CS 624: Analysis of Algorithms Fall 2024 Assignment 1 Solutions

1. This question is based on Appendix C in CLRS, 4^th edition, question C.1-11 (page 1183). Argue that for any integers $n \geq 0, j \geq 0, k \geq 0$ and $j + k \leq n$:

$$
\binom{n}{j+k} \le \binom{n}{j} * \binom{n-j}{k}
$$

Provide both an algebraic proof and an argument based on a method for choosing $j + k$ items out of n. Give an example in which equality does not hold.

Solution:

(a) Algebraic solution:

$$
\binom{n}{j+k} = \frac{n!}{(j+k)!(n-j-k)!}
$$

$$
\binom{n}{j} * \binom{n-j}{k} = \frac{n!}{j!(n-j)!} * \frac{(n-j)!}{k!(n-j-k)!} = \frac{n!}{j!k!(n-j-k)!}
$$

The difference between the two sides is that one the left we have $(j+k)!$ in the denominator and on the right we have $j!k!$:

$$
(j+k)! = 1 * 2 * 3....*j * (j + 1) * (j + 2)...*(j + k)
$$

$$
j!k! = 1 * 2 * 3....*j * 1 * 2 * 3...*k
$$

$$
\frac{(j+k)!}{j!k!} = \frac{(j + 1) * (j + 2) * ... * (j + k)}{1 * 2 * ... * k}
$$

The quotient is ≥ 1 (equality is when either j or k are zero). Therefore, $\binom{n}{j+k} \leq \binom{n}{j} * \binom{n-j}{k}$ because the difference between the two side is in the denominator, and on the left the denominator is equal to or larger than the right.

- (b) Both sides describe the process of selecting $j+k$ items out of n, but on the left we pick all j+k items at the same time, and on the right we pick j items and then pick k items out of the remaining n-j. The right hand side, then, involves not only selecting $j+k$ items but also partitioning them into a set of j and a set of k – and there are many more ways to do it (unless j or k are zero). For example – let $j = 4$ and $k = 1$. There are $\binom{n}{5}$ ways to select five items out of n and $\binom{n}{4} * \binom{n-4}{1} = \binom{n}{4} * (n-4)$ ways to select four and then one. Now, $\binom{n}{4} * (n-4) = \frac{n!}{4!(n-5)!} = 5 * \binom{n}{5}$. In other words, we have five times more options (which makes sense, considering that we have five ways to partition five elements into 4 and 1).
- 2. Decide whether each of the following statements is true or false, and prove that your conclusion is correct.

(a) $2^{n+1} = O(2^n)$.

Solution: True, because $2^{n+1} = 2 \times 2^n$. The two functions are equal up to a constant factor.

(b) $f(n) = O(g(n))$ implies $2^{f(n)} = O(2^{g(n)})$.

Solution: False. We can use the previous case as a counter-example. $2^{n+1} = O(2^n)$, but $2^{2^{n+1}} = (2^{2^n})^2$. In other words, $2^{2^{n+1}}$ grows quadratically faster than (2^{2^n}) so it can never be bounded by it up to any constant factor.

3. Prove the correctness of the following algorithm for evaluating a polynomial

$$
p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0
$$

at a number x:

This algorithm, as you probably know, is called Horner's method. You can use induction on the loop invariant using initiation, maintenance and termination.

Solution: The loop invariant depends on the value of i: In the beginning of the jth iteration where $i = n - j$, the value of the polynomial is $p = \sum_{i=1}^{j}$ $\sum_{k=1}^{\infty} a_{n+k-j} x^{k-1}.$

- Initiation: Before the start of the first loop, $i = n 1$ and $j = 1$. The value of the polynomial is $p = \sum^1$ $\sum_{k=1} a_n x^0 = a_n.$
- **Maintenance:** Let us assume it is true when we start loop $j \geq 1$, where the value of i is n-j. By inductive hypothesis, in the beginning of the loop, $p = \sum_{i=1}^{j}$ $\sum_{k=1}^{\infty} a_{n+k-j} x^{k-1}$. The loop multiplies the entire sum by x and adds $a_i = a_{n-j}$, rendering it $p = \sum_{i=1}^{j} a_i$

 $\sum_{k=1}^{s} a_{n+k-j} x^{k} + a_{n-j} =$

 $\sum_{i=1}^{j+1}$ $\sum_{k=1}^{\infty} a_{n+k-(j+1)}x^{k-1}$ after the loop ends, so the condition holds in the beginning of the next loop if there is a next loop.

- **Termination:** After the end of the last loop, when $i=0$ and $j=n$, the polynomial is $p = \sum^{n+1}$ $\sum_{k=1}^{n+1} a_{k-1} x^{k-1} = \sum_{k=0}^{n}$ $\sum_{k=0} a_k x^k$ as needed.
- 4. Prove that if $f = O(g)$ and $g = O(h)$ then $f = O(h)$.

Solution: We go to the basics. If $f(n) = O(g(n))$ then there are constants c, n_0 such that $f(n) \leq c * g(n)$ for all $n \geq n_0$. Similarly, if $g(n) = O(h)$ then there are constants d, n_1 (don't use the same constants are before!) such that $g(n) \leq d * h(n)$ for all $n \geq n_1$. Substituting the second equation into the first gives us $f(n) \leq c * d * h(n)$ for all $n \geq \max(n_0, n_1)$. So, by definition, $f(n) = O(h(n)).$

5. Give asymptotic tight bounds for $T(n)$ for each of the recurrences. Justify your answers.

(a) $T(n) = 2T(n/2) + n^3$

This is case 3 of the Master theorem. a=2 and b=2, so $n^{\log_b a} = n$ and $f(n) = n^3$. Obviously, $n = O(n^3 - \epsilon)$. We also have to find constants $0 < c < 1$ and n_0 such that $2(n/2)^3 = \frac{1}{4}n^3 \leq c * n^3$. Obviously, any $c \geq \frac{1}{4}$ satisfies this for all positive n, therefore $T(n) = O(n^3)$.

- (b) $T(n) = T(8n/11) + n$ $a=1, b=\frac{11}{8}$, so $n^{\log_{\frac{11}{8}}1}=1$. sp this is case 3 of the master theorem if we can find constants $0 < c < 1$ and n_0 such that $8n/11 \le cn$. Any $c \ge \frac{8}{11}$ will do, so
- (c) $T(n) = 16T(n/4) + n^2$ Here a=16, b=4 and $n^{\log_4 16} = n^2$. This is case 2 of the Master theorem and $T(n)$ = $O(n^2 \log n)$.
- (d) $T(n) = 7T(n/2) + n^2 \log n$ Here a=7, b=2 and $n^{\log_2 7} \approx n^{2.81}$ and $f(n) = n^2 \log n$. This is case 1 of the Master theorem and $T(n) \approx O(n^{2.81})$. Notice that the log is not a problem here, since $n^2 \log n =$ $O(n^{2.81-\epsilon})$ for any $\epsilon < 0.81$.
- (e) $T(n) = 2T(n/4) + \sqrt{n}$ Here a=2, b=4 and $n^{\log_2 2} = \sqrt{n}$. This is case 2 of the Master theorem and $T(n)$ = $O(\sqrt{n}\log n)$.
- 6. Problem 4.2 in Lecture notes 1 (page 7).

$$
T(n) = \sum_{j=2}^{n} (a + (j-1)c) = \sum_{j=2}^{n} (a) + c \sum_{j=2}^{n} (j-1) = a(n-1) + c \sum_{j=1}^{n-1} j = a(n-1) + c \frac{n(n-1)}{2}.
$$

Rearranging the terms we get $an - a + n^2 \frac{c}{2} - n \frac{c}{2}$. So, if we set $A = \frac{c}{2}$, $B = a - \frac{c}{2}$ and $C = -a$
we get a term of the form $T(n) = An^2 + Bn + C$. Since $c > 0$, then $A > 0$ as well, so it's a
quadratic term.

7. Problem 4.1 in Lecture notes 2 (page 13).

See drawing. I can be quite flexible with any handling of terminal nodes where $T(n/4) < 1$.

8. The Split3-Sort algorithm is defined as follows:

(a) Prove that the call to Split3-Sort $(A, 1, n)$ correctly sorts the array $A[1..n]$ (**Hint:** I found the best way is to use induction, but be careful with the base case - notice line 4. What is the minimum difference between p and r ?)

Solution:

- The boundary condition in line 4 happens is if $p + 1 \geq r$, so if the array is size 2 or less. Therefore, the base case is an array of size 2 (empty arrays or arrays of size 1 are trivially sorted). In this case the if condition in lines 1–2 takes care of the sorting by swapping the two entries if they are out of order.
- The inductive hypothesis: for an array size k such that $2 \leq k \leq n$, Split3 $sort(A, p, r)$ sorts the array.
- Now the tricky part. After the first call in line 6, the first two-thirds are sorted within one another by inductive hypothesis (let's call them third-1 and third-2, resp.). The second call of line 7 uses third-2 and third-3. Since third-1 and third-2 sorted after line 6, we are sure that third-1 include the smallest $\frac{1}{3}$ of these two thirds. We don't know how they are with respect to third-3, but one thing we know for sure: They can't possibly be the largest $\frac{1}{3}$ of the entire array (why?). Therefore, the largest $\frac{1}{3}$ of the entire array are somewhere within third-2 and third-3. After the second call in line 7, which sorts third-2 and third-3 by inductive hypothesis, we are now certain that the largest $\frac{1}{3}$ of the entire array are indeed now in third-3, in sorted order. Therefore, third-1 and third-2 contain the remaining smallest $\frac{2}{3}$. The call in line 8 sorts them as well, by inductive hypothesis.
- (b) Write the recurrence formula for Split3-Sort and give the asymptotic bound on the run time (Θ notation). Solution: $T(n) = 3T(\frac{2}{3}n) + c$ – we make three recursive calls to $\frac{2}{3}$ of the input and the rest – boundary conditions + if statement and swap, is a constant. Using the Master theorem, $a = 3$, $b = \frac{3}{2}$ and $f(n) = c$ (constant). $n^{\log_b a} \approx 2.71$. This is case 3 of the Master theorem (why?), so $T(n) = O(n^{2.71})$.
- (c) Compare the run time from (b) to the run time of HeapSort, MergeSort and QuickSort. Is it better? Worse? Same?

Solution: Obviously, based on the discussion in class, it is worse.

- 9. Let $\{f_n : n = 0, 1, \dots\}$ be the Fibonacci sequence (where by convention $f_0 = 0$ and $f_1 = 1$).
	- (a) This question is based on material from lecture notes 2. Show that $\sum_{n=1}^{\infty}$ $\frac{nf_n}{2^{n-1}} = 20.$ Do this by using a generating function as shown in the last section of the Lecture 2 notes, and differentiating. **Hint:** The derivative of $\frac{x}{1-x-x^2}$ is $\frac{1+x^2}{(1-x-x)}$ $\frac{1+x^2}{(1-x-x^2)^2}$.

Solution: We showed that the sum of the Fibonacci generating function, $F(X)$ = $\sum_{i=1}^{\infty}$ $\sum_{n=0}^{\infty} f_n x^n = \frac{x}{1-x-x^2}$. Differentiating both sides using the hint above gives us: $1+x^2$ $\frac{1+x^2}{(1-x-x^2)^2} = \sum_{n=0}^{\infty}$ $\sum_{n=1}^{\infty} n f_n x^{n-1}$. Substituting $x = \frac{1}{2}$ gives us $\sum_{n=1}^{\infty}$ $\frac{nf_n}{2^{n-1}} = 20$ as needed.

(b) Show why (in the same way as you proved the first part of this problem) you might think that $\sum_{n=1}^{\infty} nf_n = 2$. Then show why this could not possibly be true (it doesn't have to be a long answer, but it has to be convincing).

Solution: We could follow the previous steps and use $x = 1$ instead of $\frac{1}{2}$. This would give us $\sum_{n=1}^{\infty} nf_n = 2$. However, the entire derivation relies on the fact that a series of the

form $\sum_{n=0}^{\infty} x^n$ converges into a constant. This is only true if $x < 1$. When $x = 1$ this series goes to infinity, just like $\sum_{n=1}^{\infty} nf_n$.