The VLDB Journal (2000) 8: 199-221 The VLDB Journal
© Springer-Verlag 2000

The LHAM log-structured history data access method

Peter Muth?, Patrick O’'Neil 2, Achim Pick?, Gerhard Weikum?

1 Department of Computer Science, University of the Saarland, D-66041 Sakeb;, Germany

e-mail: {muth, pick, weikum}@cs.uni-sb.de

2 Department of Mathematics and Computer Science, University of Massachusetts at Boston, Boston, MA 02125-3393, USA
e-mail: poneil@cs.umb.edu

Edited by O. Shmueli. Received March 4, 1999 / Accepted September 28, 1999

Abstract. Numerous applications such as stock market orversion. Each record version is timestamped with the commit
medical information systems require that both historical andiime of the transaction that updated the record. The times-
current data be logically integrated into a temporal databasegamp is considered to be the start time for a record version.
The underlying access method must support different formdhe end time is implicitly given by the start time of the
of “time-travel” queries, the migration of old record ver- next version of the same record, if one exists. Records are
sions onto inexpensive archive media, and high insertiomever physically deleted; a logical deletion is implemented
and update rates. This paper presents an access methby creating a special record version that marks the end of
for transaction-time temporal data, called the log-structuredhe record’s lifetime.
history data access method (LHAM) that meets these de- Indexing temporal databases is an important and chal-
mands. The basic principle of LHAM is to partition the lenging problem, mainly because of the huge amount of data
data into successive components based on the timestamps be indexed and the various “time-travel” types of queries
of the record versions. Components are assigned to differerthat have to be supported. An equally important requirement
levels of a storage hierarchy, and incoming data is continis an access method’s ability to sustain high insert/update
uously migrated through the hierarchy. The paper discussesates. This requirement arises, for example, in very large
the LHAM concepts, including concurrency control and re- data warehouses [CACM98], in scientific databases that are
covery, our full-fledged LHAM implementation, and experi- fed by automatic instruments [MSS95], or in workflow man-
mental performance results based on this implementation. AAgement systems for keeping workflow histories [AGL98].
detailed comparison with the TSB-tree, both analytically andAlso, many banking and stock market applications exhibit
based on experiments with real implementations, shows thauch characteristics. For example, consider the management
LHAM is highly superior in terms of insert performance, of stock portfolios in a large bank. For each portfolio, all
while query performance is in almost all cases at least abuy and sell orders must be tracked. Based on this data,
good as for the TSB-tree; in many cases it is much better. in addition to querying the current contents of a portfolio,
queries asking for the history of a specific portfolio in a

Key words: Index structures — Storage systems — Perfor-given time interval as well as queries asking for statistical
mance — Temporal databases — Data warehouses data over certain portfolios can be supported. The results of
these queries are important for future decisions on buying
or selling stocks.

To simplify the explanation, assume that placing a sell
or buy order is tracked by inserting a record version in a

1 Introduction portfolio history table. Assuming 1000 orders per second,
) we have 1000 inserts into the history table per second. Fur-
1.1 Problem setting ther assume, we want to index the history table by using a

B*-tree on the customer ID, and we want to keep the his-
For many applications, maintaining only current information tory of the last 7 days online. Given 24 business hours for
is not sufficient; rather, historical data must be kept to answefyorldwide orders per day and records of 48 bytes, we have
all relevant queries. Such applications include, for exampleabout 28 GB of index data. This translates into 3.5 million
stock market information systems, risk assessment in banksocks, 8 KB each, at the leaf level of théBree. Assuming,
ing, medical information systems, and scientific database apfor simplicity, that orders are uniformly distributed among
plications. Temporal database systems [Sno90, Tan93] aim tgortfolios, repeated references to the same block are on av-
support this kind of applications. In this paper, we considererage 3,500 s- 1 hour apart. According to the 5-minute rule
a special type of temporal databases, namegnsaction- [GP87], this does not justify main-memory residence. As a

time databasgsvhere multiple versions of a record are kept. consequence, it is highly unlikely that an insert operation
Updating a record is implemented by inserting a new record

200 P. Muth et al.: The LHAM log-structured history data access method

finds the leaf node that it accesses in the buffer. Instead, inBased on this storage organization, LHAM provides consis-
serting a new record causes two 1/0Os on the leaf level of theéently good performance for all types of range queries on
B*-tree, one for writing some leaf node back to the databaséey, on time, and on the combination of both.

in order to free buffer space, and one for bringing the leaf The basic idea of an earlier form of LHAM has been
node where the new record version is to be inserted into theketched in [OW93], and a full-fledged implementation has
buffer. Given 1000 inserts per second, we have 2000 I/Odeen described in [MOPWQ98]. The current paper is an ex-
per second, disregarding splits and the higher levels of théended version of [MOPW98]. In addition to the perfor-
tree. Optimistically assuming that a single disk can servemance experiments and the analysis of insertion costs al-
100 1/Os per second, we need 20 disks to sustain the inseready reported there, the current paper includes a mathemat-
rate of the application, but the data fits on two disks. Ofical average-case cost analysis for key-time (point) queries,
course, this scenario exaggerates to make its point as clean extended discussion of concurrency control and recovery
as possible; in practice, applications often exhibit skewedssues, and an outline of various, promising extensions and

access patterns such that additional memory could be levegeneralizations of the LHAM method. The paper's major
aged for caching frequently accessed leaf nodes. The poirgontributions are the following.

is that even more realistic applications may need more than
a minimum number of disks to sustain the I/O throughput.

1.2 Contribution

The above arguments hold for all index structures that place
incoming data immediately at a final position on disk. The
log-structured history access method (LHAM), introduced in
this paper addresses this problem by initially storing all in-
coming data in a main-memory component. When the main-
memory component becomes full, the data is merged with
data already on disk and migrated to disk in a bulk fashion,
similar to the log-structured file system approach [RO92] —
hence the name of our method. At the same time, a new
index structure on disk, containing both the new and the old
records, is created. All I/O operations use fasilti-block
I/0. So LHAM essentially leverages techniques for the bulk-
loading of index structures to continuously construct and
maintain an online index in a highly efficient manner.

In general,componentsnay exist on different levels of
a storage hierarchyWhen a component becomes full, data
is migrated to the component on the next lower level. This
basic approach has been adopted from the LSM-tree method
[OCGO096], a conventional (i.e., non-temporal) single-key
access method. An analysis of LHAM as well as experi-
mental results gained from our implementation show that
LHAM saves a substantial amount of 1/Os on inserts and
updates. For the above example, an LHAM structure with a
main-memory component of 144 MB and two disk compo-
nents with a total size of 30 GB is sufficient. This translates
into two disks for LHAM, in contrast to 20 disks if a*B
tree-like access method were used.

Two-dimensional key-time queries are supported by

We give a detailed presentation of the LHAM concepts,
including a discussion of synchronization issues between
concurrent migration processes, callelling merges

and transactional concurrency control and recovery. The
performance of insertions in terms of required block ac-
cesses is mathematically analyzed. We further present
analytical results on the average-case cost of key-time
point queries.

We present a full-fledged LHAM implementation for
shared-memory multi-processors using the Solaris thread
library. The entire prototype comprises 24,000 lines of
C code (including monitoring tools) and has been stress-
tested over several months.

To validate the analytic results on insertion and key-time
point-query performance, and to evaluate the full spec-
trum of query types, we have measured LHAM’s per-
formance against the TSB-tree, which is among the cur-
rently best known access methods for temporal data. We
present detailed experimental results in terms of required
block accesses and throughput for different insert/update
loads, different query types, and different LHAM con-
figurations. Our results provide valuable insight into the
typical performance of both access structures for real life
applications, as opposed to asymptotic worst case effi-
ciency.

— We discuss several promising extensions and general-

izations of LHAM, namely, supporting a tunable mix
of non-redundant and redundant partitionings between
components, the use of general multi-dimensional index
structures within a component, and more general forms
of the LHAM directory for more flexible partitioning
schemes.

LHAM through partitioning the data of the various compo- 1.3 Related work

nents based on time intervals. For space efficiency, record

versions that are valid across the timespans of multiple comAs for “time-travel” queries, LHAM supports exact match
ponents are stored only in one component according to thgueries as well as range queries on key, time, and the com-
version’s creation time; that is, LHAM usually employs a bination of key and time. Temporal index structures with
non-redundant partitioningcheme. The exception from this this scope include the TSB-tree [LS89, LS90], the MVBT
rule are components that may reside on archive media suclBec96], the two-level time index [EWK93], the R-tree
as tapes or WORM units; these components are forme@Gut84], and the segment-R-tree[Kol93], a variant of the
based on a redundant partitioning scheme, where versiorR-tree specifically suited for temporal databases. Temporal

are redundantly kept in adlrchive components which they

index structures like the Snapshot index [TK95], the Time

are valid. Within each component, record versions are orgaindex [EWK93, EKW91] and the TP-index [SOL94] aim
nized in a B-tree using the records’ key attribute and the only at supporting specific query types efficiently. Com-
version timestamp as a logically concatenated search keyaring them with other index structures is only meaningful

P. Muth et al.: The LHAM log-structured history data access method 201

based on a specific kind of application. Among the indexto a large humber of newly created record versions per time
structures with a general aim, the TSB-tree has demonstrataghit. Furthermore, while many other temporal index struc-
very good query performance [ST99]. Therefore, we havetures emphasize the efficiency of exact-match queries and
chosen the TSB-tree as the yardstick against which LHAMrange queries for either key or time, LHAM aims to support
is compared. In terms of asymptotic worst case query perexact-match queries as well as all types of range queries
formance, the TSB-tree guarantees logarithmic efficiency foron key, on time, and on the combination of both. Note that
all query types, whereas LHAM is susceptible to degrada-there is actually a tradeoff in the performance of time range
tion under certain conditions. However, our experimentalqueries versus key range queries, as the first query type ben-
studies indicate that such degradation occurs only in specifiefits from clustering by time, whereas the latter benefits from
cally constructed “adversary” scenarios and is rather unlikelyclustering by key. LHAM strives for a flexible compromise
under more realistic loads. For almost all query types, thewith respect to this tradeoff.

average performance of LHAM is at least as good as for the

TSB-tree, for many cases, even substantially better because

of better data clustering, both within and across pages, and.1 Partitioning the time dimension

potential for multi-block 1/0.

Most proposals for index structures on temporal data areThe basic idea of LHAM is to divide the entire time do-
not specifically targeted at high insertion rates, the only ex-main into successive intervals and to assign each interval
ceptions being [Jag97] and [BSW97]. Both approaches us¢o a separate storagemponentThe series of components,
continuous on-line reorganizations of the data like LHAM denoted a€’y, C4, ..., C,, constitutes a partitioning of the
to improve the performance of insertions. Because of theihistory data based on the timestamp attribute of the record
strong relationship to LHAM, we discuss both of these ap-versions. A componen®; contains all record versions with
proaches in detail in Sect. 8, after having presented theéimestamps that fall between a low-time boundasyy;, and
LHAM approach and its performance. a high-time boundaryhigh;, where high; is more recent

than low;. For successive componends, and C;.;, com-
ponents with lower subscripts contain more recent data, so
1.4 Outline of the paper low; is equal tohigh;+1. Component’y is stored in main
memory and contains the most recent record versions from
The paper is organized as follows. Section 2 presents théhe current moment (which we take to beéghg), back to
principles of LHAM in terms of time-based partitioning of time lowg. Components”; throughC}, reside on disk, and
the data, data migration, and query processing. Section 3 dehe rest of the components.,, ..., C, are stable archive
velops analytic models for the amortized costs of insertionscomponents that can be stored on write-once or slow media
and average-case costs of key-time point queries. In Sect. 4e.g., optical disks). Typically, the numbérof disk com-
we discuss the implementation of LHAM, its internal ar- ponents will be relatively small (between 1 and 3), whereas
chitecture, rolling-merge processes for data migration, andhe numbem — k of archive components may be large, but
the synchronization of these processes. Concurrency contra@irchive components will probably consist of a month worth
and recovery are discussed in Sect. 5. Section 6 briefly reef record change archives.
views the TSB-tree as a major competitor to our approach. The overall organization of LHAM is depicted in the left
Section 7 contains the results of our experimental perforpart of Fig. 1. In the example, the history of two records is
mance evaluation. We compare the experimental results foshown. The record with key has been inserted at tintg,
our implementations of LHAM and the TSB-tree in detail. and was updated at timesg andt4o. Its original version as
Section 8 compares the LHAM method to similar, more re-of time ¢, has migrated to archive componett, the other
cently proposed approaches. Section 9 discusses extensiorecord versions are currently stored in disk comporn@&nt
and generalizations of LHAM. Section 10 concludes the pa-The record with key has been inserted at tinigyz, wWhich
per. now falls into the time interval covered by componérit
Recordp has a recent update at timgg, the corresponding
record version is still in main-memory componert.
2 Principles of LHAM Inside each component, record versions are organized by
a conventional index structure for query efficiency. In prin-
LHAM is an index structure for transaction-time databases.ciple, every index structure that supports the required query
It indexes record versions in two dimensions; one dimensiortypes and efficiently allows the insertion of record versions
is given by the conventional record key, the other by thein batches can be used. Different index structures can be
timestamp of the record version. A record version gets itsused for different components. For the sake of simplicity, we
timestamp at the time of insertion as the transaction time ohave chosen Btrees for all components. An examplé-B
the inserting transaction. The timestamp cannot be changetiee is shown in the right part of Fig. 1, containing the record
afterwards. Updating a record is cast into inserting a newersions of record: at timestip andtso . The key of the
version. Deleting a record is performed by inserting a newB™-tree is formed by concatenating the conventional record
record version indicating the deletion. As a consequencekey and the timestamp of a record version. Therefore, the
all insert, update, and delete operations are performed byecord versions are ordered according to their conventional
inserting record versions. key first, followed by their timestamp. Using this ordering

Unlike virtually all previously proposed index structures, is a drawback for time range queries, as record versions are

LHAM aims to support extremely high insert rates that leadclustered primarily by key. However, this drawback is typi-

202 P. Muth et al.: The LHAM log-structured history data access method

now Ly B
T W .| -
low Cy A | = |
high C = N
o — la03 c & \‘“x,
low C, = :) o
high C» - o = 4 r\ o d
low Cs -+ ho % G -
hi:._!h Cs r/_& - |&I.l|[p |il. Lan | |b.l|3 | |C.1|[|c. tyg | ... I tan |
4 B \.*fi/ Cs
low C3

Fig. 1. LHAM component organization and*Btree inside component

cally compensated by partitioning data by time according tofollowing the idea of the LSM-tree [OCGO096], a log-
the component time intervals. We will consider other indexstructured access method for conventional, one-dimensional
structures inside of LHAM components in the future. A key key access. For each pair of successive compor@ngnd
requirement is their ability to support bulk loading of data. Cj.1, i < k, arolling-merge process, denot&d/; ;. is in-

The purpose of the more recent disk components, andoked each time compone6t, becomes full. Its invocation
especially the main-memory component, is to support highfrequency depends on how often the amount of dat&’in
insert rates. Inserting a new record version into the mainfteaches a maximum triggering size. When the rolling-merge
memory component does not take any 1/O (other than logprocess starts, a migration boundary;, low; < m; <
ging for recovery purposes, which is necessary anyway, sekigh;, is chosen, that will become the new time boundary
Sect. 5 for details). /O is needed when a component bebetweenC; andC;., after the rolling merge is finished. The
comes full. In this case, data is migrated to the next compoappropriate value fom;, relative tolow,; andhigh;, depends
nent. Providing a highly efficient migration by moving data on the growth rate of’; and, thus, (by recursion) ultimately
in batches is the key to LHAM'’s good performance. on the insert rate of the database. The rolling-merge process

In the “standard” variant of LHAM, there is no redun- RM, ;.1 scans the leaf nodes of the tree in compor@ént
dancy among components. A record version is stored in thén order of key and timestamp, and migrates all record ver-
component whose low and high time boundaries include thesions of C; that have a timestamp smaller (i.e., older) than
version’s timestamp. However, some versions are valid besm,; into component’;,,, building a new tree there. It termi-
yond the high time boundary of the component, namely,nates wherC; is completely scanned, and at this poiaty;
when the next more recent version for the same record kegndhigh;+; are both set tan,;. Figure 2 shows an example
is created after the component’s high time boundary. Espeef three successive rolling merges between compongégts
cially for long-lived versions, it can be beneficial for query andC;. Whenever componertit, becomes full, i.e., its box
performance to keep such a version redundantly in mordecomes filled with record versions (the white, grey, and
than one component. Redundancy is especially attractive fdblack rectangles), a new rolling merge is started as indicated
the usually much slower archive components. LHAM sup-by the arrows. To maintain the record order in the tre€'gf
ports both redundancy-free and redundant partitioning. Thevhose collation order is by key and time, with key being the
redundancy option can even be limited to certain keys or keyprimary criterion and time being secondary, records migrat-
ranges if, for example, the update rates are skewed acrossg from Cp to C; are merged with records already stored
the key domain. in C;. This is indicated by the differently shaded rectangles.

The rolling merge from the oldest disk componery
)) does not really merge data into compon€pt;. Rather, this
2.2 Inserts and migration of data migration process builds up a complete, new archive com-
Newly created record versions are always inserted into thgonent. Thls.new archwe component is then calféd.,
and the previous archive componeiits.; throughC,, are

main-memory componenf’y, consisting of a 2-3-tree or . ;
similar memory-based key-lookup structure. They eventyFenumbered intdCy., through Crsa. AS access to archive

ally migrate through disk componeng ... Cy. consisting components is typically very slow, we choose to use the

of B*tree-like structures, and eventually arrive on archivePartitioning scheme with redundancy when deciding which
versions are moved into the component. So an archive com-

media. There is no migration among archive Cornponentsponent contains all record versions whose validity interval
as these are often write-once or too slow for data reorgat y

nizations. However, record versions reaching an age whej@ve”e‘pS with the component's time interval given by its

they are no longer of interest may occasionally be purge ow gnd high time boundaries. Nope that in this case a new
archive componen€’+; may contain versions that already

from the on-line archive storage. This can be achieved easiI%Xist inC-.» and possiblv older archive components. if these
with LHAM, because of the time boundaries between com- X k+2 Anc Possidly : P ’
ersions are still valid after the low-time bounddyvy+, of

ponents, and the natural placement of components one aft e new archive component (which is equal to the lold,

another on archive media such as optical disk platters. value). This scheme makes the archive components “self-

The data migration from more recent to older COMPO" contained” in that all queries with timestamps between the
nents is accomplished by a process denot#lihg merge q P

P. Muth et al.: The LHAM log-structured history data access method 203

’Jﬂ]]:‘i [Il]Tj-\ I]]]IF]I[LV7 IIMI [I]]IMI7 H]ﬂl[l :

time

Fig. 2. Rolling merges betwee@y and Cy

component’s low and high boundary can be performed solelyguery specifies. Because of the size progression of compo-
on a single component. Also, when an archive componenhents and their placement in the storage hierarchy, the search
is taken off-line, the redundancy ensures that all versionstarts with the most recent component that could possibly
that remain valid beyond the high time boundary of the off- hold a query match and proceeds along the older compo-
line component are still available in the appropriate on-linenents until no more matches are possible (in a “time-travel”
component(s). As archive components are built by the rollingquery for a specified key value) or all components have been
merge from component’, to componentCy.1, Cx has to searched (if none of the components uses redundancy). Fig-
store all redundant record versions needed for creating thare 3 shows the algorithm for a key/time-range query for
next archive component. Redundant record version§jin the time interval fromt;,,, to ¢4, in pseudo-code notation.
need not be accessed BW/;,_1 x, as redundant versions are The algorithm first determines the youngest component that
only created and accessed B/}, +1 when a new archive needs to be searched. Components are then searched from
component is built. Hence, only fd€M}, +1 additional /O younger to older components, until a component with one of
is required to read and write the redundant version§in the following stopping conditions is reached. (1) The com-
In the analysis of insert costs in the next section, we will ponent contains a matching record version with a timestamp
see that the overhead of redundancy in terms of additionathat is already outside the query’s time range; then this ver-
space and /O is typically low. sion is the last record version that qualifies. (2) The compo-
Rolling merges avoid random disk accesses that wouldhent stores records redundantly and older components do not
arise with moving record versions one at a time. Rather, taoverlap the query’s time range. The search finishes with this
achieve good I/O efficiency in maintaining the internal com- component. Within each affected component, the functions
ponent index structure (i.e.,"Brees in our case), a rolling SearchTree and NextFromTree are invoked to initiate a
merge reads both the source and the destination componestandard range query on d-&ee and collect the qualifying
sequentially in large multi-block 1/0Os, and the data from records.
both components is merged to build a new index structure “Time-travel” queries for key ranges rather than individ-
in the destination component, again written sequentially inual keys proceed analogously. The only difference is that
large multi-block 1/0s. With multi-block 1/0O, instead of read- this time-range/key-range query type requires maintaining a
ing and writing single blocks, multiple contiguous blocks on list of the oldest version encountered so far for each key that
disk are read and written in a single I/O operation, which isfalls into the specified key range. This is necessary to de-
significantly faster than performing single random 1/Os (seetermine the oldest version of a key that matches the query’s
Sect. 7). The total number of block accesses required for &ime-range condition. Assuming that keys are rather short
merge process is the same as for scanning both componerdasid key ranges are typically limited in width, LHAM sim-
two times. Contrast this with the much higher number of ply keeps this list in memory.
much slower random disk 1/Os for migrating record versions For example, with the data of Fig. 1, the qu&glect
one at a time. In addition, our algorithm allows us to keep... Where KEY = 'a’ As Of t 203 has to search the
the data perfectly clustered, both within and across pageslisk component”; and C>. Similar considerations hold
all the time, with almost 100% node utilization, which in for range queries. The redundant partitioning option (see
turn benefits range queries and index scans. Sect. 2.1) allows us to bound the set of components that
must be searched. In the concrete LHAM configuration con-
) sidered here with the redundancy option used for the last
2.3 Query processing disk component,, queries with a time range not overlap-
ing the time interval of archive components need not access
rchive components.
Having to search multiple components may appear as
'a heavy penalty from a superficial viewpoint. In practice,
however, we would have only a small number of non-archive
components, say three or four, one of which is the main-
memory component. Our experiments show that the absolute
query performance of LHAM is very competitive even when
multiple components need to be searched (see Sect. 7.1.2).
For searching within a component, the component’s in-
nal index structure is used. When using *atie on the

In general, query processing may require searching multipléjl
components. LHAM maintains a (small) global directory of
the low time and high time boundaries of all components
and keeps track of the numberof the last archive compo-
nent. The directory is used to determine the relevant com
ponents that must be searched for queries.

For “time-travel” queries with a specified timepoint or
time range, LHAM needs to retrieve all record versions that
are valid at this point or within this time range, respec-
tively. A record version resides in the component whose,,

time rlangg covlf-ijrs_ Its creation timestamp, bu%_rt]he \’Lﬂiﬁﬂr&oncatenation of record key and version timestamp, exact-
may also be valid in more recent components. Thus, match queries can be answered with logarithmic perfor-
must possibly search components earlier in time than the

204 P. Muth et al.: The LHAM log-structured history data access method

Search (key, tiow thigh) {
StartComponent = 0;
fori=0ton { // determine youngest component to search in
if (low; > thign) { // component too young
StartComponent++;
else
break; // must search this and possibly subsequent components
}
for 1 = StartComponent to n { /I this loop searches the relevant components
rec = SearchTree (key, tiow, thigh);
while (rec != NULL) { // most recent record version for given interval found
addResult (rec); // add record version to result list
rec = NextFromTree(key, tiow, thigh);
if (rec = NULL) & (rec.timestamp < tjoy) // this is the oldest record version that qualifies
return; // older record versions can be ignored
)
if (1+1 = k) & (highit1 tiow) /I next component uses redundant partitioning
and does not overlap the query’s time range
return ; /l search is complete
1
!

Fig. 3. Pseudocode for query with given key and time range

mance. Time-range queries for a given key are also effiversion per record irC} is 1/s times the total size of the
ciently supported, as all versions of a record are clusteresion-archive components. As a typical temporal database is
by time both within a page and across leaf pages of the indexexpected to store more than a few versions per record, this
On the other hand, key-range queries with a given timepoints a small space overhead.
or a small time range are penalized with the chosérirBe We derive the number of block accesses required to insert
organization. However, even this query type does not pera given amount of data into LHAM by counting the block
form too badly, since our approach of building th&-tBees accesses needed to migrate the data through the components
only by rolling merges provides relatively good clustering of LHAM. This approach is similar to the one presented
by key also. If there are only a few record versions per key for the LSM-tree [OCGO96]. However, in [OCGQO96], the
we may still be able to process the query with a few blockauthors idealistically assumed a perfect steady-state balance
accesses or even less than a single block access per key.im that the insertion rate in bytes per second matches the
addition, the clustering across pages again allows us to usmigration rate between all LSM components at any time. As
multi-block 1/0, which is not possible in most other index- a consequence, the actual filling degree of each component
ing methods for temporal data as they do not accordinglyis constant and close to 100% all the time.
cluster the data across pages. This assumption is unrealistic in practice because of fluc-
tuations in the rate of incoming data. Also it is hard to keep
the migration rate of the rolling merges truly constant, as

3 Analysis of insertion and query costs the disk(s) typically have to serve additional, often bursty
load like concurrent queries. So in a realistic environment,
3.1 Amortized costs of insertions a rolling merge cannot be assumed to start again immedi-

ately after it finishes its previous invocation. Instead, rolling

We derive a formula for the amortized cost of inserting newmerges should be considered as reorganization events with a
record versions into LHAM in terms of the number of block varying frequency of occurrence. This leads to actual com-
accesses required. The formula implies that for minimizingPonent sizes (i.e., filling degrees) that vary over time. Im-
the block accesses required, the space-capacity ratios shoudediately after a rolling merge has migrated data from a
be the same for all pairs of successive components. Thisomponent; to component’;.;, C; will be almost empty.
leads to a geometric progression between the smallest conftfter sufficiently many rolling merges front’;_; to C;,
ponentCy and the largest disk componefi,. All archive ~ componentC’; will then become (close to) full again be-
components are assumed to have the Capaci@komhich fore the next roIIing merge fror’dfi to Ci+1 is initiated. So,
allows the migration of all record versions storeddpto an if we merely assume that the timepoints of initiating the fill-
archive component in a single rolling merge. When recording rolling merges front; _; to C; are uniformly distributed
versions are stored redundantly (see Sect. 2.1), the capacif¥er time, therC; is on average half full. Thus, a “randomly
of C), must be larger than defined by the geometric progresarriving” rolling merge fromC;_, to C; needs to merge the
sion. In the worst case, one version of each record stored if'i—1 data with a 50% fullC; component on average. This
LHAM has to be kept inC,. However, with an average of ~ consideration is fully confirmed by our experimental findings
record versions per record residing in all non-archive compoin Sect. 7.

nents together, the space overhead for storing one redundant

P. Muth et al.: The LHAM log-structured history data access method 205

As all data is inserted into main-memory componentblockqccesses = blocksoi(k(2 +1) + 1)
(o first, and as all rolling merges access data in terms of &
complete disk blocks instead of single record versions, the ot Ezrﬁl ' (4)
total number of block accesses depends only on the num-
ber of blocks required to store the data, not on the num-
ber of records stored in the database. As usual, we disre- For a component size ratioof at least two, the number
gard the non-leaf levels of the*Brees here. Assume all of block accesses is bounded by
record versions fit olock;,, leaf nodes, including space- 4
fragmentation overhead. We assume a LHAM structure withblock,ccesses < blockios (k:(2 +r)+1+) . (5)

k components on disk, a component size ratie,dfetween s

componentsC;_; and C;, ro being the size of component As an example, consider again the stock portfolio sce-
Co in blocks. Letl; denote the number of rolling merges nario presented in the introduction. We assume the insertion
taking place between componeidts_; andC; until all data of 604,800,000 record versions of 48 bytes each into LHAM,
is inserted and finally migrated to archive compon€pti, representing a constant insertion rate of 1000 record versions
and let ¥s be the space overhead for redundancy in com-per second over a 7-day period, and a total size of 28 GB
ponentC), with respect to the total size of all non-archive of data. Assume that we use two disk components. Main-

3=0

componentg’y, ..., C,. We obtain for the total number of memory componenty has a size of 144 MB(; has 2 GB
accessed blockslockccesses: andC, has 28 GB. This translates into a component size ra-
blockaccesses = 11(ro + ror1) + la(2rory + rorira) + . .. tio of 14. Assuming the placement of two orders for each
ko1 X A portfolio per day on average, we obtain an overhead ratio
, ‘ A for storing redundant data in componefit of 1/(2 x 7).
*l (211 ”+11r1> * e (41”) As we have about 31 GB of data online, this leads to an
Z‘ - ” additional space requirement of 2.2 GB for redundant data
2 k. on disk. With about 3,500,000 blocks of 8 KB size to in-
+Hp1 ;ZHH (1) sert, according to Eq.(5), we need less than 115,900,000
j=0 i=0 block accesses for data migration, including 1,000,000 block

Note that for emptying compone@b, no I/O is required, accesses for redundant data, which is obviously negligi-
which leads to the termr§ + rory) rather than (2o + rory). ble. Note that these numbers represent the number of block
Further note that, on average, all other components are 50%ccesses needed to insert record versions into an already
full, so that the second summand of the above term is infully populated database, i.e., containing the data of the past
deedrory rather than 2yr;. The same holds for the subse- days. Inserts into an empty database would cause even less
quent terms. For the final migration to archive media, theblock accesses. With a TSB-tree, on the other hand, we esti-
data is only read from component, and written to the ~mate 1,209,600,000 block accesses for inserting 604,800,000
archive component. The last term represents the block adecord versions, 2 block accesses per insert. So the cost of
cesses needed to read and write the redundant record vefe TSB-tree is more than ten times higher than the cost
sions inCy. As discussed in Sect. 2.2, redundant records o0f LHAM, not even considering the additional gain from
C}, are not accessed M1 . The numbet, of roling ~ LHAM's multi-block 1/0.
merges taking place between componefits; and C; is

given by)) .
i 3.2 Average-case cost of key-timepoint queries
Li = blockior/ Hrj ' (@) n this subsection, we derive a mathematical model for the
J=0 average-case performance of key/timepoint queries in terms
By substituting Eq. 2 into Eq. 1, we obtain of their expected number of block accesses. Recall that the
k worst-case performance of such queries can degrade because
blockgecesses = blocksot <2k +1 +Z”> of the non-redundant partitioning of the time dimension be-
=1 tween disk components. A time-travel query for a given key

. anc_i timepoint woulld first.be directed to the component into
" 2 Z H ' 3) which the query’s timepoint falls, but if the component does
ki , il not contain an older or exact-match version for this key, the
search will have to be extended into the older components
In order to tune the component capacity ratigswe until a version is found or the oldest disk component has
adopt the procedure of [OCGO96]. For the sake of sim-been searched. However, we expect this worst case behav-
plicity, we assume the redundancy overhead to be constanbr to be infrequent. Rather, we would usually expect that a
instead of depending on the component size ratios, and asey/timepoint query needs to look up only one or, at worst,
sume that the main memory available for comporE&nand two components. To verify these expectations, we have de-
the size of the last disk compone6Y, are already fixed. veloped the following analytical average-case cost model,
[OCGO096] shows that under these assumptions, the numbemd we have also addressed this issue in our experimental
of blocks accessed is minimized if all component size ra-studies reported in Sect. 7. Although the worst-case versus
tios r; are equal to a constant value Substituting all-; of average-case consideration is an issue also for queries with
Eq. (3) byr, we obtain key ranges or time ranges, we concentrate on point queries,

7=0 =0

206 P. Muth et al.: The LHAM log-structured history data access method

as they already capture the essence of the problem. Our akey x that have been created within tim&; , is Poisson

alytical model could be extended to range queries, but thiglistributed with parameter\; , * A/m (i.e., the length of

is not elaborated here. For tractability of the analysis, wethe time interval multiplied by the update rate for key,

assume that no rolling merge is in progress while the quenand the probability that at least one version fohas been

executes. created within4; ; is 1 minus the probability that no such
We concentrate on the main-memory comporntind version exists. We abbreviate this probability;as:

the k disk componentg’; throughC},, assuming fixed com- . _

ponent sizesq throughcy, in terms of allocated blocks with Pi-t == P [most recent version of w preceding t

a geometric size ratio so thatc;, = co * r*. For simplicity, has been created after low]

we assume that record versions are of fixed size, so thatthe _ 1 _ ,-24.. (8)

block sizes of components can be directly translated into the

numbers of record versions that can reside in a component, This consideration can be generalized, leading us to the

vo throughvy, by multiplying thec; values with the num- probability that the most recent version efthat precedes

ber of record versions per block. The entire LHAM databasetime ¢ resides in componer®; with k£ > j > i

is assumed to contaim different keys, and we further as-

sume that all operations are logical updates of existing keysi:t =’ [most recent version of x preceding t

i.e., insertions of new versions for already existing keys. has been created between low; and high;)
This simplifying restriction is justified by the observation = P [at least one version for x in A;]
that most real-life applications (e.g., data warehouses) are i1
dominated by logical updates rather than logical insertions . .
of new keys.yThg upda?e operations are ass%med to be uni- * 1__[P Inoversion for win Ayl) + (1=pi)
formly distributed across at keys. ueed

The final assumption that we make for tractability of A i1 aa _aa,
the cost analysis is that logical updates arrive accordingtoa = (1—¢e ™77) * (H emar) x emm St (9)
Poisson process, a standard assumption in many performance p=i+l

analyses that is justified whenever the operations are submit- Aq the next step, we can now easily compute the proba-

ted from a large number of independent sources (e.9., Phongjity that the query for timepoint needs to search com-
calls). The arrival rate of this Poisson process is denotedyqnents, with 1< » < k — i + 1, namely

A; thus, the interarrival time between two successive update

operations is exponentially distributed with mean valyg.1 P [query for time t between low; and high,;

Since Poisson processes that are split into several branches ,,ceds to search z components]

are again Poisson processes, the uniform selection of keys _ (10)

for updates leads to an exponentially distributed time be- Pirz—tt -

tween successive updates of the same key with mean value Since we are not particularly interested in a specific time-

m/. point ¢, we should now consideras a random variable that
From the given component sizeg throughv, and the varies across the total timespah.;,; of all components.

exponentially distributed interarrival times, we can now infer We assume that is uniformly distributed within the time

the expected timespan that is covered by a component. Thigterval under consideration. Thus, as long as we restrict

timespanAo = higho — lowo (With higho = now) covered to fall into the timespan of”;, we obtain the probability

by Co is implicitly given by the constraint that the total for having to searchx components, averaged over all such

number of versions created in timé,, which is given by queries, as

Ap=x A, must fit into the capacity, of the component; hence, o)

Ao * A = v, or equivalently:Ag = vo/\. By the same token 4i.z := P [a random query initially directed

we derive the general equation to C; needs to search z components]
A; = high; — low; = v /A =r"xvg/\ . (6) _ / e e [T dt (11)
Thus, the total timespan covered by the non-archive com- low; ~1Wghi — LoW;

ponents of the LHAM database is where the first factor in the integral accounts for the uniform
k k distribution oft within the timespan o€’;. With ¢ uniformly

Avorar = highg — lowy, = Z A; = vo Z rt varying acrossi;.:q;, the geometric ratio of the component
=0 A =0 sizes incurs a skew towards more queries directed to older

vo 1—rh* and larger components. This effect is taken into account by

N 1o @) the geometrically increasing _factorzsi/Atot_al and corre-
sponding integration ranges in the following sum of inte-

Now consider a key-timepoint query for randomly chosengrals:

key x and timepoint that falls into the timespan af’;, i.e.,

low; < t < high;. We are interested in the probability that ¢- = P [a random query needs

this point query finds a version for keythat is no younger to search z components]

thant and resides ir; itself, i.e., a version that must have k

been created betweéow; andt. Denote this relevant time = Z A Qs

interval by A; ; = t — low;. The number of versions for = Atotal

P. Muth et al.: The LHAM log-structured history data access method 207

“Pitz—1,t dt). (12) cost of 1.123 block accesses per query. For random queries

high; 1 1.43, and 1, respectively, resulting in an overall expected
/l high; — low;

k
_ A;
- ;(Atotal

ow;

that are initially directed t@’y, i.e., those that are most likely
Finally, the expectation value of the number of compo-to be penalized, the probabilities of having to search 1, 2,
nents that need to be searched by a random key-timepoird components are 0.213, 0.524, 0.081, respectively. In other

query is derived as words, the vast majority of queries has to search at most two
components, even under the rather unfavorable condition in
E [number of components to be searched our scenario that th€ size is fairly small in comparison to
by a random query] the number of different keys. For queries to current versions,
k+1 i.e., queries whose time parameter‘mow” , the expected
= quz] (13) number of components to be searched is 1.69Casloes
1 not require any disk 1/0, the expected number of disk block

So. by simpl bstituting th . . int accesses is even lower, namely, approximately 1.3. Overall,
th fp' I}:‘ S|mp|y SE stituting h e vadnoys éaxprelssmgsfm Othese figures are much more favorable than the worst case of
€ final formula above, we have derived a close Ormhaving to search all three components. With more and larger

for the average-case nhumber of components that need to tF()mponents, the expected cost for point queries would be
searched. Within each componéiit, the number of neces- eyen lower
e .

sary block accesses can be estimated as 1, since all levels
the component’'s Btree except the leaf level are typically
cached in memory and we are considering point queries (i.e.4
need to access only a single leaf node). So formula 13 gives
also the expected number of block accesses for a rando
point query.

An interesting special case of the considered class o[ﬁ|1

Implementation of LHAM

M1 System architecture

key-timepoint queries are those queries where the specifie HAM has been fully implemented in C on SUN Solaris. As
y p q 9 P e rolling merges between different components can be ex-

timepoint is the current timénow , 1.€., queries that are ecuted in parallel, but need careful synchronization to guar-
interested in the most recent version for a given key. The

expected number of components to be searched. and th antee consistency of data, we have decided to implement
P P ’ Hem as Solaris threads. Threads communicate by shared

the expected number of .bk.)Ck accesses, can be derived fr.o%riables and are synchronized by semaphores of the thread
our more general analysis in a stralghtforwgrd manner. W'.tnibrary. Figure 4 shows the overall LHAM architecture. Each

t = now we know that the component to which the search 'Srolling merge is implemented by four threads, as indicated
initially dlrec'ged isCo, and the query’s timepoint is always by the small shaded boxes in Fig. 2 and explained in detail
identical tohigho. Then the average cost for such a query; yoe eyt subsection. Queries are implemented by separate
is obtained by specializing formula 11 in that we Cons'derthreads for each component that is accessed. An additional

only do,= and SUbSt.'tUte in formula 9 byhigho. Then the thread performs the insertion of new data into component
summation according to formula 12 becomes obsolete, an

. . . .o 0-
we can directly substitute into formula 13, thus arriving at Data read from disk is cached by LHAM in two kinds of

E [number of components to be searched buffers. Single-block buffers cache index nodes dftiees
and leaf nodes if read by single-block 1/Os, i.e., by queries.

by a query with random key and time = now ;
yaquery Y] For leaf nodes of Btrees accessed by rolling merges or by

k+1

_) range queries, multi-block buffers are read and written by
- quovz[t/ higho] , (14 multi-block 1/Os. The buffer replacement strategy for both
=t buffers is LRU.

whereqo .[t/highg] denotesy , with ¢ substituted byighy.

As an example, consider an LHAM configuration with
one memory componeiil, two disk component§’; andC, 4.2 Inserts and rolling merges
(i.e., k = 2) with record versions of length 300 bytes, a block
size of 8KB and component sizes = 8 MB, ¢; = 32 MB, Figure 5 shows two component§ andC;.4, with a rolling
c; = 128 MB (i.e., a size ratio of = 4), which translate merge currently migrating data frodi; to C;+;. During an
into the following approximate number of record versions in ongoing rolling merge, both the source and the destination
each of the three componenig; = 25 000, v; = 100,000, component consist of two ‘Btrees, anremptying treeand a
vz = 400,000. We have chosen these particular figures adilling tree. The emptying trees of both components are the
they closely match those of our experiments in Sect. 7. TheB*-trees that exist at the time when the rolling merge starts.
LHAM database containg: = 50,000 different keys, and The filling trees are created at that time.
we assume that it has been populated with an update rate To perform the migration from an emptying to a filling
of A = 50 updates per second; so each key has received aree, a separate thread is assigned to each traeirgoris
update every 1000s on average. The timespans covered hjrculating in key followed by timestamp order through the
the three components then afg = 500s,4; =2000s, and leaf level of the emptying and filling trees of componefits
A, =8000s. With these figures, we can derive the expecteédnd C;.1, as depicted in Fig. 5. In each step of the rolling
number of block accesses for a random key-timepoint querynerge, the record versions coming from the emptying trees
whose time parameter lies in componéfgt Cq, C> as 1.89, are inspected. If a record version of the emptying tree is

208 P. Muth et al.: The LHAM log-structured history data access method

Quer\ threads Rolling merge Lhre 1ds Insert thread

o e o v e
| {
Single block BuHer]

| T T
i | Multi block Buffer ~ ———

| 1 | . O A T
—— — Main Memory for C
S ‘ y 0 ‘
& \% % - :

Components Cks1 - Cp Cy C; Cy

Fig. 4. LHAM architecture

Filling trees (written to disk) Emptying trees (read from disk)
i /C)Hx oo young /C:l& TR
T - A
e @ i = N G
— oo O] o / S S SOl
= A i

Write cursor old enough Read cursor

[=
q)/ HC_J %_ Cisg

i = =l = E

Write cursor Read cursor

Fig. 5. Rolling merge in LHAM

younger than the migration time;, it is moved to the filling sible situations. In Fig. 6a, the rolling merdge\/;_,,; was
tree ofC;. The cursor of the emptying tree 0f is advanced first, in Fig. 6b, RM; ;.1 was first and has later been joined
to the next record version. If it is decided to migrate theby RM;_;,;. The shared trees are indicated in the figure by
record version, the version is compared, based on its keyhe larger boxes. They are used as both filling and emptying
and timestamp, with the next record version of the emptyingtrees.
tree of C;+1. The smallest of both record versions is moved A problem arises if the cursors of both rolling merges
to the filling tree ofCy+1 and the corresponding cursor is point to the same record version. This means that the shared
advanced. tree became empty. In this case, the rolling merge that emp-
Each time the cursor advances past the last record veties the shared tree has to wait for the other rolling merge
sion of a multi-block, the next multi-block is read from disk to fill the tree with some record versions again. Assume
by performing a multi-block I/0. The emptied multi-block RM,; ;+; waits for RM;_1,;. On averageRM; ;+1 has to
is returned to free-space management. When a multi-blocko throughr records inC;., before it consumes a record
buffer of a filling tree becomes full, a multi-block I/O is in C;. RM,_1,; is much faster in producing new records
issued to write it to disk. A new multi-block is requested for C;, as C;_; is smaller thanC;, again by a factor of
from free-space management. So free blocks are dynami=. Hence, the assumed blocking &M, ;41 by RM;_1/;
cally transferred within and, if possible, also among com-rarely occurs. However, the opposite situation, i&V/;_1/;
ponents. The entire rolling-merge process terminates whewaits for RM; 41, is highly likely to occur. It is depicted in
both emptying trees become empty. Fig. 6b. Assume that the shared tree becomes empty. In order
Using multi-block I/O significantly reduces operating- not to block RM;_;; until RM; ;.1 produces new records,
system overhead, as less I/O operations are issued, and ale@ allow RM;_;/; to passRM;,;+1. The goal of passing
reduces disk overhead in terms of seeks and rotational dés to change trees betwedt\/;_,; and RM; ;1 until we
lays. Even with modern disks using track read-ahead andhave a situation as shown in Fig. 6a, allowing both rolling
caches for both reads and writes, the benefit of multi-blockmerges to continue. Without passing, both rolling merges
I/O is significant. We have measured a speedup of 2 fowould continue at the same speed, which is not acceptable
LHAM when using multi-block 1/0Os of four blocks per I/O for RM;_; ;.
operation in our system (see Sect. 7). Passing is implemented by logically exchanging the trees
Rolling merges have to be synchronized when they op-between rolling merges as shown in Fig. 7.
erate on the same component in parallel. This is the most All trees in components”;_; and C;+1 remain unaf-
complex situation in LHAM but very common, as empty- fected by passing. In the following, we discuss the passing
ing a component usually takes a long time and it must beprocess on a conceptual level. One can view the emptying
possible to migrate data into it in parallel. Instead of creat-and the filling trees inside a component as a single “con-
ing different sets of emptying and filling trees, two rolling ceptual tree”, as the various trees cover adjacent intervals
merges share a tree in the jointly accessed component. Thaf the record-version space ordered by key and time. The
tree chosen depends on which of the rolling merges was firstolling-merge cursors define these intervals, i.e., they define
in accessing the shared component. Figure 6 shows both potlie trees. We start in the upper left part of Fig. 7, with the

P. Muth et al.: The LHAM log-structured history data access method 209

(filling j.1i_J=<—{_cmptyingi1;) (filling; 1 J={emptyingi.ii) Cii
RMi-1/i RMi-1/i
gy JeCempyingi) | (Clilling,1s ilinginel G
RMiri+1 RMiri+1
(fillingyiy, J=<{_emptying /a1) (fillingyis1) emptyingidi Cil
a b

Fig. 6. Joining of rolling mergesa RM; ;41 joining RM;_1/;, 0 RM;_1,; joining RM; /541

(_filling; i 3« emptying; ;) (__fillingj.;; J«{__cmptying; ;) Ci1
RMi-1/i RMi-1/i
] (fillng__ W emptyin G
RMifi+1 RMisi+1

(_fillingje) J=<{__emptying s () filling s,)= emptyingiz1) Cit1

(filling_y4 « emptying; i) Cii

RMi-1/i
- 3= {emptying;.1;i] G
RMifi+1 /

(_fillingjs J=<—{__emptying/is] Cirl

Fig. 7. RM;_1/; passingRM; ;;+1

cursors pointing to the same record version, i.e., the shared A concurrent execution of inserts and queries may cause
tree being empty. This triggers passing. Next, the rolling-rolling merges and queries to access a component at the
merge cursor ofRM,_,,; advances into the emptying tree same time. Our approach to ensure good query performance
of RM; ;.1 and the original emptying tree aRM;_1; is is to prioritize disk accesses of queries over disk accesses by
virtually deleted as shown in the upper right part of Fig. 7. rolling merges. Rolling merges can be suspended whenever
If RM;_,,; is still faster thanRM; .1, the rolling-merge they finish the processing of a multi-block of the emptying
cursor of RM;_1,; passes the cursor dtM; .1, they do tree of the destination component, providing a fine disk-
no longer point to the same record version, and a new trescheduling granule.

is virtually created (in the actual implementation, the empty

emptying tree is reused). This is shown in the lower part of

Fig. 7. We now have exactly the same situation as showrb Concurrency control and recovery

in Fig. 6a. RM;_,,; can continue without waiting for new

records fromRM; /1. Concurrency control and recovery issues in LHAM depend
on the type of component involved. The main-memory com-
ponentCy, the disk component€’; to Ci, and the archive
componentsCy+1 to C,, have different requirements. For
component’y, inserts have to be made atomic and durable,
and inserts have to be synchronized with queries. For the
All queries are first split into subqueries according to theother components, we do not have to deal with insertions of
components that need to be accessed. Each subquery is imew data, but only with the migration of existing data, which
plemented by a separate thread (see again Fig. 4). In princimakes concurrency control and recovery easier. Except for
ple, all subqueries can be executed in parallel. This schemthe first archive component.;, all archive components
would have the best response time, but may execute som@re static in terms of the records they store and in terms
subqueries unnecessarily. Consider, for example, a quergf their time boundaries. For them, concurrency control and
which retrieves the most recent version of a record withrecovery are not required.

a given key. It is possible that this version has already been

migrated to the last (disk) component. In this case, all (disk)

components have to be accessed to find the most recent ves:1 Concurrency control

sion of the record. However, recent record versions will most

likely be found in recent components. So accessing only th&\e assume transactional predicate locking on key ranges and
main-memory component, could be sufficient in many time ranges on top of LHAM. Conflict testing involves test-
cases. Hence, for overall throughput it is best to execute thing two-dimensional intervals for disjointness, which is not
subqueries sequentially and stop further execution of subhard to implement and does not incur tremendous run-time
gueries as soon as the query result is complete. The perfopverhead either. As an optimization, it would nevertheless
mance results presented in Sect. 7 are obtained based on thie desirable to leverage advanced low-overhead implemen-
execution strategy. tation tricks along the lines of what [GR93, Moh96, Lom93,

4.3 Execution of queries

210

KMH97] have developed mostly for single-dimensional in-
dexes, but this would a subject of future research. Concur-
rency control inside LHAM only has to guarantee consistent
access to records (i.e., short-duration locking or latching).
This includes records under migration between components
We discuss concurrency control issues for each type of com-
ponent separately.

1.

. Disk component€’; to Cy,.

P. Muth et al.: The LHAM log-structured history data access method

during query execution. Short-term latches on the cor-
responding data structure in the global LHAM directory
are sufficient to correctly cope with these issues.
3. Archive component§'+; to C,,.
" Records are not migrated between archive components.
Instead, the archive grows by creating a new archive
component. In terms of concurrency control, an archive
component under creation is treated like a disk compo-
nent. All other archive components are static in terms of
their records as well as their time boundaries; so no con-
currency control is necessary here. Dropping an archive
component causes a change in the global LHAM direc-
tory, again protected by a short-term latch.

Main-memory componeidty.

Because no /O is taking place when accessipgthere

is little need for sophisticated concurrency control pro-
tocols. So standard locking protocols for the index struc-
ture used inCy can be employed, e.g., tree-locking pro-

tocols whenCj is organized as a tree [GR93, Moh96,

Lom93].

Synchronization issues among different rolling merges5'2 Recovery

that access a common disk component have alreadg_ ,) ,
been discussed in Sect. 4.2. The only problem left is imilar to the discussion of concurrency control above, we

to synchronize queries with concurrent rolling merges. distinguish between the main-memory component, the disk
Interleaved executions of rolling merges and queries aréoMPonents, and the archive components. We restrict our-
mandatory for achieving short query response times. aselves to crash recovery (i.e., system failures); media re-

query may have to access between one and three indésVery is orthogonal to LHAM. In general, we need to log
structures (B-trees in our case) inside a single compo- &/l changes to the global LHAM directory that are made

nent. As discussed in Sect. 4.2, these index structure¥henever a component's time boundaries are changed after
are emptied and filled in a given order according to flnlshlngla rolling merge. In agdmon, as we dlscgss below,
the records’ keys and timestamps. This suggest the follogging is necessary only for inserts into the main-memory

lowing order for accessing the index structures inside
component; queries have to look up emptying trees be—1
fore filling trees. Records under migration are not deleted ™
from emptying trees before they have been migrated into
the corresponding filling tree. This guarantees that no
records are missed by the query.

Short-term latches are sufficient to protect multi-blocks
that are currently filled by a rolling merge from access
by queries. Queries do not have to wait for these multi-
blocks to become available, they can safely skip them,
as they have already read the records stored there while
looking up the corresponding emptying tree. The only
drawback of this highly concurrent scheme is that a
record may be read twice by the same query, namely
in both the emptying and the filling tree. However, this
should occur very infrequently, and such duplicates can
easily be eliminated from the query result.

As discussed in Sect. 4.3, queries start with the most re-
cent component that could possibly hold a query match
and then continue accessing older components. During
query execution, time boundaries of components may
change as records migrate to older components. We have
to make sure that no query matches are missed because of
a concurrent change of boundaries (i.e., all components
containing possible matches are indeed looked up). A
change of the boundaries of the most recent component
accessed by a query may cause this component to not
intersect the query time-range anymore. This will not
affect the correctness of the query result, however. On
the other hand, a change of the boundaries of the oldest
component to be looked up (as determined at query star®.
time) may cause more components to intersect with the
guery time range. Hence, the oldest component that the
query needs to access must be determined dynamically

acomponen'Co.

Main-memory componeidy.

All newly inserted records are subject to conventional
logging, as employed by virtually all database systems.
As records inCy are never written to disk before they
are migrated to the first disk componenfy has to be
completely reconstructed during recovery. A§ only
consists of the most recent records, they will be found
in successive order on the log file, resulting in small re-
construction times. If necessary (e.g., wh&nis excep-
tionally large), the reconstruction time could be further
reduced by keeping a disk-resident backup file d&r

and lazily writing Cy blocks to that file whenever the
disk is idle (i.e., using a standard write-behind demon).
Then standard bookkeeping techniques (based on LSNs
and a dirty page list) [GR93] can be used to truncate the
log and minimize the”, recovery time.

After a record has been migrated to compon€ht it
must no longer be considered f6k recovery. This is
achieved by looking up the most recent record in compo-
nentC; before theCy recovery is started. Only younger
records have to be considered for reconstructirig
Even if the system crashed while a rolling merge from
Cp to C1 was performed, this approach can be used. In
this case, the most recent record in the filling tree of
C; is used to determine the oldest record that has to be
reinserted intaCy during recovery. During normal oper-
ation, theCy log file can be periodically truncated using
the same approach.

Disk component§’; to Cy.

No logging is necessary for migrating records during a
rolling merge. Only the creation of emptying and fill-
ing trees, the passing of rolling merges as discussed

P. Muth et al.: The LHAM log-structured history data access method 211

in Sect. 4.2, the deletion of trees, and changes to timéhat have a (key, timestamp) coordinate covered by its rect-

boundaries of components have to be logged. angle. Two types of nodes are distinguished: current nodes

In order to not lose records that were being migratedand historical nodes. Current nodes store current data, i.e.,

at the time of a crash, records are not physically deletedlata that is valid at the current time. All other nodes are

from emptying trees (i.e., their underlying blocks are notdenoted historical.

released back to the free-space management) before they As all data is inserted into current nodes, only current

have been migrated into the corresponding filling treenodes are subject to splits. Current nodes can be split either

and their newly allocated blocks are successfully writ- by key or by time. A record version is moved to the newly
ten to disk. So we use a careful replacement techniquereated node if its (key, timestamp) coordinates fall into

here [GR93] that allows us to correctly recover without the corresponding new rectangle. The split dimension, i.e.,

having to make a migration step an atomic event. Aswhether a split is performed by key or time, is determined by

a consequence, reconstructing the filling and emptyinga split policy. We have used théme-of-last-update (TLU)

trees during warm start may create redundant recordgolicy for all our experiments, which does a split by time

that will then be present in an emptying and in a filling unless there is no historical data in the node, and performs an
tree. The number of such redundant records is limitedadditional split by key if a node contains two thirds or more
by the size of a multi-block and thus negligible, as only of current data. The split time chosen for a split by time
records of a single multi-block per tree and rolling mergeis the time of the last update among all record versions in
have to be reconstructed. Hence, the duplicates can eathe node. The TLU policy achieves a good tradeoff between
ily be deleted after the trees have been recovered. At thepace consumption, i.e., the degree of redundancy of the
same time, looking up the oldest records of the filling TSB-tree, and query performance. This is shown in [LS90]
trees and the youngest records of the emptying trees alnd has been confirmed by our own experiments.

lows reconstructing the rolling-merge cursors as shown Figure 8 shows the rectangles representing the leaf nodes

in Fig. 5, and restarting the rolling merges after the com-of an example TSB-tree storing account values. The key

ponent structures have been reestablished. value min denotes the lower end of the key space. The

. lower left leaf node is identified byn{in, o), i.e., it con-

3. é;ccrgi;f ?(?rrrlﬂgnﬁpst?lgrlcaoiv?.compone .1 archive tains record versions with key min and timestamp> to.
components are not subject to recovery ’Analogouslylt is bounded in the key and time dlmen3|on by theT adjacent
to concurrency control, the first archive éomponent jgodes ('hris, to) and (nin, t1o), respectively, meaning that
treated like a disk comi)onent it _does_not contain record versions with key Chris or

' with a timestamp> t1o. Leaf nodes Dave, tg), (Chris, tg)

In summary, concurrency control and recovery in LHAM and (nin, t10) are current nodes, since they contain record
are relatively straightforward and very efficient. We either Versions being valid at current time. All other nodes are
use conventional algorithms, e.g., for logging incoming data historical nodes. Note that the two dots @dve, t9) and
or very Simp]e schemes, e.g., for Synchronizing querie-\;(Alel‘,tlo) represent redundant entries due to SP'itS of cur-
and rolling merges. In particular, migrating data by rolling rent nodes. The entryl{ave, t9, 80) has to be copied to the
merges does not require migrated data to be |ogged Onlgurrent node since it is valid at both times being covered by
changes to the LHAM directory require additional logging. historical node Dave, to) as well as current nodéXave, to).

This causes negligible overhead. We will discuss details of splitting below.
A non-leaf index node stores a set of index terms. An

index term is a triple consisting of a key, a timestamp, and a
6 The TSB-tree pointer to another index node or a leaf node. Like the open
rectangle defined for each leaf node, an index term also
The TSB-tree is a Btree-like index structure for transaction- covers an open rectangle, defined by key and timestamp as
time databases [LS89, LS90]. It indexes record versions irthe lower left corner. Other index terms with higher key or
two dimensions; one dimension is given by the conventionatimestamp bound this area. Index-node splitting is similar
record key, the other by the timestamp of the record versionto leaf-node splitting. We have again adopted the TLU split
Its goal is to provide good worst case efficiency for exactpolicy. For the subtle differences concerning restrictions on
match queries as well as range queries in both time dimenthe split value for time splits, the reader is referred to [LS89].
sion and key dimension. Figure 9 shows the TSB-tree indexing the data of Fig. 8.
We assume the capacity of all nodes being three entries,
i.e., each index node and leaf node has at most three in-
6.1 Nodes and node splits dex terms or record versions, respectively. The root node
points to index nodesn{in, tg) and (Dave, to), which con-
Basically, each leaf node covers a two-dimensional intervalfain entries for nodes that are covered by the corresponding
i.e., a rectangle in the data space, whose upper bounds atine and key range. Index nodex{n, to) contains entries for
initially open (i.e., are interpreted as infinity) in both dimen- leaf nodes vin, to), (min,ti0) and Chris,tg) since they
sions. A node is represented by a pair of key and timestamggontain record versions with a key valge min and with
defining the lower left corner of the rectangle that it covers.timestamp> to. All other leaf nodes are referenced by index
The area covered by a rectangle becomes bounded if themode QDave, to) as the keys of all record versions stored in
exists another leaf node with a higher key or time value aghe leaf nodes are greater than or equaDigve.
its lower left corner. A leaf node contains all record versions

212

P. Muth et al.: The LHAM log-structured history data access method

Key ‘
|
Eva 20 |0
Dave 30 80 50
Chris 35 50 I
Bill 60 10 5
|
Alex 100 e 150
<min> | - Time
o t b B3 4 5 g t7 tg fo tjp tg . _)
Time Fig. 8. Rectangles representing leaf
nodes of a TSB-tree
Kc_\'A
I <min>, ty Dave, t) I Eva 20 0
Dave 30 80 50
Chris 35 50
Bill 60 10 5
|<min>,lu I <min>.tm| Chris.tull Dave, | Dave, tg I Alex 100 150
<minz
/ / / o it 3t tste t7 tg to tip tig'
I Chris , t4. 35 IChris, t, 50 I IDave. 1380 IEv::. 19,0 l Dave, ;1 50 | ‘
Key
Eva 20 I|]
I Alex, r|_1!=0l Bill, tjg,5 I Alex, tyy, ISﬂI Dave 30 80 b 50
I‘\Ic.‘;,ll_l[bﬂ |Bil|, |3_5[1| Bill, |3_|n| I Eva, ty, 1n| Dave, |_<_3n| Dave, |H_xn| s 35 —50 7777 ||
Bill 60 10 5
Alex 100 l‘ 150
<minz
tp tp t2 t3 4 15 tg 17 tg to typ lllzm

Fig. 9. TSB-tree nodes and covered rectangles

6.2 Searching A similar algorithm is used for range queries. Instead of
following a single index term while descending the tree, a
set of index terms to follow is determined.

Because of the redundancy employed in the TSB-tree,

Searching in TSB-trees can be viewed as an extension t§'€ WOrst case performance of queries is logarithmic in the
the search procedure forBrees. Assume we are searching number of rec;ord versions stored (mgludlng the redundant
for a record version(¢) with key k and timestamp. At ones). T_here is no guara_mte_ed cI_ustermg across pages, how-
each level of the tree, the algorithm first discards all index€Ve": neither in key nor in time dimension.

terms with a timestamp greater tharWithin the remaining

terms it follows the index term with the maximum key value

being smaller than or equal to kéyThis process recursively

descends in the tree and terminates when a leaf node i Performance measurements

found.

In the example of Fig. 9, looking for the balance of
Ewva’s account as of timeg is done as follows. Starting at
the root, node the two index termsi{n, tg) and (Dave, tg)
have to be examined. APave is the maximum key value
less thanEwa, the algorithm follows the pointer of index

In this section, we present experimental performance results
from our implementation of LHAM. The results are com-
pared with the analytical expectations for the insert costs.
In addition, we compare LHAM with our implementation of
term (Dave, tp). At the index node, the termiave, tg) is the TSB-tree, considering both insert and query performance.
discarded because its timestamp is greater thand thus Note that all experimental results are obtained from complete
it does not contain relevant data. So the algorithm followsand fully functional implementations of both LHAM and the
entry (Dave, tg) and finally returns Eva, t,, 20), indicating TSB-tree, as opposed to simulation experiments. Therefore,
that the account oFva was updated to 20 at time and we are able to compare actual throughput numbers based on
was not changed untik. real-time measurements.

P. Muth et al.: The LHAM log-structured history data access method 213

7.1 Experimental results record versions per second, and the average number of block

)) accesses per inserted record version.
Our testbed consists of a load driver that generates syn- Tgpe 1 lists these values for both LHAM and the TSB-

thetic data and queries, and the actual implementations ofee, plus other detailed results. The table shows that LHAM
LHAM and the TSB-tree. All measurements were run on agperforms the TSB-tree in every respect. As the structure
Sun Enterprise Server 4OOO.un(Ijer .Solans 2.51. CPU utilizags | HAM is independent of the logical insert/update ratio,
tion was generally very low, indicating a low CPU overhead e (o not distinguish different ratios for LHAM. Using eight
of L_HAM. LHAM did not nearly utilize t.he full capacity of _blocks per multi-block 1/0, the throughput of LHAM was
a single processor of the SMP machine. Thus, we restrichways more than six times higher than the throughput of
ourselves to reporting /0 and throughput figures. Our eX-the TSB-tree. The benefits of using even larger multi-blocks
periments consist of two parts. In the first part, we investigat&yere small. Additional experiments showed that this is due

the insert performance by creating and populating databasgg |imjtations in the operating system, which probably splits
with different parameter settings. Migrations to archive COM-|arger 1/0s into multiple requests.

ponents were not considered. As discussed in the analysis of “The plock accesses required by LHAM and the TSB-
LHAM's insert costs, the effect of archive components onee match our analytical expectations very well. To store
the insert .p(.arformance in terms of redundancy is expected oo MB of data, we need at least 15,000 blocks of 8 KB.
to be negligible. In the second part of our experiments, Wesing formula 5 and disregarding the terms for the migra-
measure the pgarformance of queries against the databasgsy, io archive media, we expect LHAM to need 180,000
created in the first part. block accesses for inserting the data. In reality, LHAM needs
185,905 block accesses. To further confirm this behavior,
we have run additional experiments with a larger number of
smaller components, leading to more rolling merges. These
In all experiments, we have inserted 400,000 record verexperiments have reconfirmed our findings and are omit-
sions. The size of record versions was uniformly distributedted for lack of space. The TSB-tree was expected to need
between 100 bytes and 500 bytes. This results in 120 MB ofibout 800,000 block accesses for inserting 400,000 record
raw data. The size of a disk block was 8 KB in all exper- versions if no node buffer were used. In reality, the experi-
iments, for LHAM and the TSB-tree. We used an LHAM ments show that with 10 MB of buffer for 120 MB of data,
structure of three components with a capacity ratio of 4;we need about 600,000 block accesses, depending on the
component capacities were 8 MB 6, 32 MB for C1, and ratio between logical inserts and updates.

128 MB for C». Both disk components resided on the same LHAM consumed significantly less space than the TSB-
physical disk. We used a buffer of 1 MB for blocks read in tree. The total capacity of the three LHAM components was
a multi-block I/O and a buffer of 1 MB for single blocks. 168 MB, but only 122 MB were actually used. This is the
This results in a total of 10 MB main memory for LHAM. benefit of the almost perfect space utilization by LHAM,
For fair comparison, the TSB-tree measurements were pebased on building the Btrees inside the components in a
formed with the same total amount of main memory as abulk manner without the need for splitting leaf nodes. The
node buffer. For LHAM, we have varied the number of disk TSB-tree, on the other hand, consumed between 275 MB and
blocks written per multi-block 1/0, in order to measure the 313 MB, again depending on the logical insert/update ratio.
impact of multi-block 1/0 on the insert performance. The space overhead of the TSB-tree is caused by redundant

We are fully aware of the fact that this data volume record versions and by a lower node utilization due to node
merely constitutes a “toy database”. Given the limitations ofsplits, similar to conventional Btrees. Note however that
an academic research lab, we wanted to ensure that all ekeeping redundant record versions is an inherent property of
periments were run with dedicated resources in a controlledhe TSB-tree, which is necessary for its good query perfor-
essentially reproducible manner. However, our experimentsnance, particularly its logarithmic worst case efficiency.
allow us to draw conclusions on the average-case behavior
of both index structures investigated. From a practical point
of view, these results are more important than an analytic/-1.2 Queries
worst case analysis, which is independent of the parameters . . .
and limitations of actual experiments, but provides only lim- We have investigated the performance of four different types
ited insights into the performance of real-life applications. Of queries:

The structure of the TSB-tree depgnds on the ra_tio be-q < key, timepoint >,
tween _Ioglcal insert and update operations. AII.expenmentsZ' < keyrange, timepoint >,
start with 50,000-record versions and a logical insert/updateg _ key, timerange >, and
ratio of 90% to initialize the database. For the remain- 4 < key;"ange timera;lge >.
ing 350,000-record versions, the logical insert/update ratio ’
is varied from 10% inserts up to 90% inserts. Keys were For < key, timepoint > queries we have further distin-
uniformly distributed over a given interval. Logical dele- guished between queries with timepointaw (i.e., the cur-
tions were not considered. The load driver generated recordent time) and queries with a randomly chosen timepoint. We
versions for insertion as fast as possible; so the measuredsed the databases as described in the previous sections, i.e.,
throughput was indeed limited only by the performance 0f400,000 record versions with different logical insert/update
the index structure. The most important performance metyatios. In contrast to the insert performance, the query per-
rics reported below are the throughput in terms of insertedormance of LHAM is affected by the logical insert/update

7.1.1 Performance of inserts

214 P. Muth et al.: The LHAM log-structured history data access method

2
5 LHAM
o
B
13 L e TSB-tree
Z
8
E
v Percentage of inserts
3
= 0
* 10 20 30 40 50 60 70 80 90
- 100 Tt
1= et T
g 80 TSB-tree
5 60
o
8 40 LHAM
=
é 20 . Fig. 10. Performance of queries of type
Percentage of inserts . .
0 <key, timepoint=now
0 10 20 30 40 50 60 70 80 90
)
T LHAM
£ 2 e T
8 TSB-tree
5
Z
E]
3 0 Percentage of inserts
2
2 0 10 20 30 40 50 60 70 80 90
e —
g 57;8 TSB-tree
2 60 LHAM
5 50
= 40
330
é:; %g Fig. 11. Performance of queries of type
0 Percentage of inserts <key’ timepoint:random
0 10 20 30 40 50 60 70 80 90

ratio. We give results for the number of block accesses reber of approximately 1.3 block accesses for a random point
quired per query and the (single-user) throughput in queriegjuery with time parametetow. The actually measured fig-
per second. ure for 10% insertions is 1.37; so our analytical prediction
is reasonable. Finally, note that the absolute performance is
good anyway; so this query type is not a major performance
concern. In its lower chart, Fig. 10 shows the (single-user)
throughput achieved by LHAM and the TSB-tree for this
Figure 10 shows in its upper chart the average number ofype of query. The curve in this chart is similar to the upper
block accesses for a query that searches the current versi®hart in Fig. 10, as LHAM cannot benefit from multi-block
of a given key, plotted against the ratio of logical inserts /O for this type of query.

vs. updates during the creation of the database. Because the The sjtuation changes when we consider arbitrary time-
TSB-tree can access a given version by reading a single legfoints instead of solely the current time. Figure 11 shows
node only, it requires one block access for a query of thisagain the block accesses required, and the throughput for
type. With the given buffer, index nodes can almost always< fey, timepoint > queries, but the timepoint is now uni-
be found in the buffer. LHAM needs more block accessesformly distributed over the interval from the oldest record
here, as no redundancy is used. If the current record versiogersion in the database tww. LHAM now performs almost

is found in componenCy, no I/0 is required. If it is found as good as the TSB-tree, because for older data, LHAM often
in C1, a single block access is sufficient. If a record has notheeds to access only componéht This effect has been pre-
been updated for a long time, it will be stored in componentgdicted with reasonable accuracy by our mathematical anal-
C>. This requires a lookup of’p, C1, andC> and requires ysijs in Sect. 3.2. There we derived an expected number of
two block accesses. For a high logical insert/update ratio, thig 123 block accesses for a random key-time point query,
will often be the case. Note, however, that we expect a typiwhereas the actually measured number is 1.15 (for 10% in-
cal temporal database application to have a rather low logicadertions).

insert/update ratio, say 10—20%, resulting in relatively many

versions per record. The case with 10% insertions is clos-

est to the update-only setting that we have mathematically

analyzed in Sect. 3.2. There we predicted an expected num-

Queries of type< key, timepoint >

P. Muth et al.: The LHAM log-structured history data access method 215

Table 1. Insert performance

LHAM TSB-tree TSB-tree TSB-tree
10% inserts 50% inserts 90% inserts
Throughput (Inserts/s) 1/4/8 block(s) per I/O: 54.4 49.1 45.3
146.8 /1 304.9 / 348.4
Total number of 1/0s 1/4/8 block(s) per I/0: 597802 632587 623770
185905 / 46983 / 23663
#Blocks Read/Written 84920 / 100985 282100/ 325702 296551 /336036 292705 / 331065
#Blocks Accessed per Insert 0.46 1.49 1.58 1.56
Total Database Size (MB) 122 275 323 313
Component Sizes (MB) ColC11C5: 1/21/101 Current/Hist.DB: Current/Hist.DB: Current/Hist.DB:
64/211 148/175 192/121
-~
] 2100 -
3 R
S 1800
g 1500
2 1200 —
Z 900 LHAM
S 600 - TSB-tree
v 300 : .
E 0 Percentage of inserts
i 0 10 20 30 40 50 60 70 80 90
=) 0.240
s 0210 - LHAM 8 blocks per 1/0
Q 0.180 = =
5 0.150 Tl LHAM 4 blocks per 1/0
S 0120 Tl
R 0.090 =~ _ LHAM 1 block per I/O
8 0.060 - ___
< 0‘03(()) Percentage of inserts TSB-tree T
0 10 20 30 40 50 60 70 80 90
Fig. 12. Performance of queries of typekey range 10%, timepoint=naw
Queries of type< keyrange, timepoint > LHAM outperforms the TSB-tree even without multi-block
1/0.

The performance of keyrange, timepoint > queries with

a key range of 10% of all keys and a timepoint rafw

is shown in Fig. 12. Varying the width of the key range Queries of type< key, timerange >

has shown similar results, and choosing a random timepoint

rather thamow has yielded even better results for LHAM. Figure 13 shows the performance afkey, timerange >

For lack of space, we limit the presentation to one speciafueries with a time range of 50%. Varying the width of
setting. The results of LHAM are independent of the logical the time range has led to similar results, which are omitted
insert/update ratio. This is the case because LHAM has tdiere for lack of space. LHAM outperforms the TSB-tree in
access all blocks with keys in the given range in all (non-terms of block accesses per query as well as throughput for
archive) components. Note that the required block accessedll database settings. As LHAM stores all record versions
by LHAM do not depend on the number of components,with the same key in physical proximity, only one or two
but only on the total size of the (non-archive part of the) block accesses are needed for each query. In general, LHAM
database. LHAM benefits from multi-block 1/0, as shown by benefits from multi-block 1/O for this type of query. How-
the different throughput rates for different numbers of blocksever, with only one or two blocks read per query for the
per multi-block I/O in the lower chart of Fig. 12. The perfor- databases in our experiments, using multi-block I/O would
mance of the TSB-tree highly depends on the database chavaste some disk bandwidth. Keeping statistics about the data
sen. When the logical insert/update ratio is low, the currenwould enable us to make appropriate run-time decisions on
database is small and the number of required block accesse&#ngle-block vs. multi-block 1/Os.

is low. The higher the logical insert/update ratio, the larger

the current database and the more block accesses are needed.

Figure 12 shows that even with a small current database, th@ueries of type< keyrange, timerange >

throughput of the TSB-tree is lower than the throughput of

LHAM if multi-block 1/0O with 8 blocks per I/O is used. Finally, we consider the performance afkeyrange, time-
Note again that the TSB-tree is inherently unable to exploitrange > queries. Figure 14 shows the results for a key range
multi-block I/O in the same manner due to the absence obf 10% and a time range of 10%. The results are similar to
clustering across pages. When the current database is large, keyrange, timestamp > queries as shown in Fig. 12.

216 P. Muth et al.: The LHAM log-structured history data access method

TSB-tree Te-aL

LHAM

Percentage of inserts

S = N W Rk O
1
'
'
i
'

Block accesses per query

10 20 30 40 50 60 70 80 90

(=]

60
50 LHAM
40
30 e
20 TSB—tree_ ______________________ -
wo| 0 oSSt

0

Queries per second

Percentage of inserts

0 10 20 30 40 50 60 70 80 90

Fig. 13. Performance of queries of typekey, time range 50%

1200 LHAM .-

800 -
600 .- TSB-tree

200 Percentage of inserts

Block accesses per query

0 10 20 30 40 50 60 70 80 90

0.280 LHAM 8 blocks per T/O

s -l LHAM 4 blocks per 1/0
0.120 R LHAM 1 block per I/O

0.080 T TSBwee T
TSB-tree " T T T m-- -

Queries per second
=)
=
S
'
:
.
:

0.040 Percentage of inserts

0 10 20 30 40 50 60 70 80 90
Fig. 14. Performance of queries of typekey range 10%, time range 10%

Again, similar results have been obtained for other settings In our current implementation, rolling merges are initi-

of the range widths. ated when the amount of data stored in a component reaches
a fixed threshold. In a multi-user environment, it would be
beneficial to invoke rolling merge multi-block I/Os when-
ever the disk would be idle, even if the threshold is not yet

7.1.3 Multi-user performance
uit-u P reached.

We have also performed experiments with queries and in-
serts (and rolling merges), running concurrently. By prior-
itizing queries over rolling merges, query performance re-
mained almost unaffected by concurrent rolling merges. The

insert throughput, on the other hand, is adversely affected HAM’'s major strength, as evidenced by the presented ex-
only when the system becomes overloaded. An overload ocperiments, is its high throughput for insertions and record
curs if the data rate of incoming data becomes higher thampdates. Even without multi-block I/O, LHAM outperforms
the data rate that can be sustained by the rolling mergestandard index trees like the TSB-tree by a factor of 3; with
in the presence of concurrent queries. Thus, the expecteahulti-block I/O, the measured gain exceeded a factor of 6.
query load must be taken into account when configuring theNote that it is LHAM’s specific approach of using rolling
system. Insert costs as analyzed in Sect. 3 determine the I/@erges, similar to bulk-loading techniques for index struc-
bandwidth, i.e., the number of disks, necessary to sustain theires, that provides the opportunity for multi-block 1/Os;
insert load. Additional disks are required for the the querysuch opportunities are usually absent in conventional index
load. structures.

7.2 Discussion

P. Muth et al.: The LHAM log-structured history data access method 217

As for queries, our experiments have shown that LHAM LHAM could be configured with non-redundant partitioning
is competitive to one of the best known index structuresfor archive components as well.
for transaction-time temporal data, the TSB-tree. For exact-
match queries with a given key and timepoint, the TSB-
tree still has an advantage over LHAM, but the conceivably8 Comparison to similar approaches
worst case that LHAM needs to search all (non-archive)
components is atypical. Rather the experiments have showm this section, we discuss two approaches for the bulk
that LHAM is on average only 10—-30% slower than the TSB-loading of index structures which use techniques similar to
tree, which nicely coincides with our analytical predictions LHAM.

(see Sect. 3.2).

For time-range queries with a given key, i.e., so-called
“time-travel” queries, LHAM even outperforms the TSB-tree 8.1 Stepped merge
by a significant margin, because its rolling merges provide
for better clustering of a key’s record versions across mul-{Jag97] presents a method for efficient insertion of non-
tiple blocks and LHAM can then intensively exploit multi- temporal, single-dimensional data into"-Bees. Similarly
block I/O for such queries. On the other hand, for key-rangeto LHAM, a continuous reorganization scheme is proposed,
queries with a given timepoint, LHAM loses this advantagebased onm-way merging. Like LHAM, incoming data is
and is outperformed by the TSB-tree when the average numstored in a main-memory buffer first. When this buffer be-
ber of versions per key becomes sufficiently high. comes full, it is written to disk, organized as &-Bee (alter-

A similar tradeoff situation has been observed in the ex-natively, a hash-based scheme is discussed in [Jag97], too).
periments for the most general query type with both keyThis is repeatedn times, each time creating a new, inde-
ranges and time ranges. Depending on the width of thependent B-tree. Figure 15 illustrates the further processing.
ranges and the average number of versions per key, LHAMAfter m B*-trees have been created, they are merged by
may still win but can also be outperformed by the TSB-treean m-way merge into a new Btree. N levels, each con-
under certain circumstances. Especially, when the numbesisting of m B*-trees, are considered. Eaelrway merge
of keys that fall into the query’s key range becomes smallmigrates the data to the next level. The final leelcon-
the TSB-tree is the clear winner. In the extreme case wheitains a single target Btree, denoted root Btree in [Jag97].
all matches to a key-range query reside in a single blockWheneverm B*-trees have been created at ledel 1, these
LHAM may have to pay the penalty of searching multiple m trees together with the root tree itself are merged by an
components, whereas the TSB-tree could almost always agm + 1)-way merge into a new root tree. For this merge, the
cess the qualifying versions in a single disk I/O. root B*-tree is both source and destination, as indicated by

Queries may be adversely affected by rolling merges. Inthe self-referencing arc in Fig. 15. The stepped-merge ap-
the worst case, a query may have to traverse three index treggoach supports the efficient insertion of data, but penalizes
within a single component, namely, the filling tree fed from queries heavily, as each query may have to look upvalin
the next higher storage level and an emptying and filling treecomponent trees.
for the rolling merge to the next lower level. However, this In terms of this approach, LHAM can be characterized as
extreme case can arise only when the query executes whilgerforming a two-way merge (of the stepped merge’s level-
two rolling merges across three consecutive components argV — 1)-to-leveldV kind) whenever data is migrated to the
in progress simultaneously. As LHAM generally aims to next component in the LHAM storage hierarchy. A rolling
trade a major improvement in insert/update performance fomerge from componenf; to componentC;.; reads both
a moderate potential degradation in query performance, thisomponents and writes back a new comportént. Similar
effect is not surprising. In the measurements performed withro the root B-tree of [Jag97], component;., is both source
concurrent updates, the adverse effects from ongoing rollingand destination of the merge. At each level of the LHAM
merges were rather small, however, so that this conceptualomponent hierarchy, only a single'#ee exists (unless a
penalty for queries appears acceptable. rolling merge is in progress, which creates temporary trees).

All our measurements have focused on the non-archive In contrast to [Jag97], LHAM components implement a
components. With archive components that are formed by repartitioning of the search space (with respect to the time
dundant partitioning, LHAM’s performance should remain dimension). In [Jag97], alV * m B*-trees may have over-
unaffected. However, its space overhead would drasticallyapping key ranges, whereas (memory and disk) components
increase, ultimately consuming considerably more spacén LHAM cover disjoint areas in key-time space. Depending
than the TSB-tree. Note, however, that there is an inherenbn its time range, a query in LHAM needs to access only
space-time tradeoff in the indexing of versioned records andh few of the LHAM components, so that query execution
multi-dimensional data in general. We do advocate redunin LHAM is much more efficient. Furthermore, the stepped-
dant partitioning for archive components in LHAM mainly merge approach does not consider the time dimension at all,
to make these components “self-contained” in the sense thaind also disregards archiving issues.
they completely cover a given time period. This way, LHAM
can easily purge all versions for an “expired” time period by
discarding the appropriate components and the underlying.2 Buffer-tree-based bulk loading
WORM media or tapes. The same kind of “garbage collec-
tion” is not easily accomplished with a structure like the [BSW97] presents an approach for the bulk loading of multi-
TSB-tree. When this issue is considered less important, thedimensional index structures, e.g., R-trees. The basic idea

218 P. Muth et al.: The LHAM log-structured history data access method

LHAM: Stepped Merge:

OX
OX

m

1
@ Q- @
H \)/
a @ OX
® m-way merge
* m*N trees to search

* 2-way merge
* 2 trees to search

~aAY o
c’;@ level N

root Bt-tree Fig. 15. lllustration of LHAM
vs. stepped merge

x

Buffer Tree:

: Data
Data | Data |

Fig. 16. lllustration of a buffer tree

is to create unsorted sequences of records, where each ghat one would have to search the potentially large unsorted
guence covers a (multi-dimensional) range of the data spacgequences of records at the index levels of the buffer tree,
that is disjoint to the ranges covered by the other sequencesge., in the node buffers. While a query can easily navigate
A set of such record sequences is managed in a specighrough the buffer tree, the sequential search inside a node
balanced tree, the buffer tree, where each tree node cobuffer is expensive, as several disk blocks have to be read.
responds to a disk page but is extended with a multi-pagén contrast, LHAM provides substantially better query per-
disk-resident buffer (hence the name of the tree). Such &rmance.

buffer tree is sketched in Fig. 16; this data structure has

originally been introduced for batched dynamic operations

in computational geometry by [Arge95]. Incoming records 9 Extensions and generalizations of LHAM

are migrated through the buffer tree until they reach the leaf

level, which corresponds to the leaf level of the target index9.1 Tunable redundancy between disk components
structure to be built.

Similarly to LHAM and [Jag97], the efficient migration |n | HAM as presented in this paper, querying record ver-
of records is the key property. Incoming data is first insertedsjons that have not been updated for a long time may force
into the buffer of the root node. When the buffer becomesthe query to access several components until the record ver-
full, its data is partitioned according to the key ranges de-sjon is found. Both our analytical and experimental results
fined by the index nodes on the next lower level of the tree.have shown that this is not a severe prob|em under usual
This process is repeated until the leaf level is reached. A fullzonditions where most records are updated frequently. How-
buffer is read sequentially from disk, and the partitions for ever, in special applications with a high skew in the update
the next lower level of the tree are built in Working areas in rates of different recordsy query performance would be sus-
main memory. Whenever a working area becomes full, it isceptible to degradation. A solution is to store record ver-
appended to the corresponding lower level node buffer bysjons redundantly, like the TSB-tree. A record version that
a Single disk write. This way, all data is read and written is under migration from Componemi to ComponenCi+l
component stages of LHAM. timestamp happens to equal the new time boundary between

After all data has been mlgl’ated to the leaf |e\{e| of the(jZ and Ci+1)- During the next ro”ing merge, the redundant
buffer tree, the leaves of the bulk loader’s target index arerecord version is deleted frof; if there is a newer version
Completely built and the hlghel’ levels of the buffer tree areof the same record under migrationml. In this case, the
discarded. Then, a new buffer tree for building the nextredundant record version is replaced by the new one. Other-
higher index level of the target index structure is created.yise, it is kept in componerd;. So there is always at most
This process is repeated until the root of the target indeXone redundant version per component for the same key.
structure is built. As the approach of [BSW97] is intended The obvious caveat about this scheme is its increased
for bulk loading only, it disregards query performance until space consumption, as well as its increase in the number of
the target index structure is completely built. The problem);os during the rolling merges. For almost all keys, a redun-
with regard to queries against a buffer tree lies in the factyant version is stored in each component, and this version

P. Muth et al.: The LHAM log-structured history data access method 219

has to be read and written during rolling merges just like thedata should be read and written using multi-block 1/O, and
non-redundant record versions. On the other hand, we couldach block should be read and written only once during an
now guarantee that each key-timepoint query would have tentire rolling merge.
access only a single component. Using a TSB-tree, for example, the above properties can
The overhead introduced by the redundancy can be rebe satisfied only for current nodes. For historical nodes, there
duced if we drop the requirement that querying a singleis no scan order such that each node of the two source trees is
record version must access no more than a single compaead only once during a rolling merge. Obviously, this prob-
nent. Limiting the number of visited components to a smalllem can be addressed by buffering nodes during the rolling
constant would already avoid the worst case situation that anerges. Unfortunately, there is no sufficiently small upper
qguery has to access all componegisto C;, while at the bound for the number of necessary node buffers (where “suf-
same time substantially reducing the redundancy overheaficiently small” would be logarithmic in the data volume).
in terms of space and 1/Os. We are currently investigating other index schemes,
Assume we want a key-timepoint query to access nowhere multi-dimensional space-filling curves such as the
more than two components in the worst case. This can b&eano curve (also known as Z-order) or Hilbert curve can
achieved by using the scheme of storing redundant recordse superimposed on the data [Fal96]. Such curves define
as sketched above, with a single modification: a redundana linear order for multi-dimensional data. During a rolling
copy of a record version in componefit is created duringa merge, record versions can then be read and written in the
rolling merge only if there is no successor of this record ver-order given by the space-filling curve. The same is true for
sion left in C; after the rolling merge has finished. It is easy writing the merged structure back to disk, as record versions
to see that, with the modified redundancy scheme, no morare inserted in curve order. Based on this idea, it appears to
than two components have to be accessed by a key-timepoitie feasible to employ an R-tree within each LHAM compo-
query. Suppose that the queried record version is neithement, with the additional benefit that LHAM's rolling merges
present in the first nor in the second component searched. Iwould automatically provide good clustering, both within
this case, the second component does not contain any veand across pages, based on the Peano or Hilbert curve. The
sion of the record, as such a version would match the querysystematic study of such approaches are a subject of future
However, in this case, our redundancy scheme would haveesearch.
created a redundant copy of the record version in the second
component.
In the case of uniform update rates across keys and re&.3 A two-dimensional LHAM directory
sonably sized comonents that are able to store at least one
version for each key, the modified redundancy scheme wouldih the current LHAM version, the LHAM directory partitions
not create any redundant versions at all. For records with lovonly the time axis. Therefore, each LHAM component cov-
update rates, however, the scheme improves query perfoers the whole key space. This can be a potential drawback,
mance by limiting the number of components that have toespecially when the update rate of records in different key
be accessed. ranges varies widely, i.e., if there are hot (i.e., frequently up-
The above-sketched form of selective redundancy can beated) and cold (i.e., infrequently updated) regions of keys.
exploited also to improve the query performance for keysPartitioning the data also by key would allow LHAM to
that are frequently queried, but only infrequently updated.use key-range-dependent values for the component's time
It is possible to dynamically replicate versions of such keysboundaries. In cold key regions, the timespans covered by
in higher level components, even if they had already beertomponents should be long, whereas they would be rather
migrated to lower components. So the partitioning invariantshort for hot key ranges. This would reduce the number of
given by thelow; andhigh; boundaries of a component; components that queries have to access, or, if redundancy is
can be deliberately relaxed to keep older versions of “hot"used, the number of redundant record versions.
keys closer taCy or even in the main-memory component To this end, a two-dimensional LHAM directory would
itself. be needed. As the directory would still be a very small,
memory-resident data structure, the implementation of such
an extended directory does itself not pose any problems.
9.2 Choice of index structures within LHAM components However, a two-dimensional directory would increase the
complexity of rolling merges. Unless all components in-
For key-range queries for a single timepoint, using*ati®e volved in a rolling-merge partition the key space in the same
within each LHAM components is by far not an optimal so- way, rolling merges now require more than a single source
lution, as record versions are primarily clustered by key, soand a single key component. If the key partitioning is con-
that multiple versions for the same key lie in between suc-structed by key splits of components like in the TSB-tree, we
cessive keys. In principle, we are free to use another indexbtain specific structural constraints for the directory layout
structure within components; even different structures forin the two-dimensional space. In particular, rolling merges
different components are conceivable. The problem, howwill then again have a single source component, but multiple
ever, is that such alternative structures have to be efficientlylestination components. As a consequence, there will only
read, merged with a second structure of the same kind, anble a single time boundary betweeen the involved compo-
rebuilt during each rolling merge. This requires the indexednents. This variant seems to be most promising.
data to be readable and writable in a predefined order while Queries can strongly benefit from such a two-dimensional
creating the merged data in the same order. In addition, theHAM directory, since the number of components they need

220 P. Muth et al.: The LHAM log-structured history data access method

to access could be reduced. In addition, the performance gBsw97]
key-range queries with a component organized as-&rde
can be improved. When a component stores too many ver-
sions of the same key, it can simply be split into two compo-
nents with the same key range, without affecting other com-
ponents with the same timespan, but mostly holding recordgcacmos]
with lower update rates.

With a two-dimensional LHAM directory along the [EKW91]
sketched lines, the number of components a record lives
in until it finally migrates to archival components depends
on its key. The number of I/Os required to perform a rolling ;g\ g3
merge now depends on the sizes of all involved compo-
nents, and can no longer be determined by a single size
ratio. This would obviously call for a more advanced math-

ematical analysis.
[Faloe]

[GP87]
10 Conclusions

Our experimental results based on a full-fledged implemen-
tation have demonstrated that LHAM is a highly efficient [cro3]
index structure for transaction-time temporal data. LHAM
specifically aims to support high insertion rates beyond whafGut4]
a B'-tree-like structure such as the TSB-tree can sustain,
while also being competitive in terms of query performance.
In contrast to the TSB-tree, LHAM does not have good
worst case efficiency bounds. However, our experiments
have shown that this is not an issue under “typical-case”
workloads. LHAM's average-case performance is consis-
tently good.

Target applications for LHAM include very-large-data
data warehouses. In such settings, often the batch window
for periodically loading or refreshing the warehouse can
be a severe limitation, thus not being able to build (or [KMH97]
maintain) all otherwise desired indexes. LHAM'’s excellent
insertion throughput would substantially shorten the time
for index maintenance, thus making tight batch windows Lom93]
feasible. Some warehousing applications, especially in thé
telecommunication industry, require continuous, near-real-
time maintenance of the data. Once the update rate and the
size of the warehouse exceed certain manageability thresHkS89]
olds, such a warehouse may not afford any conventional
indexes at all. Again, LHAM is much better geared for cop- LS90]
ing with very high insertion/update rates against terabyte
warehouses.

[Jag97]

[Kol93]

[Moh98]
References

[AGL98] Agrawal R, Gunopulos D, Leymann F (1998) Mining Process

Bercken J van den, Seeger B, Widmayer P (1997) A Generic
Approach to Bulk-Loading Multidimensional Index Structures.
In: Jarke M, Carey MJ, Dittrich KR, Lochovsky FH, Loucopou-
los P, Jeusfeld MA (eds) Proc. VLDB Conf, 1997, Athens,
Greece. Morgan Kaufmann, San Mateo, California, pp 406—
415

Special Section on Industrial-Strength Data Warehousing.
Commun ACM 41(9):28-67

Elmasri R, Kim V, Wuu GTJ (1991) Effcient Implementation
for the Time Index. In: Proc. Data Engineering Conf, 1991,
Kobe, Japan, IEEE Computer Society, Los Alamitos, Californ,
pp 102-111

Elmasri R, Wuu GTJ, Kouramajian V (1993) The Time Index
and the Monotonic B-tree. In: Tansel AU, Clifford J, Gadia

S, Jajodia S, Segev A, Snodgrass R (eds) Temporal Databases:
Theory, Design, and Implementation. Benjamin Cummings,
New York, pp 433-456

Faloutsos C (1996) Searching Multimedia Databases By Con-
tent. Kluwer Academic, Amsterdam

Gray J, Putzolu F (1987) The Five-Minute Rule for Trading
Memory for Disc Accesses and the 10-Byte Rule for Trading
Memory for CPU Time. In: Dayal U, Traiger IL (eds) Proc.
SIGMOD Conf, 1987, San Francisco. California. ACM, New
York, pp 395-398

Gray J, Reuter A (1993) Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, San Mateo, California
Guttman A (1984) R-trees: A Dynamic Index Structure for
Spatial Searching. In: Yormark B (eds) Proc. SIGMOD Conf,
1984, Boston, Massachusetts. ACM, New York, pp 47-57
Jagadish HV, Narayan PPS, Seshadri S, Sudarshan S, Kan-
neganti R (1997) Incremental Organization for Data Recording
and Warehousing. In: Jarke M, Carey MJ, Dittrich KR, Lo-
chovsky FH, Loucopoulos P, Jeusfeld MA (eds) Proc. VLDB
Conf, 1997, Athens, Greece. Morgan Kaufmann, San Mateo,
California, pp 16-25

Kolovson CP (1993) Indexing Techniques for Historical
Databases. In: Tansel AU, Clifford J, Gadia S, Jajodia S, Segev
A, Snodgrass R (eds) Temporal Databases: Theory, Design, and
Implementation. Benjamin Cummings, New York, pp 418-432
Kornacker M, Mohan C, Hellerstein JM (1997) Concurrency
and Recovery in Generalized Search Trees. In: Peckham J
(eds) Proc. SIGMOD Conf, 1997, Tucson, Arizona. ACM, New
York, pp 62-72

Lomet D (1993) Key Range-Locking Strategies for Improved
Concurrency. In: Agrawal R, Baker S, Bell DA (eds) Proc.
VLDB Conf, 1993, Dublin, Ireland. Morgan Kaufmann, San
Mateo, California, pp 655-664

Lomet D, Salzberg B (1989) Access Methods for Multiversion
Data. In: Clifford J, Lindsay BG, Maier D (eds) Proc. SIGMOD
Conf, 1989, Portland, Oregon. ACM, New York, pp 315-324
Lomet D, Salzberg B (1990) The Performance of a Multiver-
sion Access Method. In: Garcia-Molina H, Jagadish HV (eds)
Proc. SIGMOD Conf, 1990, Atlantic City, New Jersey. ACM,
New York, pp 353-363

Mohan C (1996) Concurrency Control and Recovery Meth-
ods for B'-Tree Indexes: ARIES/KVL and ARIES/IM. In: Ku-
mar V (ed) Performance of Concurrency Control Mechanisms
in Centralized Database Systems. Prentice Hall, Englewood
Cliffs, N.J., pp 248-306

Models from Workflow Logs. In: Schek HJ, Saltor F, Ramos |, [MOPW98] Muth P, O'Neil P, Pick A, Weikum G (1998) Design, Im-

Alonso G (eds) Proc. Int. Conf. on Extending Database Tech-
nology (EDBT), 1998, Valencia, Spain. Springer, Berlin Hei-
delberg New York, pp 469-483

[Arge95] Arge L (1995) The Buffer Tree: A New Technique for Optimal
I/O Algorithms. In: Akl S, Dehne F, Sack JR, Santoro N (eds) [MSS95]
Proc. Int. Workshop on Algorithms and Data Structures, 1995,
Kingston, Ontario, Canada. Springer, Berlin Heidelberg New

plementation, and Performance of the LHAM Log-Structured
History Data Access Method. In: Gupta A, Shmueli O, Widom
J (eds) VLDB Conf, 1998, New York City, New York. Morgan
Kaufmann, San Mateo, California, pp 452-463

Proceedings of the 14th IEEE International Symposium on
Mass Storage Systems, 1995, Monterey, California. IEEE
Computer Society, Los Alamitos, California

York, pp 334-345 [OCGO96] O'Neil P, Cheng E, Gawlick D, O’Neil E (1996) The Log-

[Bec96] Becker B, Gschwind S, Ohler T, Seeger B, Widmayer P (1996)
An Asymptotically Optimal Multiversion B-tree. VLDB J 5(4):
264-275 [OW93]

Structured Merge-Tree (LSM-tree). Acta Informatica 33(4):
351-385
O’Neil P, Weikum G (1993) A Log-Structured History Data

P. Muth et al.: The LHAM log-structured history data access method

Access Method. In: 5th Int. Workshop on High-Performance [ST99]
Transaction Systems (HPTS), 1993, Asilomar, California

[RO92] Rosenblum M, Ousterhout JK (1992) The Design and Imple- [Tan93]
mentation of a Log Structured File System. ACM Trans Com-
put Syst 10(1): 26-52

[Sno90] Snodgrass R (1990) Temporal Databases: Status and ResearfrK95]
Directions. ACM SIGMOD Rec 19(4): 83-89

[SOL94] Shen H, Ooi BC, Lu H (1994) The TP-Index: A Dynamic
and Effcient Indexing Mechanism for Temporal Databases. In:
Proc. Data Engineering Conf., 1994, Houston, Texas. |IEEE
Computer Society, Los Alamitos, California, pp 274-281

221

Salzberg B, Tsotras VJ (1999) A Comparison of Access Meth-
ods for Temporal Data. ACM Comput Surv: in press

Tansel AU, Clifford J, Gadia S, Jajodia S, Segev A, Snodgrass
R (Eds) (1993) Temporal Databases: Theory, Design, and Im-
plementation. Benjamin Cummings, New York

Tsotras VJ, Kangelaris N (1995) The Snapshot Index: An I/O-
Optimal Access Method for Timeslice Queries. Inf Syst 20(3):
237-260

