
CS 624: Analysis of Algorithms

Assignment 2

Due: Tuesday, October 8, 2024

Topics: Heaps, Sorting

1. Argue the correctness of HEAPSORT using the following loop invariant:

At the start of each iteration of the for loop of lines 2–5, the subarray A[1..i] is a max-heap
containing the i smallest elements of A[1..n] and the subarray A[i + 1..n] contains the n-i
largest elements of A[1..n] sorted.

2. Describe an O(n log k) algorithm for merging k sorted lists into one sorted list, where n is the
total number of elements. Hint: Think of the merging part of MergeSort and extend it to
multiple lists. Remember that the lists are not necessarily the same size.

3. The procedure Max-Heap-Delete(A,i) deletes the item in node i from heap A. Give an im-
plementation of Max-Heap-Delete that runs in O(log n) for an n-element Max-Heap. Assume
that the heap elements are mapped into indices, so you have access to the ith node. Note that
the problem asks you to give an algorithm that runs in O(log n) time. So you not only have
to give the algorithm, you also have to show that it really does run in O(log n) time.

4. Suppose you start with a rectangular array of numbers. Perform the following operations:

• First sort each row (smallest to largest).

• Then sort each column (smallest to largest).

Show that after sorting the columns, each row is still sorted. (Hint: Prove by contradiction)

5. Exercise 3.1 in the Lecture 3 handout (on page 7 of the handout). Don’t be sloppy here! I’m
looking for a precise explanation.

6. Exercise 6.1 in the Lecture 3 handout (on page 13 of the handout).

7. Exercise 3.1 from the Lecture 4 handout (page 7).

8. Based on exercises 8.2-1 - 8.2-3 in the 4th edition (slightly edited).

(a) Show the run of counting-Sort on the array A = [6, 0, 2, 0, 1, 3, 4, 6, 1, 3, 2]. No need to
draw out every stage. Just show the array C after line 5, C after line 8 and the first three
stages of the final sorting (similar to figure 8.2)

(b) Prove that Counting-Sort is stable. In other words, equal elements appear in the sorted
array in the same order as they were in the original input – if we have two equal elements
A[i] and A[j] such that i < j, A[i] will appear before A[j] in the sorted array.



(c) Show that if we rewrite the for loop header in line 11 of the Counting-Sort pseudo code
as for i=1 to n (going from the start to the end), the algorithm still works properly,
but it is not stable. Then rewrite the pseudocode for counting sort so that elements with
the same value are written into the output array in order of increasing index and the
algorithm is stable.

9. Problem 8-5 (a-d only) (page 207 in 3rd edition, 221 in 4th edition).


