 1
2 0 00000000 0 0 0 0 0 0 0 0
3 127 01111111 0 1 1 1 1 1 1 1
4 23 00010111 0 0 0 1 0 1 1 1
5 200 11001000 1 1 0 0 1 0 0 0
6 9 00001001 0 0 0 0 1 0 0 1
7 64 01000000 0 1 0 0 0 0 0 0
8 39 00100111 0 0 1 0 0 1 1 1

Figure 2.3: BSI Example

list might grow large enough to require conversion to a verbatim bitmap, an easy
case to recognize, and easily done by initializing a zero Bitmap for this segment and
turning on bits found in the union. The NOT operation on a segment ORDRID-
list B1 is performed by copying the EBM segment and turning o® bits in the
list corresponding to ORDRIDs found in B1. To perform AND and OR with a
verbatim bitmap B1 in one index segment and an ORDRID-list B2 in another,
the ORDRID-list is assumed to have fewer elements and e±ciently drives the loop
to access individual bits in the bitmap and perform the Boolean test, in the case
of AND, ¯lling in a new ORDRID-list B3, and in the case of OR, initializing the
verbatim bitmap B3 to B1 and turning on bits from the ORDRID-list B2.

2.2 Bit-Sliced Indexes

De¯nition 2.2 (Bit-Sliced Indexes) A Bit-Sliced Index (BSI) B is an ordered
list of bitmaps, Bs, Bs¡ 1, ..., B1, B0, and is used to represent the values (normally
non-negative integers) of some column C of a table T (although the column C might
be calculated values associated with rows of T , and have no physical existence in
the table). The bitmaps Bi, 0 · i · s are called bit-slices, and their bit-values are
de¯ned this way:

C[j] =
sX
i=0

Bi[j] ¢ 2i

where C[j] is the C value for the row with ordinal position j in T . In other words,
Bi[j] = 1 if and only if bit i in the binary representation of C[j] is on.

See Figure 2.3 for an example of a BSI. In the ¯gure, the column C2 is the binary
representation of column C. Each bit-slice of a BSI is like a vertical partition of a

17

column. Range searches can be executed very e±ciently using bit-sliced indexes.
Some aggregate functions, like the sum, average, median, and n-tile can also be
executed e±ciently on BSIs. Refer to [OQ97] for a complete analysis of aggregate
functions and range searches. These algorithms make use of the bitmap Boolean
operations, described above, to operate on the BSI slices.

A BSI can also be de¯ned on a non-integer column, but with a few restrictions.
A BSI could be de¯ned on an AMOUNT column, where AMOUNT would be a
dollar amount. The values stored in the BSI would actually be the number of
cents, not the number of dollars. When the number of digits after the decimal
point needs to be large in the column the BSI is de¯ned on, it may be impractical
to use bit-sliced indexes since the number of bit-slices will be large. But in IR,
a 6-bit approximation of documents weights is known to be su±cient to get al-
most unchanged retrieval e®ectiveness [MZ96], so BSIs used in this work for term
matching will have a small number of slices.

It is possible to store negative numbers in a BSI, but then the BSI has to be
de¯ned as a 2's complement BSI. A BSI can be an unsigned BSI (UBSI), contain-
ing unsigned ints, or a signed BSI (SBSI), containing signed ints. When not
speci¯ed, BSI (without the U or S) will mean unsigned BSI, since signed BSIs are
rare compared to unsigned BSIs. It is important to remember that a BSI bit-slice
is like a vertical partition of a column in its binary representation.

The main memory representation of a BSI is quite simple since a BSI is just an
ordered list of bitmaps. A BSI is implemented using a vector of bitmap pointers.
On disk, it is a little trickier. In the B-tree leaves, a BSI with only one slice is
represented the same way a bitmap is represented, with only a small di®erence: a
count (equal to 1 in this case) of the number of slices is kept before the bitmap
anchor data (see Figure 2.4). The problem when dealing with more slices is the
BSI entry size. Having a bitmap anchor for every slice in a BSI may end up taking
a large part of a leaf node, thus reducing the number of entries per leaf node
signi¯cantly and probably augmenting the B-tree depth. If a BSI has more than
one slice, then the leaf entry, called a BSI anchor, consists of the usual key, the
number of slices, and a list of slice pointers, i.e. a pointer to a disk block where to
¯nd the bitmap anchor for that slice (see Figure 2.5). Figure 2.6 shows a partial
view of a B-tree index with BSI anchors as entries. Note that di®erent index levels
are placed in di®erent tablespaces on disk. This allows better data separation, and
these tablespaces could actually be located on di®erent disks. Better performance
could be achieved by keeping more than one disk busy during index accesses.

New BSI operations are introduced chapters 3, Bit-Sliced Index Arithmetic and
4, Term Matching. It is important to remember that the algorithms introduced in
the following chapters are using the Boolean operations presented in this chapter,

18

DiskPtrkey 1 #Segments Segment# DiskPtr Segment# DiskPtr ... Segment#

Figure 2.4: 1-slice BSI B-tree Leaf Entry

.
.
.

#Segments Segment# DiskPtr Segment# DiskPtr ... Segment# DiskPtr

#Segments Segment# DiskPtr Segment# DiskPtr ... Segment# DiskPtr

#Segments Segment# DiskPtr Segment# DiskPtr ... Segment# DiskPtr

#slices Slice# DiskPtr Slice# DiskPtr ... Slice# DiskPtrkey

Figure 2.5: BSI B-tree Leaf Entry

19

l
e
a
f

l
e
v
e
l

k
e
y

B
S
I
A
n
c
h
o
r

.
.
.
k
e
y

B
S
I
A
n
c
h
o
r

k
e
y

B
S
I
A
n
c
h
o
r

.
.
.
k
e
y

B
S
I
A
n
c
h
o
r

k
e
y

B
S
I
A
n
c
h
o
r

.
.
.
k
e
y

B
S
I
A
n
c
h
o
r

.
.
.

S
e
g
A
n
c
h
o
r

s
l
i
c
e
#

s
l
i
c
e
#

S
e
g
A
n
c
h
o
r

.
.
.

S
e
g
A
n
c
h
o
r

s
l
i
c
e
#

s
l
i
c
e
#

S
e
g
A
n
c
h
o
r

.
.
.

S
e
g
A
n
c
h
o
r

s
l
i
c
e
#

s
l
i
c
e
#

S
e
g
A
n
c
h
o
r

.
.
.

S
e
g
A
n
c
h
o
r

s
l
i
c
e
#

s
l
i
c
e
#

S
e
g
A
n
c
h
o
r

.
.
.

S
e
g
A
n
c
h
o
r

s
l
i
c
e
#

s
l
i
c
e
#

S
e
g
A
n
c
h
o
r

.
.
.

S
e
g
A
n
c
h
o
r

s
l
i
c
e
#

s
l
i
c
e
#

S
e
g
A
n
c
h
o
r

t
a
b
l
e
s
p
a
c
e

0

t
a
b
l
e
s
p
a
c
e

1

t
a
b
l
e
s
p
a
c
e

2

D
a
t
a

L
e
v
e
l

1

t
a
b
l
e
s
p
a
c
e

3

D
a
t
a

L
e
v
e
l

2

i
n
d
e
x

l
e
v
e
l

Figure 2.6: Partial BSI B-tree Representation

20

and that the parallelism obtained from the SIMD operations play an important
role in the e±ciency of those algorithms.

21

CHAPTER 3

Bit-Sliced Index Arithmetic

This chapter introduces how to perform arithmetic on bit-sliced indexes, using
SIMD operations on each of the bit-slices. Since a bitmap can be thought of as a
bit-sliced index with only one bit-slice, these operations work correctly on bitmaps
too. BSI arithmetic can be used to answer queries involving multiset operations
like UNION ALL, EXCEPT ALL and INTERSECT ALL, and, along with the algorithms
de¯ned in Chapter 4, term-matching queries.

3.1 Addition

De¯nition 3.1 (BSI Addition) Let S1, S2, ..., SM be a series of BSIs to be
added together. Then for every r, 1 · r · N ,

SUM [r] =
MX
i=1

Si[r]:

Consider Figure 3.1, where B1, B2 and B3 are three bitmaps, representing
some subquery found sets. The aim is to build a multiset BSI from these three
bitmaps. This is achieved by adding the three bitmaps together, represented by
SUM . B1[1] = B2[1] = B3[1] = 0, row 1 does not appear in any of the bitmaps,
and SUM [1] must be 0. B1[2] = B3[2] = 0 and B2[2] = 1, row 2 appears in
one bitmap, and SUM [2] must be 1. B1[4] = 0 and B2[4] = B3[4] = 1, row 4
appears in two bitmaps, and SUM [4] must be 2. Similar argument for row 5,
but SUM [5] must be 3. The expression adding bitmaps together is justi¯ed since
SUM [r] = B1[r] +B2[r] +B3[r]. The problem is that SUM cannot be represented
as a bitmap; it can, however, be represented as a bit-sliced index! The last two
columns of the ¯gure show SUM represented as a BSI with two bit-slices, SUM0

and SUM1.
Now how do we obtain this SUM BSI? The algorithm used is practically the

same as the standard binary addition algorithm, but applied to bitmaps. First,
adding any two bitmaps together is easy. Figure 3.2 shows an example. The SUM

22

B1 B2 B3 SUM SUM1 SUM0

0 0 0 0 0 0
0 1 0 1 0 1
1 0 0 1 0 1
0 1 1 2 1 0
1 1 1 3 1 1
0 0 0 0 0 0
1 1 0 2 1 0
0 0 1 1 0 1
...

...
...

...
...

...

Figure 3.1: Addition of Bitmaps Example

B1 B2 SUM SUM1 SUM0

0 0 0 0 0
0 1 1 0 1
1 0 1 0 1
0 1 1 0 1
1 1 2 1 0
0 0 0 0 0
1 1 2 1 0
0 0 1 0 1
...

...
...

...
...

Figure 3.2: Addition of Two Bitmaps

23

Algorithm 3.1 BSI Addition. Given two BSIs, A = APAP ¡ 1:::A1A0 and
B = BQBQ¡ 1:::B1B0, we construct a new sum BSI, S = A + B, using the
following pseudo-code. We must allow the highest-order slice of S to be
SMAX(P;Q)+1, so that a carry from the highest bit-slice in A or B will have
a place.

S0 = A0 XOR B0 // bit on in S0 i® exactly one bit on in A0 or B0

C = A0 AND B0 // C is "Carry" bit-slice
// bit on i® both bits on in A0 and B0

for (i = 1; i · MIN(P;Q); i+ +) f // While there are further bit-slices
// in both A and B

Si = Ai XOR Bi XOR C // one bit on (or three bits on)
// gives bit on in Si

C = (Ai AND Bi) OR (Ai AND C) OR (C AND Bi)
// 2 or 3 bits on gives bit on in C

g
if (P > Q) // if A has more bit-slices than B

for (i = Q+ 1; i · P ; i+ +) f // continue loop until last bit-slice
Si = (Ai XOR C) // one bit on gives bit on in Si

// note that C might be zero!
C = (Ai AND C) // two bits on gives bit on in C

// zero if prior C was zero!
g

else // Q ¸ P and B has at least as many bit-slices as A
for (i = P + 1; i · Q; i+ +) f // continue loop until last bit-slice

Si = (Bi XOR C) // one bit on gives bit on in Si
// note that C might be zero!

C = (Bi AND C) // two bits on gives bit on in C
// zero if prior C was zero!

g
if (C is non-zero) // if still non-zero Carry after A and B end

SMAX(P;Q)+1 = C // Put Carry into ¯nal bit-slice of S

Figure 3.3: Addition of BSIs

24

BSI needs two bit-slices since it needs to represent numbers 0, 1, and 2. To obtain
SUM0, compute B1 XOR B2, and to obtain SUM1, compute B1 AND B2, using
the SIMD Boolean operations de¯ned in the previous chapter. To generalize from
adding bitmaps to adding BSIs, we ¯rst observe that a bitmap can be seen as a
BSI with only one bit-slice. Second, we need to interpret the idea of "carrying" in
the standard binary addition to the SIMD situation of Boolean bitmap operations.
Figure 3.3 contains the addition of BSIs algorithm.

A Carry bit-slice C can arise in the algorithm of Figure 3.3 whenever two or
three bit-slices are added to form Si, and a non-zero (or non-empty) C must then be
added into the next bit-slice Si+1. Note that if C is zero (has no bits on), Boolean
operations give the expected results, but a °ag to show empty C can short-circuit
the operation. Once the bit-slices in either A or B run out, calculations of C are
likely to result in zero soon after, and C will never become non-zero again.

3.2 Subtraction

To be able to compute the subtraction of two BSIs, we need to be able to repre-
sent negative numbers in a BSI. The solution is to use two's complement numbers.
A BSI containing numbers in two's complement form will be called a signed BSI
(SBSI), and conversely, an unsigned BSI (UBSI) contains only positive numbers
and cannot contain negative numbers. The simplest way to compute the subtrac-
tion D = A ¡ B, where A and B are two BSIs (signed or not), is to think of it this
way: D = A + (¡ B). The ¯rst step is to negate B, then add ¡ B to A using the
bit-sliced index addition presented above.

Suppose we need to do the subtraction D = A ¡ B, where A and B are UBSIs,
A[1] = 5 and B[1] = 7, so for row 1, we need to do 5 ¡ 7 = 5 + (¡ 7). Suppose A
and B have three bit-slices each. 5 = 1012 and 7 = 1112. The ¯rst step is to add
a sign bit to 5 and 7 to obtain 5 = 0101 and 7 = 01112. The high-order bit in a
two's complement number is always the sign bit; 0 for a positive number, and 1
for a negative number. Next, negate 7's bits, obtaining 1000, and add 1 to obtain
¡ 7 = 10012. To perform the subtraction, we will need another bit-slice, so we
sign-extend the two numbers to get 5 = 00101 and 7 = 110012. Sign-extending
a two's complement number always duplicates the sign bit into a new high-order
bit. The next step is to add 001012 and 110012 together, which gives the number
D[1] = 111102 = ¡ 2. The only place where it is important to know if a bit-sliced
index is signed or not in the above example, is when we have to negate a BSI. If the
bit-sliced index is unsigned, then we have to add a sign bit-slice to the BSI (which
will consist of a zero bitmap). If the BSI is signed, then the sign bit-slice exists
already, so don't add a bit-slice to the BSI. Figure 3.4 shows a few more examples,

25

r A A2 B B2 (¡ B)2 (A ¡ B)2 A ¡ B
1 5 00101 7 00111 11001 11110 -2
2 5 00101 -7 11001 00111 01100 12
3 -5 11011 7 00111 11001 10100 -12
4 -5 11011 -7 11001 00111 00010 2
5 6 00110 3 00011 11101 00011 3
6 6 00110 -3 11101 00011 01001 9

Figure 3.4: BSI Subtraction Examples

Algorithm 3.2 BSI Negation. Given a BSI B = BQBQ¡ 1:::B1B0, we
construct a new BSI D, such that D = ¡ B, using the following pseudo-code.
We must allow the highest-order slice of D to be DQ+1 if B is unsigned, and
DQ if B is signed.

max = Q
if (B is unsigned) f // add the necessary sign bit-slice

add a new high-order sign bit-slice (= zero bit-slice)
max = max+ 1 // max = the sign bit-slice number

g
for (i = 0; i · max; i++) // for every slice of B

Di = NOT (Bi) // 1s complement of B
D = D +00 all ¡ 1 bitmap00 // 2s complement of B

Figure 3.5: BSI Negation Algorithm

where both A and B are signed BSIs. The bit-sliced index negation algorithm is
shown in Figure 3.5 and the bit-sliced index subtraction algorithm in Figure 3.6.

3.3 Shifting and Multiplication by a Constant

De¯nition 3.2 (Bit-Sliced Index Left (Right) Shifting) Let A be a BSI
(signed or not), i an integer, and D = A << i (D = A >> i), then for every
1 · r · N , D[r] = A[r] << i = A[r] £ 2i (D[r] = A[r] >> i = A[r] £ 2¡ i).

26

Algorithm 3.3 BSI Subtraction. Given two BSIs, A = APAP ¡ 1:::A1A0

and B = BQBQ¡ 1:::B1B0, we construct a new BSI D, such that D = A ¡ B,
using the following pseudo-code. Let max = MAX(P;Q). If both A and B
are signed, or if the BSI with more bit-slices is signed, then D must have space
for max+ 1 bit-slices. If both A and B are unsigned or if the BSI with more
bit-slices is unsigned, then D must have space for max+ 2 bit-slices. If A and
B have the same number of bit-slices and one of them is unsigned, then D
must have space for max+ 2 bit-slices.

if (A is unsigned) f // sign extend A if necessary
add a new high-order sign bit-slice (= zero bit-slice) to A
P = P + 1

g
if (B is unsigned) f // sign extend B if necessary

add a new high-order sign bit-slice (= zero bit-slice) to B
Q = Q+ 1

g
C = ¡ B // C is the opposite of B
// make A and C have the same number of slices
if (P < Q) f // A is shorter than B

sign extend A to have Q+ 1 bit-slices
sign extend C to have Q+ 1 bit-slices

g
else f // A is at least as long as B

sign extend A to have P + 1 bit-slices
sign extend C to have P + 1 bit-slices

g
D = A+ C // really do D = A+ (¡ B)

Figure 3.6: BSI Subtraction

27

Deep E = A << 2

Empty
Slice

A

Empty
SliceSlice

EmptyEmpty
Slice

Shallow D = A << 2

Figure 3.7: Shallow vs. Deep Shifting

In this section bit-sliced index shifting is considered. BSI Left Shifting is used,
along with BSI Addition, to implement the multiplication of a BSI by a constant.
This is simpler than the multiplication of Section 3.4 which is multiplication of a
BSI by another BSI, because multiplication of a BSI A by a constant c multiplies
every row in A by the same value c. One could materialize an all-c BSI C, i.e.
a BSI where C[r] = c for every row r and then do A £ C, but this is too much
work. Instead, for every bit ci on in c = cn:::c1c0, 0 · i · n, we left shift A by
i positions, and add the results. Shifting can be fast because only the bit-slice
pointers need to be shifted to the left in the bit-slice pointer array. We use shallow
shifting, instead of deep shifting, where bit-slices are copied into another pointer
array (see Figure 3.7). Refer to Figure 3.8 and 3.9 for the BSI shifting and BSI
multiplication by a constant algorithms.

When BSI multiplication by a constant is executed, a lot of time spent copying
slices is saved with shallow shifting, and a lot of bu®er space is saved at the same
time since the same bit-slices get reused possibly many times during the successive
additions. The performance of the BSI multiplication by a constant depends on
the number of bits on in the constant c. When c is a power of two, then the BSI

28

Algorithm 3.4 BSI Left Shifting. Given a BSI A = APAP ¡ 1:::A1A0 and
an integer i ¸ 0, we construct a new BSI D such that D = A <<type i using
the following pseudo-code. type is equal to either shallow or deep. D will end
up with P + i bit-slices. Shifting works if A and D are the same BSI, i.e. A
and D point to the same BSI in memory.

if (type == shallow)
for (s = P ; s ¸ 0; s{)

Ds+i = As // shallow copy slice s of A into slice s+ i of D
else

for (s = P ; s ¸ 0; s{)
Ds+i = deepcopy(As) // deep copy slice s of A into slice s+ i of D

for (s = 0; s < i; s++)
Ds = ; // make sure the i lowest-order slices of D are empty

Algorithm 3.5 BSI Right Shifting. Given a BSI A = APAP ¡ 1:::A1A0 and
an integer i ¸ 0, we construct a new BSI D such that D = A >>type i. type
is equal to either shallow or deep. D will end up with P ¡ i + 1 bit-slices if
i · P , and 0 bit-slices if i ¸ P + 1.

if (type == shallow)
for (s = 0; s · P ¡ i; s++)

Ds = As+i // shallow copy slice s+ i of A into slice s of D
else

for (s = 0; s · P ¡ i; s++)
Ds = deepcopy(As+i) // deep copy slice s+ i of A into slice s of D

for (s = P ; s > P ¡ i; s{)
Ds = ; // make sure the i highest-order slices of D are empty

Figure 3.8: BSI Shifting

29

Algorithm 3.6 BSI Multiplication by a Constant. Given a BSI A =
APAP ¡ 1:::A1A0 and a positive integer c = cncn ¡ 1:::c1c0, we construct a new
BSI D, such that D = c £ A, using the following pseudo-code. Let j be the
smallest bit position for which cj = 1. If such j does not exist, then c = 0 and
return an empty D immediately.

D = A <<deep j
for every bit ci on in c, i 6= j

D = D + (A <<shallow i)

Figure 3.9: BSI Multiplication by a Constant

multiplication by a constant performs very well since it only needs to make one
deep left shift. When c has two bits on in it, then one deep left shift, one shallow
left shift and one addition need to be done. If there are three bits on in C, then
one deep shift, two shallow shifts and two additions are needed. As we will see
later in Chapter 4, the BSTM algorithm makes great use of the multiplication by
a constant algorithm, and usually the weights (the constants) used do not need
more than 6-bit precision. Therefore, we can expect (on average) to have three
bits on in the constants, and we will need on average only two BSI Additions. It
is more economical than using the general BSI Multiplication algorithm. If query
weights are limited to powers of 2, then the economy is more important.

3.4 Multiplication

Bit-sliced index multiplication is implemented using an adaptation of Booth's al-
gorithm [DM92, Wan]. First consider the multiplication d = a £ b, where a; b; d are
integers with 2's complement binary representations a = ap : : : a1a0, b = bq : : : b1b0
and d = dp+q+2 : : : d1d0. If b is positive, then we could do the multiplication by suc-
cessive additions, i.e. starting with d initialized to 0, for every bit bi = 1; 0 · i · q,
do d = d+ bi £ 2i £ a. But if b is negative, we need something else.

The value of a number in a 2's complement form is:

V al(b) = ¡ bq £ 2q +
q ¡ 1X
i=0

bi £ 2i (3.1)

30

= b0 £ 20 + b1 £ 21 + ¢ ¢ ¢ + bq ¡ 1 £ 2q ¡ 1 ¡ bq £ 2q (3.2)

Let b ¡ 1 = 0, we can rewrite the equation as:

V al(b) = b¡ 1 £ 20 + (¡ b0 £ 20 + b0 £ 21) + (¡ b1 £ 21 + b1 £ 22)
+ ¢ ¢ ¢ + (¡ bq ¡ 1 £ 2q ¡ 1 + bq ¡ 1 £ 2q) ¡ bq £ 2q (3.3)

since ¡ bi £ 2i + bi £ 2i+1 = bi £ 2i(¡ 1 + 2) = bi £ 2i for all 0 · i · q ¡ 1. Factoring
20; 21; : : : ; 2q, we get

V al(b) = (b ¡ 1 ¡ b0) £ 20 + (b0 ¡ b1) £ 21 + (b1 ¡ b2) £ 22

+ ¢ ¢ ¢ + (bq ¡ 1 ¡ bq) £ 2q (3.4)

=
qX
i=0

(bi ¡ 1 ¡ bi) £ 2i (3.5)

Multiplying a by V al(b), we get

a £ V al(b) =
qX
i=0

(bi¡ 1 ¡ bi) £ a £ 2i (3.6)

To perform the multiplication, we need to look at every bit bi; 0 · i · q, and
do successive additions or subtractions, depending on the value of bi and bi ¡ 1. If
bi = bi ¡ 1, then bi ¡ 1 ¡ bi = 0 and nothing needs to be added to d for this bit bi. If
bi = 1 and bi¡ 1 = 0, then bi¡ 1 ¡ bi = ¡ 1 and we subtract a £ 2i from d. If bi = 0
and bi¡ 1 = 1, then bi¡ 1 ¡ bi = 1 and we add a £ 2i to d. Figure 3.10 gives the
algorithm. An example is given in Figure 3.11.

To go from Algorithm 3.7 to the BSI multiplication algorithm, we need to
translate the conditions comparing the bi and bi ¡ 1 values into SIMD Boolean op-
erations on bit-slices. We want to do the multiplication D = A £ B, where A, B,
and D are bit-sliced indexes. Remember that we need to perform multiplications
in parallel using those SIMD operations, so at any given step, we may need to add
the value A[r1] £ 2i to D[r1] if Bi[r1] = 0 and Bi¡ 1[r1] = 1, to subtract the value
A[r2] £ 2i from D[r2] if Bi[r2] = 1 and Bi ¡ 1[r2] = 0, and don't change D[r3] if
Bi[r3] = Bi ¡ 1[r3]. Figure 3.12 shows the algorithm.

One big problem with the current implementation of BSI multiplication comes
with the need to negate the BSI A as in Figure 3.12 and to negate many bit-slices.
The BSIs used in the term matching algorithms covered later are sparse, i.e. their
bit-slices are sparse. When negating a sparse bitmap, we get very dense bitmaps.
If a bitmap segment is empty, it does not need to exist, but when negated, a full
segment needs to be created ¤ and inserted in the bitmap anchor. For very sparse
¤ Actually, a copy of the corresponding EBM segment can be used instead.

31

Algorithm 3.7 Fast Multiplication (Booth's Algorithm). Given two
integers, a = apap¡ 1:::a1a0 and b = bqbq ¡ 1:::b1b0, we compute a new integer d,
such that d = a £ b, using the following pseudo-code. Let b ¡ 1 = 0.

d = 0
c = ¡ a // keep ¡ a in c to avoid computing it many times
for (i = 0; i · q; i++) f // for every bit in b

if (bi = 1 and bi¡ 1 = 0)
d = d+ c £ 2i // subtract a £ 2i

else
if (bi = 0 and bi ¡ 1 = 1

d = d+ a £ 2i // add a £ 2i
g

Figure 3.10: Fast Multiplication (Booth's Algorithm)

Compute d = 5 £ ¡ 7 with Booth's Algorithm.
a = 5, b = ¡ 7 = 10012, b ¡ 1 = 0, d = 0

i bi bi¡ 1 action d
0 1 0 subtract 5 £ 20 0-5=-5
1 0 1 add 5 £ 21 -5+10=5
2 0 0 nothing 5
3 1 0 subtract 5 £ 23 5-40=-35

Figure 3.11: Fast Multiplication Example

32

Algorithm 3.8 BSI Multiplication. Given two BSIs, A = APAP ¡ 1:::A1A0

and B = BQBQ¡ 1:::B1B0, we construct a new BSI D, such that D = A £ B,
using the following pseudo-code. D needs P +Q+ 3 slices, all empty to start
with. T is a temporary BSI.

C = ¡ A // keep ¡ A in C to avoid computing it many times
for (i = 0; i · Q; i++) f // for every bit-slice of B

T = T P :::T 1T 0 = 0 // T is a temporary BSI initialized to 0
for (j = 0; j · P ; j++) // for every bit-slice of A

// T holds the values to be added to D in the last step
// if B1[r] = 1 and B0[r] = 0, then T [r] = C[r] = ¡ A[r]
// if B1[r] = 0 and B0[r] = 1, then T [r] = A[r]
// if B0[r] = B1[r], then T [r] = 0
T j = (B1 AND NOT (B0) AND Cj)

OR (NOT (B1) AND B0 AND Aj)
D = D + T // update D

g

Figure 3.12: BSI Multiplication

33

segments, very dense segments are obtained. Therefore, more memory is needed
and Boolean operations will be slowed down. If we had opted for a dual-sparse
RID-list encoding (the 0 bits' position are encoded instead of the 1 bits' position)
when the bitmap density is very high, it would be much less of a problem.

For example, take bitmap B0 = 001000100000; its RID-list encoding is R0 =
(3; 7). Let B1 be the negation of B0, so B1 = 110111011111; the RID-list encoding
cannot be applied to it since it is too dense, but its dual encoding can, and we
get R1 = (3; 7), the same as R0! The only thing we need to do to negate a
RID-list is to change a °ag telling if the list is encoded the usual way or by its
dual. The RIDBIT project does not currently support varying encoding schemes,
and adding it would involve modifying the bitmap anchor structure, and making
important changes to the Boolean functions to take into account if a RID-list is
sparse or dual-sparse, and call new functions operating on dual-sparse RID-lists.
This involves a good amount of work, and since it is not critical to the term
matching performance results given here, it is left as future work. This subject is
strongly related to bitmap compression since RID-lists are a form of compression,
and it would make sense to add dual-sparse RID-list encoding at the same time
varying bitmap compression schemes are added. See [Joh99] for more on bitmap
compression.

3.5 Minimum

De¯nition 3.3 (Bit-Sliced Index Minimum) Let A and B be BSIs (signed or
not), and D = min(A;B), then for every 1 · r · N , D[r] = min(A[r]; B[r]).

As seen previously, multisets built with UNION ALL predicates can be im-
plemented with BSI addition, and multisets built with EXCEPT ALL predicates
with BSI subtraction. Now, let's look at how INTERSECT ALL predicates can
be implemented with BSI minimum. Figure 3.13 shows the algorithm.

Algorithm 3.9 works in this way: suppose A has more bit-slices than B, then for
every bit-slice that A has in excess, starting with the most signi¯cant bit-slice, if a
row has its bit on in the bit-slice, then its A-value is larger than the corresponding
B-value, so turn on the corresponding bit in KB and K. For every other bit-slice
(still going from high to low order bit-slice), ¯nd out which rows have di®erent
bit-values in the current bit-slice of A and B. Of those rows not already in K,
the rows with a 1 in the current bit-slice of A have an A-value larger than their
B-value, so turn on their corresponding bit in KB and K, while the rows with a 1
in the current bit-slice of B must have their corresponding bit in KA and K turned

34

Algorithm 3.9 BSI Minimum. Given two BSIs, A = ASAS ¡ 1:::A1A0 and
B = BPBP ¡ 1:::B1B0, we construct a new BSI M , such that M = min(A;B).
The following pseudo-code deals only with non-negative values. We assume in
the loop below that S ¸ P (if not we reverse A and B). The highest-order
slice of M will be Mmin(S;P), since the minimum of the two numbers A[r] and
B[r] for some row r cannot have more binary digits than min(S; P). K is the
bitmap of rows for which we know the minimum value, KA is the bitmap of
rows for which A has lesser value, and KB is the bitmap of rows for which B
has lesser value.

K = KA = KB = ;
for (i = S; i > P ; i ¡ ¡) // recall that S ¸ P ; loop is empty if S = P

KB = KB OR Ai // min must be in B since values not this large
K = KB // all rows for which min is determined so far
for (i = P ; i > 0; i ¡ ¡) f // loop down to zero

// rows di®ering for the 1st time in Ai and Bi

X = (Ai XOR Bi) AND NOT (K)
// if Ai has 1-bit, new min must be in B
KB = KB OR (Ai AND X)
// else Bi has 1-bit and new min must be in A
KA = KA OR (Bi AND X)
K = K OR X // new min rows found in this pass

g // any rows not still in K are equal in A and B
KB = KB OR (EBM AND NOT (K)) // choose rows in B as min
for (i = 0; i <= P ; i+ +) f // loop to set BSI M using known KA and KB

M i = Ai AND KA // Ai values for rows with bits in KA
// Bi values for rows with (disjoint) bits in KB
M i = M i OR (Bi AND KB)

g

Figure 3.13: BSI Minimum

35

on. For the rows with equal A and B-values, turn on their corresponding in KB
y.

If a row has its minimum value in A (if KA is set for the row), then copy its A-bits
in M . Otherwise, copy its B-bits in M .

To handle both positive and negative numbers, we would sign extend A or B
with any needed high-order bit-slices, and start by di®erentiating negative and
positive values in the highest bit-slice. Then we would use Algorithm 3.9 to ¯nd
min(A;B) for the bitmap set of non-negative values, and analogous pseudo-code
to ¯nd max(A;B) for the bitmap set of negative numbers.

The BSI maximum algorithm works in the same way, except that the KA and
KB are the bitmap of rows having their maximum value in A and B, respectively.
So instead of turning a bit on in KB when the bigger value is in A, turn a bit on
in KA and vice-versa.

yCould choose KA instead to get the same results.

36

CHAPTER 4

Term Matching

In this chapter, Bit-Sliced Index Term Matching (BSTM) algorithms will be cov-
ered. A discussion of how document weights are indexed will be the subject of
the ¯rst section, then the new BSTM algorithms will be introduced, followed by a
discussion of their implementation. Experimental results will be presented in the
following chapter.

4.1 Weights Indexing

Let's recall the cosine similarity measure of Figure 1.6:

C(d; q) =
P
t2q^d(wq;t ¢ wd;t)

Wd
:

Only the coe±cient wq;t is query-speci¯c. The other coe±cients, wd;t and Wd,
are independent of the query. Wd =

qP
t2dw2

d;t is the length of document d,
and wd;t = loge(fd;t + 1) is the weight of term t in document d. So these values
do not change when the query changes. Instead of indexing the document-term
frequencies fd;t, the ratios Wd;t = wd;t

Wd
are indexed. At index creation time, for every

document, the document-term frequencies fd;t are computed, then the document-
term weights and the document length are computed, and the Wd;t values are
calculated. Finally, for every term, a bit-sliced index containing the Wd;t values is
created. Figure 4.1 shows the algorithm.

Note that the sort in Algorithm 4.1 is a disk-based sort, since normally there
would be too many (term, document, weight) triples to ¯t in bu®er. The main
cost of this algorithm is probably the sort, unless the preprocessing steps get very
sophisticated and time consuming. To build the indexes from the sorted triples,
we loop through the triples, and build a di®erent BSI for every term. When we
encounter a triple for the ¯rst time in the sorted order, we ¯nish the previous
term's BSI, start a new BSI and insert the document weight. If it is not the ¯rst
time we encounter the term, we simply insert the document weight in the current
BSI. But the weights as computed in Algorithm 4.1 cannot be indexed directly
into a BSI since they are real numbers, not integers. As explained in [MZ96], a

37

Algorithm 4.1 Weight Indexes Construction The algorithm gets the
documents from some source, which could be a list of ¯le names or directory
names containing ¯les and reads the documents before preprocessing them
with the steps given in Chapter 1. Or the source could be a random document
generator (useful for benchmark purposes), in which case the preprocessing
steps may not be necessary.

while there are more documents to process
get next document d
apply the preprocessing steps to d if necessary
Wd = 0
for every term in d

compute fd;t
wd;t = loge(fd;t + 1)
Wd = Wd + w2

d;t
Wd =

p
Wd

for every term in d
Wd;t = six bit approximation(wd;tWd

)
insert the (t, d, Wd;t) triples in a sort object

sort the triples with t as ¯rst key and d as second key
go through every sorted triples in order

for every di®erent term, build a BSI from the (d,Wd;t) values

Figure 4.1: Weight Indexes Construction

38

Algorithm 4.2 BSTM. Given a query Q consisting of a set of (term, weight)
pairs, ¯nd the top k best matching documents. C is the cosine BSI, recording
the cosine value of every document d in the database relative to Q. C starts
empty.

for each (term, weight) pair (t; wt) 2 Q do
¯nd Bt, the BSI for term t
C = C + wt ¢ Bt // multiply Bt by the constant wt

¯nd k largest C values (using Algorithm 4.3)
return top k (d; C[d]) pairs

Figure 4.2: Bit-Sliced Weighted Term Matching Algorithm

6-bit approximation of documents weights is known to be su±cient to get almost
unchanged retrieval e®ectiveness. We follow this advice scaling the weights into
6-bit quantities is appropriate. The 6-bit approximation helps BSTM to perform
well since it puts a limit on the number of slices to process during term ranking
computation. Fewer carries need to be computed.

4.2 Bit-Sliced Weighted Term Matching

Starting from a query Q = f(t1; w1); (t2; w2); :::; (tq; wq)g with q terms and their
corresponding weights, the goal is to ¯nd the top k documents with highest weight
matching of the query terms. The algorithm is given in Figure 4.2, using a notation
similar to the WTM algorithm of Figure 1.5, an adaptation of the STM algorithm
of Figure 1.4, taken from [PW83]. At ¯rst glance, the two algorithms do pretty
much the same thing, but the di®erence lies within the details. Here, the cosine
similarity measure is used instead of a generic one. As discussed in Section 4.1,
some precalculation is needed to get good performance out of the bit-sliced ap-
proach, and the algorithm of Figure 4.1 is speci¯c to the cosine measure. Similar
algorithms can easily be written for other measures.

Algorithm 4.2 can be broken into three main steps:

1. cosine BSI build (the for loop)

2. top k documents search

3. top k documents extraction.

39

Step 1 makes use of BSI multiplication by a constant and BSI addition. Step 2
is implemented with an algorithm similar to the range search algorithm presented
in [OQ97], and its description is the subject of the next subsection. A found set
bitmap is returned by step 2, representing the set of documents with the top k
cosine values. For each such document, we determine its corresponding cosine
value in C[d], then sort all those (d; C[d]) pairs (highest C[d] ¯rst), and return
them to complete step 3.

4.2.1 Top K Documents

To ¯nd the top k values in a BSI, we use an algorithm similar to a range search,
which was covered in [OQ97]. Figure 4.3 shows the algorithm. It achieves its goal
in a rather subtle way, so before presenting a proof, I will show an example of how
it works.

Let's ¯rst consider the table of Figure 4.4. First note that S would be the
cosine BSI as computed in the ¯rst part of Algorithm 4.3. Actually, to make the
example simpler, I used the number of terms in common between the query and
the document as values in S ¤ . The actual cosine values would be di®erent, but it
would be more complicated to write a clear example. The documents in the table
are in decreasing order of their S-values. This would not normally happen, but it
also makes the example easier to follow.

The goal is to get a found set bitmap, where a document is in the found set
if and only if it is a top 4 document, i.e. if its S-value is one of the four largest
S-values. In the example table, what we want to get is the bitmap F = 1111000.
Remember that in practice, there could be a few hundred thousands to a few million
documents, maybe even more, and that the top k documents could be anywhere,
not just at the beginning. And we want to use the SIMD boolean operations
described in Chapter 2. The idea is to go from high order bit-slices down to low
order bit-slices, and as we go along, record which rows have the largest values. We
stop when we have found k large values.

We start with two bitmaps, G and E. G stands for \greater than", and E
stands for \equal to". What we ¯nd as we go through the algorithm is the cut-o®
value m, i.e. the minimum S-value for a document to be in the top k documents.
Documents with an S-value smaller than m will not be in F . Documents with an
S-value equal to m may or may not be in F because we need exactly k documents
and we need to break ties arbitrarily. There are less than k documents with an
S-value greater than m, but when we add documents with an S-value equal to m,
¤ That is, I really use simple term matching here, as described in Section 1.1.1; Algorithm 4.3

does not depend on where S comes from.

40

Algorithm 4.3 Top K Documents. Given a BSI S = SPSP ¡ 1:::S1S0, ¯nd
the k rows with the largest S-values. F is the found set bitmap.

if (k > COUNT (EBM) or k < 0) // test if parameter k is valid
Error ("k is invalid")

G = ;
E = EBM
for (i =P ; i ¸ 0; i ¡ ¡) f

X = G OR (E AND Si) // X is trial set
if ((n = COUNT (X)) > k) // if n = COUNT (X) has more than k rows

E = E AND Si // E in next pass contains only rows r with
// bit i on in S[r]

else
if (n < k) f // if n = COUNT (X) has less than k rows

G = X // G in next pass gets all rows in X
E = E AND (NOT Si) // E in next pass contains no rows r

// with bit i on in S[r]
g
else f // n = k; might never happen

E = E AND Si // all rows r with bit i on in S[r] will be in E
break

g
g // we know at this point that COUNT (G) · k
F = G OR E // might be too many rows in F ; check below
if ((n = (COUNT (F) ¡ k) > 0)// if n too many rows in F

turn o® n bits from E in F // throw out some ties to
// return exactly k rows

Figure 4.3: Top K Documents Algorithm

41

Query: ¯nd top 4 documents for fbeef, chicken, lamb, porkg
ID TERMS S S2 S1 S0

1 fbeef, chicken, duck, ¯sh, lamb, pork g 4 1 0 0
2 fbeef, chicken, lamb, porkg 4 1 0 0
3 fchicken, duck, ¯sh, lamb, pork g 3 0 1 1
4 fbeef, lamb, porkg 3 0 1 1
5 fchicken, lambg 2 0 1 0
6 f ¯sh, lamb g 1 0 0 1
7 f ¯sh g 0 0 0 0

Figure 4.4: Top K Documents Example

ID S2 S1 S0 G E X G E X G E X G E F
1 1 0 0 0 1 1 1 0 1 1 0 1 1 0 1
2 1 0 0 0 1 1 1 0 1 1 0 1 1 0 1
3 0 1 1 0 1 0 0 1 1 0 1 1 0 1 1
4 0 1 1 0 1 0 0 1 1 0 1 1 0 1 1
5 0 1 0 0 1 0 0 1 1 0 1 1 0 0 0
6 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0
7 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0

Figure 4.5: Top K Documents Algorithm Example

42

we may have too many, so we need to drop some of those documents. G contains
the documents (having an S-value larger than m) we know for sure are in F , and E
contains the documents with an S-value equal to the part of m we know up to that
point (it will become clearer as we go along). At the start, G is empty, E is equal
to the EBM, and m = m2m1m0, each mi being a bit in the binary representation
of m. We don't know any of these bits yet.

In the ¯rst turn of the loop with i = 2, we compute the trial set X =
G OR (E AND S2) (see Figure 4.5). X gets the documents that are already in
G (currently none), plus the documents of E having a 1-bit in the highest order
bit-slice of S. So X gets a set of documents with large S-values. Then we count
the number of bits on in X (i.e. the number of documents in X), which is equal
to 2 here. We need more documents since 2 < k = 4, so we do m2 = 0, G = X,
and E = E AND (NOT S2). There are not enough documents d with S2[d] = 1,
therefore there must be rows in F with S2[d] = 0 and m2 must be 0. G is the
set of documents with S-values greater than m, and doing G = X respects that
condition. We know at this point that documents 1 and 2 will be in F . To update
E, the set of documents with an S-value equal to m, we have to remove the doc-
uments we just added to G since we know now that these documents do not have
an S-value equal to m. The documents left in E all have an S-value equal to the
part of m we know up to now, i.e. their highest order bit is equal to 0.

For the second turn of the loop with i = 1, we compute a new trial set X. X
gets all the documents of G, plus the documents of E with a bit on in the bit-slice
S1. So we add the documents with the next largest values we can ¯nd. We try to
see if documents 3, 4, and 5 are part of the found set. COUNT (X) = 5 > k = 4,
and we have too many documents. We need to remove some of these documents.
We leave G as it is, we set m1 to 1 since a document d with S2[d] = S1[d] = 0 will
be under the cut-o® value, and we update E this way: E = E AND S1 for the
same reason: we leave out documents with small S-values.

The next time in the loop with i = 0, the trial set X gets again the documents
in G, plus the documents in E having their bit set to 1 in S0. After counting
the number of documents in X, we ¯nd it is equal to 4, which is what we need.
We set E = E AND S0, m0 = 1, and we are done with the loop. Next we set
F = G OR E, and since we do not need to break out ties, the algorithm is ¯nished
and the top 4 documents are documents 1, 2, 3, 4.

To see alternative endings of the algorithm, suppose that document 5 has an
S-value of 3, the same value as documents 3 and 4 (see Figure 4.6). We would not
get 4 documents in the last trial set X, but 5. We would be done looping anyway
since there are no more bit-slices to process in S, but in the last condition, where
we check how many documents are in excess, we would ¯nd that one document

43

ID S2 S1 S0 G E X G E X G E X G E F
1 1 0 0 0 1 1 1 0 1 1 0 1 1 0 1
2 1 0 0 0 1 1 1 0 1 1 0 1 1 0 1
3 0 1 1 0 1 0 0 1 1 0 1 1 0 1 1
4 0 1 1 0 1 0 0 1 1 0 1 1 0 1 1
5 0 1 1 0 1 0 0 1 1 0 1 1 0 1 1
6 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0
7 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0

Figure 4.6: Top K Documents Algorithm Example, Variation 1

ID S2 S1 S0 G E X G E X G E X G E F
1 1 0 0 0 1 1 1 0 1 1 0 1 1 0 1
2 1 0 0 0 1 1 1 0 1 1 0 1 1 0 1
3 0 1 1 0 1 0 0 1 1 0 1 1 1 0 1
4 0 1 0 0 1 0 0 1 1 0 1 0 0 1 1
5 0 1 0 0 1 0 0 1 1 0 1 0 0 1 1
6 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0
7 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0

Figure 4.7: Top K Documents Algorithm Example, Variation 2

needs to be dropped from the found set, and we could arbitrarily choose to drop
either document 3, 4, or 5. In the RIDBIT project, we choose the ¯rst document
from E, in this case document 3.

Suppose now that both document 4 and 5 have a value of 2 (as shown in
Figure 4.7). After the last trial set X is computed, we ¯nd out we don't have
enough documents in it, so we add document 3 to G with G = X, then we set
E to contain only documents 4 and 5. Then we end up in about the situation as
the previous variation, except that document 3 is in G, not in E. To get exactly
4 documents in F , we would drop document 4.

Sometimes, it may not be possible to have k documents in the found set. Modify
the example by setting the S-value of documents 4, 5, and 6 to 0, and we will end
up with only three documents in F . There is nothing wrong with that since it
does not make sense to include in F a document with nothing in common with the
query. k is really an upper bound on the number of documents to be put in the
found set.

44

The cut-o® value m used in the explanation above and in the proof following
in the next section does not appear in Figure 4.3 because it not necessary to keep
track of its value. It is useful in the proof and in the explanation of the algorithm,
but no decision is taken based on its value. It is easier to justify the choice of the
letters G and E in the algorithm. If we knew the value of m before hand, then
the algorithm would be much simpler since all we would need to do is a range
search on S, and maybe to drop some documents out of the found set to arrive
at exactly k documents. But we never know m in advance, making the algorithm
more complex.

4.2.2 Proof of Algorithm 4.3

We wish to ¯nd F , the bitmap of rows with the k largest S-values in a table T .
Denote by m the minimum S-value of any row that lies in F , and assume m has
binary representation: mPmP ¡ 1:::m1m0, This implies that m is equal to the kth
largest S-value S[r] of all rows r in T (with possible ties, m might also be the
k + 1st largest, etc.). We do not know m in advance, but we determine successive
bits mi of the binary representation as we progress through passes of the loop in
Algorithm 4.3 with successively smaller values i.

Variables used in Algorithm 4.3 that exist from one loop pass to the next are
the bitmaps G and E; the bitmap X and positive integer n are only temporary,
used to hold results within a loop pass for e±ciency, and could be dropped from
the code. We wish to demonstrate the de¯ning properties of G (G contains rows
r with S[r] Greater than m) and E (E contains rows r with S[r] Equal to m in a
speci¯c initial sequence of bits), so we provide an induction hypothesis specifying
contents of Gi and Ei, which we de¯ne as the values of G and E on entry to pass i.
We then prove that the induction hypothesis remains true from pass i to successor
pass i ¡ 1, and conclude from this the ¯nal contents of F .

Induction Hypothesis. Assume for an arbitrary row r in T that the binary
representation of S[r] is rP rP ¡ 1:::r1r0. Our induction hypothesis de¯nes Ei and Gi
as follows.

1. A row r in T will be in Ei if and only if S[r] does not di®er in its early bit
representation rP rP ¡ 1:::ri+1 from mPmP ¡ 1:::mi+1.

2. A row r in T will be in Gi if and only if the early bit representation
rP rP ¡ 1:::ri+1 is greater than mPmP ¡ 1:::mi+1; this is equivalent to saying that
for some bit position j in the range i + 1 · j · P , bit rj is on with bit mj
o®, and bits rP rP ¡ 1:::rj+1 are all equal to bits mPmP ¡ 1:::mj+1.

We now perform induction. The initial test of Algorithm 4.3 guarantees that

45

k · COUNT (EBM), and since m is the kth largest S-value of any row in T , it
guarantees that such a row r with S[r] = m exists. We enter the ¯rst pass of
the loop with i = P ; Gi is initialized to the empty set and obeys the induction
hypothesis, since i+ 1 > P and thus there is no value j with i+ 1 · j · P to use
in the de¯ning property 2 above, so no rows are in Gi; Ei is initialized to EBM
and obeys the induction hypothesis, since there are no bits above position i = P
that can di®er from bits in m, as required in de¯ning property 1.

Now assume the induction hypothesis holds at the beginning of the loop pass for
value i: Ei consists of all the rows r in EBM that have early binary representation
rP rP ¡ 1:::ri+1 equal to mPmP ¡ 1:::mi+1. Clearly the row r with S[r] = m must lie in
Ei. Gi consists of all the rows r0 in EBM where there is some bit position j in the
range i+1 · j · P such that bit r0j is on with bit mj o®, and bits r0P r0P ¡ 1:::r0j+1 are
all equal to bits mPmP ¡ 1:::mj+1. (Gi can contain no rows until a zero bit shows
up in mPmP ¡ 1:::mi+1.) Begin by noting that every row in Gi (if there are any) has
S-value larger than all the rows in Ei, since each of the rows r0 in Gi have an early
1-bit r0j matched by a 0-bit rj in all the rows r of E (i.e., with rj = mj), and all
bits prior to j in r0 matching bits in r (i.e., the same as in m). Furthermore, since
this stated characterization (for some j) holds for any r0 ¡ r pair with S[r0] > S[r],
and since Gi contains all rows r' that obey this characterization, Gi must contain
all the rows with S-values larger than all rows in Ei.

At the beginning of the loop in Algorithm 4.3, we set X = G OR (E AND Si)
which we will rewrite as Xi = Gi OR (Ei AND Si). Now we claim that rows in
Xi have the largest S-values of any rows in T . To demonstrate this, consider the
following. We know that Gi contains all rows in T with S-values larger than any
S-values in Ei. Furthermore, rows r in (Ei AND Si) have larger S-values than
any of the other rows in Ei, that is rows r0 in (Ei AND NOT (Si)), since they
have identical bit positions up to ri ¡ 1 and bit ri on where bit r0i is o®. Finally, any
row r not in Gi or in Ei, since its S-value representation rP rP ¡ 1:::ri+1 cannot be
greater than or equal to mPmP ¡ 1:::mi+1, must have some bit position rj o® that
is on in mj, i+ 1 · j · P , with r0P r0P ¡ 1:::r0j + 1 all equal to bits mPmP ¡ 1:::mj+1,
and thus must have an S-value smaller than any row in Ei. Thus rows in Xi =
Gi OR (Ei AND Si) are either in Gi, and therefore have S-values larger than any
row in Ei, or in (Ei AND Si) and have S-values larger than any other rows in Ei.
The rows outside Xi are either in (Ei AND NOT (Si)) or have S-values smaller
than any row in Ei, so clearly Xi consists of the rows with the largest S-values in
T . With these preliminaries, we are ready to consider cases.

Now if n = COUNT (Xi) > k, this will imply that mi is on, since there were
less than k rows in Gi (m is the kth largest S-value and G contains only rows with
S-values larger than m) and more than k when rows in (Ei AND Si) were added.

46

Thus the kth largest S-valued row in T , must be in (E AND Si), and mi will be
on. Because n > k, we set Ei¡ 1 = Ei AND Si in the next line of the algorithm.
The new bitmap, Ei¡ 1, now has rows with ri = 1 = mi, and thus contains the
appropriate set of rows for pass i ¡ 1 by induction hypothesis 1, since rows in Ei ¡ 1
match all bits in m down to mi. The new bitmap Gi ¡ 1 is unchanged from Gi, and
this is valid for the induction hypothesis 2, since i was not an appropriate value
for j in the de¯nition to add new rows to G with bit mj o® and bit rj on.

If n = COUNT (Xi) < k, we see that Xi, the set of n rows with the largest
S-values in T , does not include the kth largest. But if bit mi were on, that would
not be true, since by construction Ei contains all rows r with rP rP ¡ 1:::ri+1 equal
to bits mPmP ¡ 1:::mi+1, and (E AND Si) would thus include m. Since bit mi is
o®, our induction hypothesis 2 requires us to add new rows r to Gi¡ 1 with S-values
that have ri on and bits rP rP ¡ 1:::ri+1 all equal to bits mPmP ¡ 1:::mi+1; in other
words we set Gi¡ 1 = Xi = Gi OR (Ei AND Si). This new set Gi¡ 1 satis¯es
induction hypothesis 2 with j = i. Next we set Ei ¡ 1 = Ei AND (NOTSi)
restricting Ei¡ 1 to rows in Ei with ri = 0 = mi; since all rows r in Ei already
have bit representation rP rP ¡ 1:::ri+1 equal to mPmP ¡ 1:::mi+1, it is clear that Ei ¡ 1
satis¯es induction hypothesis 1 for i ¡ 1.

Finally, if n = k, then Xi consists of k rows with the largest S-value in T ,
exactly what we've been seeking. We set Ei¡ 1 = Ei AND Si, and break from
the loop; on exit we set F = G OR E (the former X ¡ i), and we will ¯nd that
COUNT (F) ¡ k = 0. In this case, we don't need to continue the loop until i = ¡ 1.

If we never encounter the case where n = k, we continue to loop through
i = 0, and on exit from the loop (with i = ¡ 1), we set F = G ¡ 1 OR E ¡ 1, with
COUNT (G ¡ 1 OR E ¡ 1) > k. But all the S-values of rows in E¡ 1 are now the
same (since they all have the same bit representation as m) and as always we know
that COUNT (G ¡ 1) < k. Thus we simply need to remove some rows of E from F
until COUNT (F) = k, to ¯nd the desired set F .

4.3 Memory Usage of BSTM

As we have seen in Section 1.2, IRTM algorithms need about 618 Kbytes of memory
to hold the hash table of accumulators when there are one million documents in
the database. A 6 bit-slice in-memory BSI needs about 750 Kbytes of memory:
each bit-slice needs about 125 Kbytes (¼ 1 million bits), and 6 £ 125 = 750. Maybe
more than 6 bit-slices will be necessary (when query-weights are large), but high-
order bit-slices will be very sparse, and low-order slices more dense; so high-order
slices may take much less space than a low-order slice. The memory usage for a

47

BSI used as an accumulator is not ¯xed, it depends on particular queries. But it
will not take much more space than the IRTM with hashed accumulators.

With one million documents and 4 Kbytes bitmap segments, we need 32 seg-
ments per verbatim bitmap. For most bitmaps used in the experiments included
in the following chapter, only one or two 4 Kbytes disk pages were necessary to
hold the bitmaps. Most indexed terms are rare, so the bit-sliced indexes and their
bit-slices indexing them are sparse. Most segments are held in a RID-list form,
and many RID-lists can ¯t in a single disk page.

48

CHAPTER 5

Experimental Results

I present in this chapter experimental results comparing Information Retrieval
Term Matching and Bit-Sliced Term Matching (IRTM and BSTM). Synthetic
benchmark tables and queries were generated for the RIDBIT implementation
under varying conditions. The experiments were performed on a PC equipped
with a AMD Athlon 1.33 GHz CPU, with 256 MB of DDR RAM, an UDMA 100,
7200 rpm, 40 GB, Maxtor IDE drive, running FreeBSD 4.5-PRERELEASE #9,
obtained from the STABLE branch on December 31 2001. The kernel is a custom
built kernel, with soft updates enabled.

The design of our benchmark tables is based on some of the larger document
collections in [PW83], rather small collections by today's standards, but appropri-
ate for our prototype system. In Figure 5.1, we provide a list of notational symbols
used in our experiments, along with the values or range of values these symbols
represent.

Focusing for the moment on the minimal con¯guration of Figure 5.1, we see we
have N = 50; 000 documents in our smallest table, with TD = 40 terms for each
document (terms are represented by integers because of limitations in our index
implementation). This means that the number of term-document pairs contained
in index entries is N £ TD = 2; 000; 000. Since there are 10,000 distinct terms, we
calculate the average number of documents per term to be 200. The number of
documents per term grows linearly with the number of documents, for N = 100; 000

Notational symbol Values used
N (# rows = # docs) 50K, 100K, 250K, 500K, 750K, 1M
T (# di®erent terms) 10,000
TD (# terms/doc) 40
TQ (# terms/query) 5, 10, 20, 30, 40, 50, 100, 150, 200

DQ (avg. # docs/query-term) 0:01 £ N = 500, 1000, 2500,
(approximately linear in N) 5000, 7500, 10000

Figure 5.1: Notation Used in Experiments

49

we have 400, 1000 for N = 250; 000, etc. We generated the terms in each document
at random, using a Zip¯an 70-30 distribution skew (a realistic assumption), and
then created queries whose terms tended to use the more popular terms, behavior
we copied from [PW83]. When the average number of documents per term is
200, the average number of documents per query term is 500, i.e., DQ = 500.
In general, we tuned the Zip¯an function choosing terms of the query so that
query terms are 2.5 times more popular than the average document terms; so
for N = 100; 000, when the average number of documents per term is 400, the
average number of documents per query term is 1000, i.e., DQ = 1000. The
number of rows (or documents) N in the tables and the number of terms per
query TQ are the only independently ranging parameters of Figure 5.1, and we ran
experiments with all pairs of values. We randomly generated query runs with TQ =
5; 10; 20; 30; 40; 50; 100; 150; 200 terms, and ran them against implementations of
the IRTM and BSTM algorithms on the RIDBIT project for tables of N = 50K,
100K, 250K, 500K, 750K, and 1M rows. In the ¯rst set of runs, query-term weights
were all equal to 1. The following set of runs has query-term weights randomly
generated, every weights being a power of 2. The last run contains also randomly
generated query-term weights, but not limited to powers of 2. For all randomly
generated query-term weights, the precision was limited to 6 bits since document-
term weights are limited to 6 bits (see Section 4.1). Figures 5.2 to 5.11 present
timing results comparing BSTM and IRTM, and a discussion of these follows. The
data used to produced these graphs are included in Appendix B.

5.1 Results Analysis

Getting results with query-weights equal to 1 is meaningful since in practice, many
queries are initiated by users simply typing some terms in a text ¯eld of a web page
(e.g. queries on Google or Yahoo search engines). In [Kir01], it is mentioned that
only 10% of users use query syntax, and 1% use advanced search, so most of the
time, users type only a simple list of terms. When no query-weights are speci¯ed,
all query-weights are assumed to be equal, and assuming they are equal to 1 is
very natural. BSTM wins over IRTM in this case. Results were also obtained with
query-weights equal to powers of 2 and with unrestricted query-weights values. As
we will see, results with query-weights equal to powers of 2 are almost identical to
results with query-weights equal to 1, but with unrestricted query-weights values,
BSTM loses compared to IRTM. The bottleneck with IRTM is the inverted lists
lengths, while with BSTM, the problem can be the number of carries to compute.
When the binary representation of the query-weights contains many ones, then
more carries need to be computed since more additions need to be performed.

50

5.1.1 Query-Weights Equal to 1

Figures 5.2 and 5.3 show graphs of the query execution time versus the number of
query terms, for query-weights equal to 1. Figure 5.3 is a zoom in of Figure 5.2.
We can see in Figure 5.2 that BSTM is better than IRTM up to about 100 to
125 terms per query. As the number of documents increases, the crossing point
between the corresponding lines (e.g. between the \1M docs IR" and \1M docs
BSI" lines) moves to the right. In other words, IRTM seems to be more a®ected by
the number of documents in the database. We can expect this trend to continue
since, as mentioned before, IRTM is more sensible to inverted lists length. Having
a cross-over point at 100 query-terms or above is not a problem since users of
search engines do not type in 100 or more terms to search on; users typing more
than 10 terms are rare. In [MZ96], the authors agree since they write \Queries of
perhaps 3-10 terms are the norm for general-purpose retrieval systems." on page
359. They principally talk about queries of 40 to 50 terms, which is well under the
100 terms limit. BSTM performs well with 40 and 50 query-terms. Also, Steve
Kirsch, founder of Infoseek, now at propel, mentioned during a talk at the SIGMOD
2001 conference, that a query on a WWW search engine, like Google, \gets faster
the longer the query" because only the \8 shortest term lists" (inverted lists) are
used to answer the query [Kir01]. If a user asks for more than 8 query-terms, only
the 8 less frequent query-terms will be used, and the query-terms in excess will just
be ignored. Recall that if a query-term is rare and appears in a given document,
then it makes this document more relevant (more similar) to the query than a
common term. This document is more \special" and probably more interesting.
Also from [Kir01], the average query length is 2.2, well within limits.

The query execution time versus the number of documents graphs are shown
in Figures 5.4 and 5.5. Figure 5.5 is a zoom out of Figure 5.4. We can see on these
graphs that the slope of the IRTM lines are larger that the slope of the correspond-
ing BSTM lines, except for very large number of terms. The time di®erence is not
constant between the corresponding lines as the number of documents increases.
We can expect this trend to continue with even more documents, but due to the
RIDBIT system limitations, we were not able to try it. Note that the 10 terms
BSI case runs faster than the 5 terms IR, that the 20 terms BSI case runs faster
than the 10 terms IR, that the 30 terms BSI case runs faster than the 20 terms
IR and that the 40 terms BSI case runs almost faster than the 30 terms IR. The
most important we can get from those graphs is that we can expect BSTM to scale
better than IRTM.

Figure 5.6 shows the ratio of IRTM execution time and BSTM execution time
versus the number of documents graph. We can see immediately that the 10 query-
terms case is the best for BSTM. The ratio goes up when the number of documents

51

increases. For 1 million documents, IRTM is 2.5 times slower than BSTM. Similar
results for 5 and 20 terms, but here, IRTM is about 2.2 times slower than BSTM.
For 30, 40, and 50 terms, it is not bad either: IRTM is 1.5 to 1.7 times slower than
BSTM. It gets worse for 100, 150, and 200 terms, but, as mentioned earlier, these
cases are not common in practice for the targeted applications. Leading search
engines are using at most 8 query-terms anyway.

5.1.2 Query-Weights Equal to Powers of 2

The query execution time versus the number of documents graph is shown in
Figure 5.7, and the ratio of IRTM execution time and BSTM execution time versus
the number of documents graph is shown in Figure 5.8, both for the case where
query-weights are equal to a power of 2. If we compare Figure 5.7 to Figure 5.5
and Figure 5.8 to Figure 5.6, then we can see similar graphs. Before adding a BSI
to the sum BSI, we ¯rst need to multiply the BSI by the query-weight, but since
that query-weight is equal to a power of 2, only a shallow left shift is needed (see
Section 3.3) instead of a general multiplication, and then we can add the BSI to
the sum. Shallow left shifting is cheap, and it is not adding much work to the
execution time directly, but indirectly, it is adding some work: the weights kept
in the sum BSI will be larger, therefore more bit-slices will be needed in the sum
BSI, and more carries will need to be computed. The impact is still small, as we
can see for the 10 terms, 1 million documents case, IRTM is still 2.3 times slower
than BSTM, compared to 2.5 times slower when every query-weight is equal to 1.
I omit some graphs for the query-weights equal to powers of 2 case since they are
very similar to the query-weights equal to 1 graphs.

5.1.3 Unrestricted Query-Weights

Figures 5.9, 5.10 and 5.11 show graphs for execution times versus the number of
terms, execution times versus the number of documents, and the ratio of IRTM
execution time and BSTM execution time versus the number of documents, when
query-weights can take on any values (limited to 6-bits, as explained above). BSTM
is worse because more carries need to be computed since the work is tripled: with
6-bit query-weights, we can expect to have 3 bits on and 3 bits o® in the binary
representation of the weight, thus the algorithm will do 3 shallow left shifts and
3 BSI addition. Three times the number of additions gives about three times as
much work. From the graphs data, we can get that IRTM performances are, on
average, about 5% worse in this case compared to the previous case, while BSTM
performances are 2.97 times worse on average.

52

In Figure 5.10, observe how the 150 terms IR and 200 terms IR lines grow
quickly for 750 thousand and 1 million documents. This can be observed in Fig-
ure 5.11 also. Does IRTM reach (or gets closer to) some limit? With 1 million
documents, we have DQ = 10000 documents per query-term, thus when we have
150 query-terms, IRTM needs to handle 1.5 million document pointers. With
200 query-terms, 2 million document pointers. With 750 thousand documents,
DQ = 7500 documents per query-term, and IRTM needs to handle 1.5 million
document pointers. No other case in the experiments handle that many document
pointers. As mentioned a few times before, IRTM is more sensible to inverted
list length and the amount of term-document pairs, while BSTM scales better.
Because of the test system's limits, we cannot go much higher than 1 million doc-
uments, therefore the question: as IRTM reached (or got closer to) a limit?, is
going to stay open for now and may be answered in future work.

53

0 50 100 150 200
query terms

0

1

2

3

4

5

T
i
m
e

(
s
e
c
s
)

50K docs IR
100K doc IR
500K docs IR
1M docs IR
50K docs BSI
100K docs BSI
500K docs BSI
1M docs BSI

Time vs. # of query terms
Query-weights equal to one

Figure 5.2: Time vs. # of Query Terms

5 10 20 30 40 50
query terms

0

0.5

1

1.5

T
i
m
e

(
s
e
c
s
)

50K docs IR
100K doc IR
500K docs IR
1M docs IR
50K docs BSI
100K docs BSI
500K docs BSI
1M docs BSI

Time vs. # of query terms
Query-weights equal to one

Figure 5.3: Time vs. # of Query Terms

54

50000 250000 500000 750000 1000000
documents

0

0.25

0.5

0.75

1

T
i
m
e

(
s
e
c
s
)

5 terms IR
10 terms IR
20 terms IR
30 terms IR
40 terms IR
5 terms BSI
10 terms BSI
20 terms BSI
30 terms BSI
40 terms BSI

Time vs. # of documents
Query-weights equal to one

Figure 5.4: Time vs. # Documents

50000 250000 500000 750000 1000000
documents

0

1

2

3

4

5

T
i
m
e

(
s
e
c
s
)

10 terms IR
50 terms IR
100 terms IR
150 terms IR
200 terms IR
10 terms BSI
50 terms BSI
100 terms BSI
150 terms BSI
200 terms BSI

Time vs. # of documents
Query-weights equal to one

Figure 5.5: Time vs. # Documents

55

0 250000 500000 750000 1000000
documents

1

1.5

2

2.5

3

3.5

T
i
m
e

I
R
/
T
i
m
e

B
S
I

5 terms
10 terms
20 terms
30 terms
40 terms
50 terms
100 terms
150 terms
200 terms

Ratio Time IR/Time BSI vs. # documents
Query-weights equal to 1

Figure 5.6: Ratio Time IR/Time BSI

50000 250000 500000 750000 1000000
documents

0

1

2

3

4

5

T
i
m
e

(
s
e
c
s
)

10 terms IR
50 terms IR
100 terms IR
150 terms IR
200 terms IR
10 terms BSI
50 terms BSI
100 terms BSI
150 terms BSI
200 terms BSI

Time vs. # of documents
Query-weights equal to powers of 2

Figure 5.7: Time vs. # Documents

56

0 250000 500000 750000 1000000
documents

1

1.5

2

2.5

3

3.5

T
i
m
e

I
R
/
T
i
m
e

B
S
I

5 terms
10 terms
20 terms
30 terms
40 terms
50 terms
100 terms
150 terms
200 terms

Ratio Time IR/Time BSI vs. # documents
Query-weights equal to powers of 2

Figure 5.8: Ratio Time IR/Time BSI

5 10 20 30 40 50
query terms

0

0.5

1

1.5

2

2.5

3

3.5

T
i
m
e

(
s
e
c
s
)

50K docs IR
100K doc IR
500K docs IR
1M docs IR
50K docs BSI
100K docs BSI
500K docs BSI
1M docs BSI

Time vs. # of query terms
Unrestricted Query-weights

Figure 5.9: Time vs. # of Query Terms

57

50000 250000 500000 750000 1000000
documents

0

2

4

6

8

10

12

14

T
i
m
e

(
s
e
c
s
)

10 terms IR
50 terms IR
100 terms IR
150 terms IR
200 terms IR
10 terms BSI
50 terms BSI
100 terms BSI
150 terms BSI
200 terms BSI

Time vs. # of documents
Unrestricted Query-weights

Figure 5.10: Time vs. # Documents

0 250000 500000 750000 1000000
documents

0.5

1

1.5

T
i
m
e

I
R
/
T
i
m
e

B
S
I

5 terms
10 terms
20 terms
30 terms
40 terms
50 terms
100 terms
150 terms
200 terms

Ratio Time IR/Time BSI vs. # documents
Unrestricted Query-weights

Figure 5.11: Ratio Time IR/Time BSI

58

CHAPTER 6

Other Applications and Future Work

Users of a search engine should not have to worry about implementation details
of the database used to support the search engine. What they want to do is type
some terms, click on the Search button and get (pertinent) results. What happens
behind the scene is more complicated: the text typed by the user is parsed into
terms, and the terms are preprocessed as described in Chapter 1 (some terms may
be dropped as mentioned in Section 5.1.1), and ¯nally a term matching query is
issued to the database. A set of (doc #, weight) pairs are returned by the database
to the WWW server, which processes the set to create an HTML ¯le (or some other
¯le format), and sends it to the client to be displayed in a WWW browser (or some
other application). The return set can be broken into pieces, so as to return, for
example, only 10 results per page. For each document number, a database access
is needed to retrieve the document title, perhaps a passage or a summary of the
document, and various other information.

But what if we want to allow users to specify query-term weights? We propose
a number of syntax alternatives. One option would be to let users specify a query
in a form similar to this (using an example similar to Figure 1.1):

Q 6.1 lentil:10 onion:1 tomato:4 garlic:2 cumin:1

The user puts a lot of importance on the term lentil, so the lentil recipes will score
higher, then recipes with tomatoes will be favored next, then recipes with garlic,
onion and cumin. The weight values should be limited to some realistic range,
e.g. between 1 and 10 would make sense. The problem with BSTM, as described
in Chapter 5, comes when many bits are on in the query-weights. When there is
only one bit on in the query-weights, BSTM is fast.

There is a simple alternative that makes the query syntax easier and that can
be set up to use only powers of 2 for query-weights. The idea is to use a syntax
similar to what Yahoo is using [Yah]. They only allow Boolean searches, but they
allow users to put a + sign in front of a term, to make the term mandatory, so
that a query like

Q 6.2 +lentil onion +tomato garlic cumin

59

can be speci¯ed. In this query, lentil and tomato are mandatory, and onion, garlic
and cumin are optional, but documents containing the optional ingredients will be
favored over documents without them.

We could extend the syntax to allow users to put more + signs in front of
query-terms. A user could type the query:

Q 6.3 +++lentil onion ++tomato +garlic cumin

and would get results similar to query 6.1. No + sign in front of a term would
mean the term has a weight of 1, one + sign would mean a weight of 2, two +
signs a weight of 4, three + plus signs a weight of 8, etc ... That is, the weight of a
query-term would be 2n+(q), where n+(q) is the number of + signs in front of that
query-term. This process allows users to specify query-weights easily, and on the
side of the database, searches with query-weights equal to powers of 2 is fast.

A question that can come up easily is: Is it meaningful to have query-weights
growing so fast as the number of + signs grows? My answer is obviously Yes. First,
the number of + signs can be limited to 4 or 5, which keeps the largest possible
weight to 16 or 32. Second, I don't believe users will be interested in typing more
than 4 or 5 + plus signs anyway, and probably most of them will not type more
than 1 or 2 plus signs per term. Sometimes, when a term is very important, a user
may be willing to type 4 or 5 + signs, but I don't think it would be a common case
to do that. Thus, typing 4 or 5 + signs would be a rare case, and it is justi¯ed to
weight rare cases importantly.

Yahoo also allows users to put a { sign in front of a term, meaning that the
associated term must not appear in any document returned to the user. This is
not incompatible with BSTM, since a veto bitmap can be constructed, consisting
of the union of the bitmaps corresponding to the negated terms in the given query.
This veto bitmap can be applied against the results obtained from the usual BSTM
algorithms presented before. For e±ciency purposes, this veto bitmap should be
applied sooner to potentially save some work. The veto bitmap can be negated
and used during the early stages of BSTM in place of the EBM to ¯lter out some
documents early ¤ . The veto bitmap density will be lower than the EBM density,
so the BSI sum density will also be lower than it would be without the veto, and
the bitmap Boolean operations could gain speed.
¤ Recall that when a bitmap is negated, it is automatically intersected with the EBM to remove

non-existing documents, so the negation of the veto bitmap will contain every existing document
not containing any of the vetoed terms

60

6.1 Multi-Column Queries With BSTM

We can extend the ideas presented above to multi-column queries. Consider a
query, similar to query 6.3, but this time, we don't want to search for recipes
based only on their ingredients, but based also on their preparation time:

Q 6.4 f+++lentil onion ++tomato +garlic cuming 2 INGREDIENTS AND
PREP TIME · 30

The steps taken to answer this query would be about the same as for the veto
bitmap case, except that here, instead of negating the union of some bitmaps, a
range search is performed on the PREP TIME column to select the recipes which
can be prepared in 30 minutes or less. Then term matching can be done on the
INGREDIENTS column, but using the results of the range search as the set of
potential answers, and executing the BSTM algorithms only on this reduced set.
This technique could be extended to any Boolean expression combined with rank
computation.

The syntax used in query 6.4 is probably too complicated for an average user
to use (even if we change 2 by in and · by <=), so a nicer interface could be
created. For example, there could be a text ¯eld for entering ingredients to rank
the recipes on, and there could be another text ¯eld where Boolean conditions
could be typed in. A user would type the same thing as query 6.3 in the ¯rst text
¯eld, and would type PREP TIME <= 30 in the other.

Another interesting question is: Can we rank recipes based on more than one
column?. Yes. We could imagine having, in the same RECIPES table, a column
called QUALIFIERS, in which each recipe could have a set of quali¯ers, like veg-
etarian, dessert, sweet, sour, fatty, lean, spicy, etc... One could want to make a
query similar to query 6.4, but also would like these quali¯ers: ++++vegetarian
+spicy. This could be achieved with BSTM (and IRTM also), because the BSTM
algorithms do not care where the BSIs they work on come from: a list of BSIs are
fed into the algorithms, and the top k recipes come out. Care must be taken to
have weight BSIs coming from di®erent columns with comparable values, e.g. if
the INGREDIENTS weights span the range [0; 100] and the QUALIFIERS range
is [0; 1] (i.e. the QUALIFIERS BSIs are really bitmaps), since a recipe with garlic
as one ingredient could gain more weight from the garlic than a recipe having
vegetarian as a quali¯er. Weights should be scaled in some way to have balanced
weights between the two columns. Unfortunately, I do not know exactly how this
should be done, since it is probably a case-by-case problem and it depends on
which importance the database creator wants to put on each column.

61

We could go even a step further by pushing the notion of term matching. Until
now, the term matching examples I used where based only on set-valued columns
of some table (most of the time, on an INGREDIENTS column of a RECIPES
table). Query 6.4 could be modi¯ed to get this query:

Q 6.5 f+++lentil onion ++tomato +garlic cuming 2 INGREDIENTS,
++(PREP TIME · 30)

The idea is to rank recipes not just on ingredients, but also on the condition
PREP TIME · 30 by giving it a ++ weight (equal to 4). The range search
produces a bitmap to represent the set of recipes which can be prepared in less
than 30 minutes, and this bitmap can be left-shifted by two positions into a BSI,
to be used in the BSI addition. Of course, this is added work for the database,
but users could ¯nd this feature useful. This could be generalized to any operator
returning a bitmap or a BSI as a result.

If we go another step further, we could allow weights to be subtracted. Modi-
fying query 6.3, we get:

Q 6.6 +++lentil onion ++tomato +garlic ¡¡ cumin

Notice here two { signs in front of cumin. Maybe the user does not particularly
like cumin very much, but does not want to veto recipes containing cumin. The
terms would be processed in the same way as before, with the cumin BSI being
left-shifted ¯rst (by one position since one { sign would mean simply subtract this
term, and two { signs would mean subtract even more), but this time, it needs to
be negated before being added to the other BSIs. Given that the database can
implement BSI negation e±ciently y, query 6.6 could be answered almost as quickly
as query 6.3.

6.2 Arithmetic Queries

BSI arithmetic can also be used to evaluate more complicated expressions used in
SQL (or other kind of) queries. For example, take the expression T:C1 +T:C2 · c.
Given that bit-sliced indexes exist on columns C1 and C2, a BSI addition can be
executed on these two BSIs to get a BSI S, followed by a range search on S. More
general expressions like

nX
i=1

ai £ T:Ci 4 c

yReport to Section 3.4, where it is explained why the RIDBIT project does not do well with
BSI negation and multiplication (it does not support varying encoding schemes), and how to ¯x
it to support e±cient BSI negation.

62

where the ais and c are constants, and4 is one of f<; · ;=; 6=; ¸ ; >g. We can even
go further by allowing any operator working on BSIs to be used (multiplication,
subtraction, etc...) instead of addition and by replacing the range search by any
other meaningful BSI operator (e.g. sum, average [OQ97]). The performance
analysis comparing these expressions implemented with/without BSI arithmetic is
left as future work.

6.3 Preference Queries

Preference Queries are a kind of ranked queries, where the user speci¯es a pref-
erence function, evaluated on every tuple of a table to obtain a score for every
tuple, and the highest score tuples are returned ¯rst [HKP01]. The goal is to
optimize the selection of objects by appropriately weighting the importance of
multiple objects attributes. Such optimization problems appear often in oper-
ations research and applied mathematics as well as every day life. Given a rela-
tion R(A1; A2; :::; An), the user speci¯es the preferences a1; a2; :::; an (describing the
query), over attributes A1; A2; :::; An. The preference function over these attributes
is a1A1 + a2A2 + :::+ anAn, giving a score to every tuple. Conventional evaluation
techniques for such queries require the retrieval and ordering of the entire dataset.
The work in [HKP01] is based on the framework introduced in [AW00].

Their approach to implement preference queries is to precompute preference
functions and store them as materialized views, and to use those views to answer
queries. They provide algorithms to make a good choice of preference functions
to materialize, so that the space of preference functions is covered (refer to the
paper for details). They provide algorithms to combine di®erent views to avoid
having to retrieve and order the whole dataset to answer a query. Once a query is
issued, they look for a view that is similar to the query, and from that view they
extract the tuple with the highest score. Their algorithm is such that a minimum
number of tuples are examined to return the top score tuples. They call their
system PREFER, and it is built as a layer on top of a commercial RDBMS.

They concentrate on the percentage of queries covered in their experimental
results, varying di®erent parameters, mainly the number of materialized views and
the dataset size. They keep for last the only execution times graph, comparing
their algorithms with a straightforward DBMS only approach. They use a table
with 50,000 tuples and four attributes. The preference values (the ai coe±cients)
vary between 0 and 1, with a discretization of 0.1, i.e. preferences are taken
in the set f0; 0:1; 0:2; :::; 0:9; 1g. The DBMS they are using is Oracle, and the
PREFER system is running on another machine (dual Pentium II, 512 MB of RAM,
Windows NT Workstation 4.0). When 10 top score tuples are requested, PREFER

63

executes the queries in about 1 second on average, and when 500 top score tuples
are requested, it takes about 19 seconds to execute. The straightforward DBMS
only approach takes, respectively, about 40 and 43 seconds to execute. They also
evaluate the time taken to build the materialized views. For a discretization of
0.1, and a table with 5 attributes, it takes 210 minutes to build the views. For a
discretization of 0.05, it takes 2000 minutes.

So the obvious question is: Can we use BSI arithmetic to answer preference
queries? From the previous sections of this chapter, it should be clear that yes, it is
possible, given that a BSI exists for every attribute a user can specify a preference
on. Preference queries are a particular case of arithmetic queries, except that
instead of using a range or equality operator, a topk operator, similar to the TM
operator, is used:

topk(
nX
i=1

ai £ T:Ci)
The sum in this expression can be easily computed with at most n BSI multipli-
cations by a constant and by n ¡ 1 BSI additionsz. The preferences in PREFER
can take on, usually, only 11 di®erent values, but these values are between 0 and
1. Values between 0 and 10 with a discretization of 1 could be used as well; tuple
scores will simply be multiplied by 10 and their relative ranks will not be a®ected.
With 50,000 tuples (documents in TM terms), 4 BSIs to add, unrestricted prefer-
ences (unrestricted query-weights in TM terms), and top10 score tuples to retrieve,
BSTM can execute the query in 0.009 seconds. With 500 top score tuples to re-
trieve, 0.023 seconds are needed by BSTM. Of course, these numbers cannot be
directly compared to PREFER numbers since they used a di®erent computer and
did not specify the CPU speed of their machine, but they used a dual CPU com-
puter and we used a single CPU computer. Also, BSIs in preference queries will
be more dense than BSIs in Term Matching problemx, which will slow down the
BSI operations{. But still, 0.009 second compared to 1 second, and 0.023 second
compared to 19 seconds, are quite signi¯cant. A more rigorous comparison on
comparable systems is needed, but I am con¯dent that BSTM will compete with
PREFER. And this is only for 50,000 tuples. How can PREFER perform on 1
million documents? BSTM can answer the same queries, but on 1 million tuples,
in respectively 0.167 and 0.185 second.
zI write at most because some coe±cients could be 0, in which case no multiplication nor

addition are necessary for this attribute, or 1, in which case no multiplication is necessary for
this attribute.
xThis is why I do not believe IRTM techniques applied to preference queries would perform

well, since inverted lists will get very long.
{More disk reads will be necessary since it will be harder to compress bitmaps e±ciently; more

segments will be in verbatim bitmap form.

64

Also, building bit-sliced indexes will take much less than 210 and 2000 minutes
(discretization does not a®ect bit-sliced index building time). Only a scan of the
table, going tuple by tuple, inserting a new entry in a BSI for every indexed
attribute, are necessary to build the indexes. The extra disk space used by the
BSIs should be a lot less than for the materialized views. Many (between 10
and 100 in PREFER) materialized views can take a lot of space compared to one
BSI per indexed attribute. Unfortunately, disk space utilization is not covered in
the PREFER paper, so it is di±cult to make a comparison. I believe using BSI
arithmetic should scale much better than PREFER.

6.4 Nearest Neighbor Searches

Let's consider a POINTS table with three attributes: PID (point ID), X, and Y.
To each PID is associated a pair of coordinates (x; y). Suppose we want to know
the point that is closest to a point P1 with coordinates (x1; y1). It is necessary
to compute the distance between P1 and every point P (x; y) in POINTS, and
then select a point with the minimum distance value. Suppose also that bit-sliced
indexes exist on the X and Y columns of POINTS, and that the distance measure
used is the Manhattan distance. The distance between P1 and P is:

d1(P1; P) = jx1 ¡ xj+ jy1 ¡ yj:
To answer this query with BSI arithmetic, we can think of P1 as a query de¯ned
similarly as above, with weights equal to 1. Note that x1 and y1 are constants,
and that BSI subtraction between two BSIs was de¯ned in Section 3.2. BSI sub-
traction between a constant and a BSI is not much more di±cult since it is really
a subtraction between an all-x1 or all-y1 BSI (i.e. a BSI having only x1 or y1 for
all its values) and a BSI. Computing the absolute value of a signed BSIk S is not
very complicated since we can take the sign bit-slice SBS of S, and for every other
bit-slice B of S, do B = B XOR SBS. If SBS[r] = 1 for some row r, then S[r]
is negative and we need to negate it. The exclusive unions will do the job since
0 XOR 1 = 1 and 1 XOR 1 = 0. If SBS[r] = 0 for some row r, then S[r]
is positive and we need to leave its S-value untouched. The exclusive unions will
again do the job since 0 XOR 0 = 0 and 1 XOR 0 = 1. The positive values of S
remain unchanged. Then we need to add 1 to every negative values of the original
S, so we can simply add SBS to S: S = S + SBS. We must of course also drop
SBS from S. To select the smallest distance (or, more generally, the k smallest
distances) in the distance BSI, it is a matter of modifying the top k algorithm of
Figure 4.3 to return the smallest values instead of the largest values.
kObviously, if S is unsigned, nothing needs to be done.

65

Can the Euclidean distance be used instead of the Manhattan distance? Yes,
but it would be more expensive. Computing the square of a BSI is feasible since
the multiplication of two BSIs is, but it would be more expensive than computing
the absolute value. Computing the square root of a BSI should be feasible also, but
it is going to be expensive to do it. We may not need to compute the square root
of a BSI when we need the Euclidean distance in our nearest neighbor searches.
We can ¯rst compute:

d02(P1; P) = (x1 ¡ x)2 + (y1 ¡ y)2

and not take the square root immediately. We then ¯nd the k smallest values of
d02, and before returning the results, take the square root of those k values. This
way, only k square root computations are necessary.

Would it be more or less expensive to use BSI arithmetic, with either the
Manhattan distance or the Euclidean distance, than using other approaches? This
is another question I will leave open, at least for now.

6.5 Other Possible Applications

If nearest neighbor computations using BSI arithmetic of the kind described above
prove to be worthwhile, then the next natural question to ask is: Can clustering
algorithms bene¯t from BSI arithmetic? It seems likely. Much more work is needed
before this question can be answered.

Another avenue to explore is the use of bit-sliced indexes in multimedia data-
bases. For example, to index images, the ¯rst step is choosing a suitable feature
space: choosing relevant features with respect to the image database, choosing
the descriptors of these features and choosing numerical representation of these
descriptors (signatures). At the end of this stage, the image database is represented
by a cloud of points in a high dimensional feature space [IME]. The second step
is building an index to get e±cient storage of image signatures. Depending on the
feature space used, it could be possible to use bit-sliced indexes to store and query
the database based on some features of the feature space.

66

APPENDIX A

Tools Used to Produce This Thesis

For typesetting, I used Emacs to type LATEX1 input ¯les. I used the program
dvipdfm2 to produce a PDF ¯le from the DVI ¯le produced by L ATEX. The box-
and-arrow ¯gures (e.g. Figure 2.6) were created with X¯g 3. The experimental
results ¯gures of Chapter 5 where produced with Grace 4. To display DVI ¯les I
used kdvi5, and for PDF ¯les, I used both kghostview 5 and Acrobat Reader6.

The computer I worked on is equipped with an AMD Athlon 1.33 Ghz CPU,
with 256 MB of DDR RAM, a UDMA 100, 7200 rpm, 40 GB, Maxtor IDE drive,
running FreeBSD7 (the most recent version used is 4.5-PRERELEASE #9, ob-
tained from the STABLE branch on December 31 2001; synchronization with the
STABLE branch of the FreeBSD CVS repository has been made regularly through-
out this work). The kernel is a custom built kernel. The window manager used
is GNOME8. Implementation of the RIDBIT project has been made in part on
the computer described above, and on a 333 MHz Sun Ultra-Sparc-IIi, 128MB of
RAM, running Sun Solaris OS 5.7. The RIDBIT project has been implemented
in C. A program used to successively call the benchmark program of the RIDBIT
project to generate some data to produce performance results has been written in
Python9. I also used the Gnumeric10 spreadsheet program.

1http://www.latex-project.org/
2http://gaspra.kettering.edu/dvipdfm/
3http://www.x¯g.org/
4http://plasma-gate.weizmann.ac.il/Grace/
5http://www.kde.org/
6http://www.adobe.com/
7http://www.freebsd.org/
8http://www.gnome.org/
9http://www.python.org/

10http://www.gnome.org/projects/gnumeric/

67

APPENDIX B

Experimental Results Data

The following three ¯gures show tables containing experimental results data used
to produce the graphs of ¯gures 5.2 to 5.11. The ¯rst four columns of each ¯gure
contain data sorted by the number of documents in the database (data used to
produce the query execution time versus the number of query terms graphs), and
the other ¯ve columns contain data sorted by the number of query terms (data used
to produce the query execution time versus the number of documents graphs and
the ratio of IRTM execution time and BSTM execution time versus the number of
documents graph).

68

N TQ TimeIR TimeBSI TQ N TimeIR TimeBSI TimeIR/TimeBSI
50000 5 0.0087 0.0050 5 50000 0.0087 0.0050 1.7400
50000 10 0.0220 0.0113 5 100000 0.0180 0.0093 1.9355
50000 20 0.0423 0.0230 5 250000 0.0460 0.0233 1.9742
50000 30 0.0473 0.0353 5 500000 0.0917 0.0450 2.0378
50000 40 0.0663 0.0463 5 750000 0.1380 0.0643 2.1462
50000 50 0.0780 0.0603 5 1000000 0.1840 0.0853 2.1571
50000 100 0.1237 0.1280 10 50000 0.0220 0.0113 1.9469
50000 150 0.1600 0.1927 10 100000 0.0460 0.0200 2.3000
50000 200 0.1973 0.2710 10 250000 0.1167 0.0507 2.3018

100000 5 0.0180 0.0093 10 500000 0.2330 0.0967 2.4095
100000 10 0.0460 0.0200 10 750000 0.3490 0.1390 2.5108
100000 20 0.0853 0.0433 10 1000000 0.4593 0.1827 2.5140
100000 30 0.0960 0.0660 20 50000 0.0423 0.0230 1.8391
100000 40 0.1340 0.0857 20 100000 0.0853 0.0433 1.9700
100000 50 0.1563 0.1130 20 250000 0.2173 0.1097 1.9809
100000 100 0.2497 0.2420 20 500000 0.4330 0.2107 2.0551
100000 150 0.3233 0.3690 20 750000 0.6517 0.2947 2.2114
100000 200 0.4000 0.5210 20 1000000 0.8577 0.3893 2.2032
250000 5 0.0460 0.0233 30 50000 0.0473 0.0353 1.3399
250000 10 0.1167 0.0507 30 100000 0.0960 0.0660 1.4545
250000 20 0.2173 0.1097 30 250000 0.2440 0.1727 1.4129
250000 30 0.2440 0.1727 30 500000 0.4890 0.3283 1.4895
250000 40 0.3383 0.2260 30 750000 0.7317 0.4550 1.6081
250000 50 0.3947 0.2980 30 1000000 0.9660 0.6107 1.5818
250000 100 0.6290 0.6610 40 50000 0.0663 0.0463 1.4320
250000 150 0.8217 1.0467 40 100000 0.1340 0.0857 1.5636
250000 200 1.0063 1.4620 40 250000 0.3383 0.2260 1.4969
500000 5 0.0917 0.0450 40 500000 0.6770 0.4267 1.5866
500000 10 0.2330 0.0967 40 750000 1.0150 0.5933 1.7108
500000 20 0.4330 0.2107 40 1000000 1.3433 0.7937 1.6925
500000 30 0.4890 0.3283 50 50000 0.0780 0.0603 1.2935
500000 40 0.6770 0.4267 50 100000 0.1563 0.1130 1.3832
500000 50 0.7890 0.5567 50 250000 0.3947 0.2980 1.3245
500000 100 1.2633 1.2110 50 500000 0.7890 0.5567 1.4173
500000 150 1.6443 1.8983 50 750000 1.1843 0.7760 1.5262
500000 200 2.0153 2.6477 50 1000000 1.5673 1.0383 1.5095
750000 5 0.1380 0.0643 100 50000 0.1237 0.1280 0.9664
750000 10 0.3490 0.1390 100 100000 0.2497 0.2420 1.0318
750000 20 0.6517 0.2947 100 250000 0.6290 0.6610 0.9516
750000 30 0.7317 0.4550 100 500000 1.2633 1.2110 1.0432
750000 40 1.0150 0.5933 100 750000 1.8930 1.6847 1.1236
750000 50 1.1843 0.7760 100 1000000 2.5217 2.2493 1.1211
750000 100 1.8930 1.6847 150 50000 0.1600 0.1927 0.8303
750000 150 2.4663 2.6240 150 100000 0.3233 0.3690 0.8762
750000 200 3.0257 3.6387 150 250000 0.8217 1.0467 0.7850

1000000 5 0.1840 0.0853 150 500000 1.6443 1.8983 0.8662
1000000 10 0.4593 0.1827 150 750000 2.4663 2.6240 0.9399
1000000 20 0.8577 0.3893 150 1000000 3.2933 3.5040 0.9399
1000000 30 0.9660 0.6107 200 50000 0.1973 0.2710 0.7280
1000000 40 1.3433 0.7937 200 100000 0.4000 0.5210 0.7678
1000000 50 1.5673 1.0383 200 250000 1.0063 1.4620 0.6883
1000000 100 2.5217 2.2493 200 500000 2.0153 2.6477 0.7612
1000000 150 3.2933 3.5040 200 750000 3.0257 3.6387 0.8315
1000000 200 4.0433 4.8923 200 1000000 4.0433 4.8923 0.8265

Figure B.1: Data for Query-Weights Equal to 1

69

N TQ TimeIR TimeBSI TQ N TimeIR TimeBSI TimeIR/TimeBSI
50000 5 0.0087 0.0050 5 50000 0.0087 0.0050 1.7400
50000 10 0.0230 0.0117 5 100000 0.0177 0.0093 1.9032
50000 20 0.0430 0.0240 5 250000 0.0470 0.0247 1.9028
50000 30 0.0483 0.0370 5 500000 0.0937 0.0463 2.0238
50000 40 0.0677 0.0480 5 750000 0.1407 0.0653 2.1547
50000 50 0.0790 0.0610 5 1000000 0.1873 0.0920 2.0359
50000 100 0.1267 0.1243 10 50000 0.0230 0.0117 1.9658
50000 150 0.1640 0.1943 10 100000 0.0467 0.0220 2.1227
50000 200 0.2017 0.2600 10 250000 0.1187 0.0547 2.1700

100000 5 0.0177 0.0093 10 500000 0.2380 0.1010 2.3564
100000 10 0.0467 0.0220 10 750000 0.3567 0.1497 2.3828
100000 20 0.0873 0.0453 10 1000000 0.4683 0.2033 2.3035
100000 30 0.0977 0.0690 20 50000 0.0430 0.0240 1.7917
100000 40 0.1367 0.0897 20 100000 0.0873 0.0453 1.9272
100000 50 0.1597 0.1147 20 250000 0.2217 0.1173 1.8900
100000 100 0.2547 0.2363 20 500000 0.4423 0.2303 1.9205
100000 150 0.3303 0.3740 20 750000 0.6643 0.3230 2.0567
100000 200 0.4090 0.5007 20 1000000 0.8757 0.4333 2.0210
250000 5 0.0470 0.0247 30 50000 0.0483 0.0370 1.3054
250000 10 0.1187 0.0547 30 100000 0.0977 0.0690 1.4159
250000 20 0.2217 0.1173 30 250000 0.2497 0.1837 1.3593
250000 30 0.2497 0.1837 30 500000 0.4983 0.3553 1.4025
250000 40 0.3460 0.2370 30 750000 0.7470 0.4883 1.5298
250000 50 0.4030 0.2977 30 1000000 0.9863 0.6613 1.4915
250000 100 0.6427 0.6403 40 50000 0.0677 0.0480 1.4104
250000 150 0.8380 1.0577 40 100000 0.1367 0.0897 1.5240
250000 200 1.0287 1.4100 40 250000 0.3460 0.2370 1.4599
500000 5 0.0937 0.0463 40 500000 0.6923 0.4547 1.5225
500000 10 0.2380 0.1010 40 750000 1.0377 0.6417 1.6171
500000 20 0.4423 0.2303 40 1000000 1.3727 0.8517 1.6117
500000 30 0.4983 0.3553 50 50000 0.0790 0.0610 1.2951
500000 40 0.6923 0.4547 50 100000 0.1597 0.1147 1.3923
500000 50 0.8070 0.5677 50 250000 0.4030 0.2977 1.3537
500000 100 1.2910 1.1967 50 500000 0.8070 0.5677 1.4215
500000 150 1.6787 1.9380 50 750000 1.2103 0.7947 1.5230
500000 200 2.0577 2.5683 50 1000000 1.6050 1.0883 1.4748
750000 5 0.1407 0.0653 100 50000 0.1267 0.1243 1.0193
750000 10 0.3567 0.1497 100 100000 0.2547 0.2363 1.0779
750000 20 0.6643 0.3230 100 250000 0.6427 0.6403 1.0037
750000 30 0.7470 0.4883 100 500000 1.2910 1.1967 1.0788
750000 40 1.0377 0.6417 100 750000 1.9347 1.6653 1.1618
750000 50 1.2103 0.7947 100 1000000 2.5783 2.2390 1.1515
750000 100 1.9347 1.6653 150 50000 0.1640 0.1943 0.8441
750000 150 2.5200 2.6820 150 100000 0.3303 0.3740 0.8832
750000 200 3.0893 3.5207 150 250000 0.8380 1.0577 0.7923

1000000 5 0.1873 0.0920 150 500000 1.6787 1.9380 0.8662
1000000 10 0.4683 0.2033 150 750000 2.5200 2.6820 0.9396
1000000 20 0.8757 0.4333 150 1000000 3.3647 3.5947 0.9360
1000000 30 0.9863 0.6613 200 50000 0.2017 0.2600 0.7758
1000000 40 1.3727 0.8517 200 100000 0.4090 0.5007 0.8169
1000000 50 1.6050 1.0883 200 250000 1.0287 1.4100 0.7296
1000000 100 2.5783 2.2390 200 500000 2.0577 2.5683 0.8012
1000000 150 3.3647 3.5947 200 750000 3.0893 3.5207 0.8775
1000000 200 4.1437 4.7377 200 1000000 4.1437 4.7377 0.8746

Figure B.2: Data for Query-Weights Equal to Powers of 2

70

N TQ TimeIR TimeBSI TQ N TimeIR TimeBSI TimeIR/TimeBSI
50000 5 0.0090 0.0133 5 50000 0.0090 0.0133 0.6767
50000 10 0.0237 0.0270 5 100000 0.0190 0.0260 0.7308
50000 20 0.0443 0.0690 5 250000 0.0493 0.0653 0.7550
50000 30 0.0497 0.1090 5 500000 0.0983 0.1320 0.7447
50000 40 0.0697 0.1483 5 750000 0.1473 0.1907 0.7724
50000 50 0.0810 0.1860 5 1000000 0.1967 0.2570 0.7654
50000 100 0.1290 0.3787 10 50000 0.0237 0.0270 0.8778
50000 150 0.1663 0.5893 10 100000 0.0483 0.0510 0.9471
50000 200 0.2043 0.7880 10 250000 0.1227 0.1333 0.9205

100000 5 0.0190 0.0260 10 500000 0.2457 0.2577 0.9534
100000 10 0.0483 0.0510 10 750000 0.3677 0.3700 0.9938
100000 20 0.0897 0.1317 10 1000000 0.4820 0.4920 0.9797
100000 30 0.1003 0.2107 20 50000 0.0443 0.0690 0.6420
100000 40 0.1397 0.2877 20 100000 0.0897 0.1317 0.6811
100000 50 0.1627 0.3613 20 250000 0.2270 0.3420 0.6637
100000 100 0.2597 0.7377 20 500000 0.4537 0.6660 0.6812
100000 150 0.3360 1.1530 20 750000 0.6800 0.9580 0.7098
100000 200 0.4147 1.5447 20 1000000 0.8947 1.2663 0.7065
250000 5 0.0493 0.0653 30 50000 0.0497 0.1090 0.4560
250000 10 0.1227 0.1333 30 100000 0.1003 0.2107 0.4760
250000 20 0.2270 0.3420 30 250000 0.2550 0.5503 0.4634
250000 30 0.2550 0.5503 30 500000 0.5103 1.0570 0.4828
250000 40 0.3607 0.7477 30 750000 0.7637 1.5067 0.5069
250000 50 0.4113 0.9500 30 1000000 1.0140 2.0200 0.5020
250000 100 0.6560 1.9960 40 50000 0.0697 0.1483 0.4700
250000 150 0.8553 3.2033 40 100000 0.1397 0.2877 0.4856
250000 200 1.0460 4.2633 40 250000 0.3607 0.7477 0.4824
500000 5 0.0983 0.1320 40 500000 0.7077 1.4253 0.4965
500000 10 0.2457 0.2577 40 750000 1.0597 2.0340 0.5210
500000 20 0.4537 0.6660 40 1000000 1.4000 2.7307 0.5127
500000 30 0.5103 1.0570 50 50000 0.0810 0.1860 0.4355
500000 40 0.7077 1.4253 50 100000 0.1627 0.3613 0.4503
500000 50 0.8233 1.8183 50 250000 0.4113 0.9500 0.4329
500000 100 1.3150 3.7453 50 500000 0.8233 1.8183 0.4528
500000 150 1.7097 5.9527 50 750000 1.2337 2.6010 0.4743
500000 200 2.0947 7.9077 50 1000000 1.6507 3.4683 0.4759
750000 5 0.1473 0.1907 100 50000 0.1290 0.3787 0.3406
750000 10 0.3677 0.3700 100 100000 0.2597 0.7377 0.3520
750000 20 0.6800 0.9580 100 250000 0.6560 1.9960 0.3287
750000 30 0.7637 1.5067 100 500000 1.3150 3.7453 0.3511
750000 40 1.0597 2.0340 100 750000 1.9700 5.3003 0.3717
750000 50 1.2337 2.6010 100 1000000 2.6250 7.1137 0.3690
750000 100 1.9700 5.3003 150 50000 0.1663 0.5893 0.2822
750000 150 2.5653 8.3723 150 100000 0.3360 1.1530 0.2914
750000 200 3.7777 11.0900 150 250000 0.8553 3.2033 0.2670

1000000 5 0.1967 0.2570 150 500000 1.7097 5.9527 0.2872
1000000 10 0.4820 0.4920 150 750000 2.5653 8.3723 0.3064
1000000 20 0.8947 1.2663 150 1000000 5.1707 11.1950 0.4619
1000000 30 1.0140 2.0200 200 50000 0.2043 0.7880 0.2593
1000000 40 1.4000 2.7307 200 100000 0.4147 1.5447 0.2685
1000000 50 1.6507 3.4683 200 250000 1.0460 4.2633 0.2453
1000000 100 2.6250 7.1137 200 500000 2.0947 7.9077 0.2649
1000000 150 5.1707 11.1950 200 750000 3.7777 11.0900 0.3406
1000000 200 6.6437 14.8770 200 1000000 6.6437 14.8770 0.4466

Figure B.3: Data for Unrestricted Query-Weights

71

References

[AW00] R. Agrawal and E. Wimmers. \A Framework for Expressing and Com-
bining Preferences." SIGMOD Record (ACM Special Interest Group
on Management of Data), 2000.

[CI98] Chee-Yong Chan and Yannis E. Ioannidis. \Bitmap index design and
evaluation." In Laura Haas and Ashutosh Tiwary, editors, Proceedings
of the 1998 ACM SIGMOD International Conference on Management
of Data: June 1{4, 1998, Seattle, Washington, USA, volume 27(2)
of SIGMOD Record (ACM Special Interest Group on Management of
Data), pp. 355{366, New York, NY 10036, USA, 1998. ACM Press.

[CI99] Chee-Yong Chan and Yannis E. Ioannidis. \An e±cient bitmap en-
coding scheme for selection queries." In Alex Delis, Christos Falout-
sos, and Shahram Ghandeharizadeh, editors, Proceedings of the 1999
ACM SIGMOD International Conference on Management of Data:
SIGMOD '99, Philadelphia, PA, USA, June 1{3, 1999, volume 28(2)
of SIGMOD Record (ACM Special Interest Group on Management of
Data), pp. 215{226, New York, NY 10036, USA, 1999. ACM Press.

[DM92] Ioan Dancea and Pierre Marchand. Architecture des ordinateurs, chap-
ter 7, section 5. Gaetan Morin ¶Editeur, 1992.

[HKP01] Vagelis Hristidis, Nick Koudas, and Yannis Papakonstantinou. \PRE-
FER: A System for the E±cient Execution of Multi-parametric Ranked
Queries." In SIGMOD Conference, 2001.

[IBM] IBM DB2. \SQL Reference. Full SELECT syntax in IBM DB2 SQL."
http://www.csa.ru/dblab/DB2/db2s0/fullslt.htm.

[IME] IMEDIA. \Research topics at IMEDIA, INRIA Rocquencourt."
http://www-rocq.inria.fr/imedia/English/research.html.

[Joh99] Theodore Johnson. \Performance Measurements of Compressed
Bitmap Indices." In Malcolm P. Atkinson, Maria E. Orlowska, Patrick
Valduriez, Stanley B. Zdonik, and Michael L. Brodie, editors, Pro-
ceedings of the Twenty-¯fth International Conference on Very Large
Databases, Edinburgh, Scotland, UK, 7{10 September, 1999, pp. 278{
289, Los Altos, CA 94022, USA, 1999. Morgan Kaufmann Publishers.

72

[Kir01] Steve Kirsch. \Internet and Beyond: Database Challenges." SIG-
MOD talk. Powerpoint presentation, 2001. http://www.skirsch.com
/presentations/sigmod.ppt.

[KZS99] Marcin Kaszkiel, Justin Zobel, and Ron Sacks-Davis. \E±cient pas-
sage ranking for document databases." ACM Transactions on Infor-
mation Systems, 17(4):406{439, October 1999.

[MZ96] Alistair Mo®at and Justin Zobel. \Self-Indexing Inverted Files for
Fast Text Retrieval." ACM Transactions on Information Systems,
14(4):349{379, October 1996.

[ON87] P. E. O'Neil. \Model 204 Architecture and Performance." In High
Performance Transaction Systems, 2nd Int'l. Workshop, Lecture Notes
in CS 359, p. 40. Springer-Verlag, September 1987.

[OO00a] Patrick O'Neil and Elizabeth O'Neil. Database: Principles, Program-
ming, and Performance. Morgan Kaufmann/Academic Press, 2000.

[OO00b] Patrick O'Neil and Elizabeth O'Neil. Database: Principles, Pro-
gramming, and Performance, chapter 8, section 6. Morgan Kauf-
mann/Academic Press, 2000.

[OO00c] Patrick O'Neil and Elizabeth O'Neil. Database: Principles, Pro-
gramming, and Performance, chapter 3, section 6. Morgan Kauf-
mann/Academic Press, 2000.

[OQ97] Patrick O'Neil and Dallan Quass. \Improved query performance with
variant indexes." In Joan M. Peckman, editor, Proceedings, ACM SIG-
MOD International Conference on Management of Data: SIGMOD
1997: May 13{15, 1997, Tucson, Arizona, USA, volume 26(2) of SIG-
MOD Record (ACM Special Interest Group on Management of Data),
pp. 38{49, New York, NY 10036, USA, 1997. ACM Press.

[PW83] Shirley A. Perry and Peter Willet. \A review of the use of inverted
¯les for best match searching in information retrieval system." Journal
of Information Science, 6:59{66, 1983.

[ROO01] Denis Rinfret, Patrick E. O'Neil, and Elizabeth J. O'Neil. \Bit-Sliced
Index Arithmetic." In Proceedings, ACM SIGMOD International Con-
ference on Management of Data: SIGMOD, 2001.

[Wan] Ruye Wang. \Fast Multiplication { Booth's Algorithm." http://
mulan.eng.hmc.edu/ » rwang/e85/lectures/arithmetic/node9.html.

73

[WB98] Ming-Chuan Wu and Alejandro P. Buchmann. \Encoded Bitmap In-
dexing for Data Warehouses." In International Conference on Data
Engeneering 1998, pp. 220{230, 1998.

[WMB99a] Ian H. Witten, Alistair Mo®at, and Timothy C. Bell. Managing Gi-
gabytes: Compressing and Indexing Documents and Images, Second
Edition. Morgan Kaufmann/Academic Press, 1999.

[WMB99b] Ian H. Witten, Alistair Mo®at, and Timothy C. Bell. Managing Gi-
gabytes: Compressing and Indexing Documents and Images, Second
Edition, chapter 4, section 6, page 206. Morgan Kaufmann/Academic
Press, 1999.

[Wu99] Ming-Chuan Wu. \Query optimization for selections using bitmaps."
In Alex Delis, Christos Faloutsos, and Shahram Ghandeharizadeh, edi-
tors, Proceedings of the 1999 ACM SIGMOD International Conference
on Management of Data: SIGMOD '99, Philadelphia, PA, USA, June
1{3, 1999, volume 28(2) of SIGMOD Record (ACM Special Interest
Group on Management of Data), pp. 227{238, New York, NY 10036,
USA, 1999. ACM Press.

[Yah] Yahoo! \Advanced Search Syntax." http://search.yahoo.com
/search/syntax?

[ZM98] Zobel and Mo®at. \Exploring the Similarity Space." IRFORUM:
SIGIR Forum (ACM Special Interest Group on Information Retrieval),
32, 1998.

74

