
CS624: Analysis of Algorithms

Assignment 2 – Solution

1. Argue the correctness of HEAPSORT using the following loop invariant:

At the start of each iteration of the for loop of lines 2–5, the subarray A[1..i] is a max-heap
containing the i smallest elements of A[1..n] and the subarray A[i + 1..n] contains the n-i
largest elements of A[1..n] sorted.

Solution:

• Initialization: In the beginning i=n, so the subarray A[i+ 1..n] is empty, therefore the
property is trivially true.

• Maintenance: Let us assume it is true in the beginning of the iteration for 1 ≤ i ≤ n.
The elements A[1..i] form a heap by construction - we start with a heap of size n, and
by the beginning of every iteration we reduce the heap size by 1 so in the beginning of
iteration i, the heap size is i. and so A[1] is the largest element in the range A[1..i]. By
inductive hypothesis, A[1..i] are the smallest elements, and A[i + 1..n] contains the n-i
largest elements of A[1..n] sorted. Therefore, when moving the largest element in A[1..i]

to position i and decreasing the heap size by one, makes it so A[i..n] contains the n-(i-1)
largest elements sorted and A[i..i − 1] still has the smallest elements. Heapify in line 5
makes sure that A[i..i − 1] is now a heap, and so in the beginning of the next iteration
we can rely on A[1] being the largest again.

• Termination: In the last loop i=2. After the loop terminates, A[2..n] contains the n-1
largest elements sorted and A[1] contains the remaining element, being the smallest per
the inductive hypothesis, therefore the entire array is sorted.

2. Describe an O(n log k) algorithm for merging k sorted lists into one sorted list, where n is the
total number of elements. Hint: Think of the merging part of MergeSort and extend it to
multiple lists. Remember that the lists are not necessarily the same size.

Solution: Maintain a min-heap of size k that contains the smallest element of each list that
has not yet been processed.

• In the beginning, build a heap from the smallest elements of each list. Each element has
its numerical value as key but also a pointer to the original list – O(k).

• At every step, extract-min the heap. Let us say it came from Heap i. Insert the next
element on heap i if it exists – O(log k) – because the heap is always at most of size k.
If the list is empty, do nothing (the lists don’t have to be the same size, and sometimes
a list runs out before others).

• You repeat it until all the n elements are processed – so the total number of heap opera-
tions take O(n log k).

3. The procedure Max-Heap-Delete(A,i) deletes the item in node i from heap A. Give an im-
plementation of Max-Heap-Delete that runs in O(log n) for an n-element Max-Heap. Assume
that the heap elements are mapped into indices, so you have access to the ith node. Note that



the problem asks you to give an algorithm that runs in O(log n) time. So you not only have
to give the algorithm, you also have to show that it really does run in O(log n) time.

Solution: One way to do it is the following:

• Swap A[i] with A[n] (the last node in the heap) – O(1)

• heapsize(A) = heapsize(A) - 1 (reduce the size by 1), thus removing that element – O(1).

• Now the previous A[n] is in position i. It may or may not be in the right place, so we
need to heapify it – O(log n).

• It may not be enough, though. Heapify only "sinks" a node and does not float it up.
There is a boundary case where the previous A[n] may be bigger than its parent. See for
example the heap on the right side of slide 14 in slide set 3. Say we want to delete the
rightmost node, whose key is 7. If we swap it with A[n] whose value is 9, we will have
a situation where a child is bigger than its parent (8). To prevent this, we also have to
check the parent and "float up" if needed. This also costs at most O(log n).

4. Suppose you start with a rectangular array of numbers. Perform the following operations:

• First sort each row (smallest to largest).

• Then sort each column (smallest to largest).

Show that after sorting the columns, each row is still sorted. (Hint: Prove by contradiction).

Solution: This can probably be shown in more than one way, here is the one I found easiest
(there are certainly more elegant ways though): Let’s look at the first row a after the sorting
of rows and then columns. Let us look at any two indices i, j such that i < j. The element at
position i at row a after the double sorting was originally the ith smallest element, following row
sorting and before column sorting, of some row l – let us call this element li, and the element at
position j was, after row sorting and before column sorting, the jth smallest element at some
row m, denoted mj . Since this is the first row, then li is the smallest element in column i, and
in particular - li ≤ mi where mi was the element that was originally the ith smallest at row
m after row sorting. Since i < j, then after row sorting mi ≤ mj and therefore mj ≥ li. This
is true for any i, j and therefore the top row is sorted. We can remove it from consideration
and apply the same logic to the second row which is the smallest remaining etc.

5. Exercise 3.1 in the Lecture 3 handout (on page 7 of the handout). Don’t be sloppy here! I’m
looking for a precise explanation.

Answer: Proof by induction on the heap property.

• Base case: i is a leaf (level 0). It has no children, so trivially it is a heap and no action
is taken in the code.

• Inductive hypothesis: We heapify a node at height 0 ≤ k < h. That is – the two children
of node i, if they exist, are heaps but i may be smaller than one or two of its children.
Lines 3–10 in the code select the largest of i and its children. If i is the largest (or has no
children) we do nothing. By inductive hypothesis the two children are the root of heaps
and so A[i], the largest, is the root of a heap that contains as children the heaps rooted
at its children, if they exist.

• If i is not the largest, we swap it with the largest of its two children – call it A[largest]. By
inductive hypothesis, A[L] and A[R] are the largest of their subtrees, and so A[largest]

is the largest overall (including both subtrees and A[i]), so putting it at the root of the
overall heap maintains the heap property at that level. Notice that by "sinking" A[i]
down one level it may not be the largest of its now subtree, but we can use the inductive
hypothesis at any level below k until we reach a leaf.



6. Exercise 6.1 in the Lecture 3 handout (on page 13 of the handout).

Answer:

• Build a min-heap – O(n).

• run the first k stages of Heapsort (adapted to min-heap) – O(log n) each.

7. Exercise 3.1 from the Lecture 4 handout (page 7).

Answer: The costs come from the total overhead of partition. At the top level, it is cn. at the
second level – 0.9cn+0.1cn = cn (remember that the cost of partition is proportionate to the
size of the array). At the third level there are four branches – 0.01cn+2∗0.09cn+0.81cn = cn
In general, every full level contains the combinations of multiples of 0.1 and 0.9 that behave

like the binomial formula: cn ∗
n∑

k=0

(
n
k

)
0.1k0.9n−k = cn ∗ (0.9 + 0.1)n = cn. The partial levels

occur when some short branches end before longer branches, so cn is the upper bound.

8. Based on exercises 8.2-1 - 8.2-3 in the 4th edition (slightly edited).

(a) Show the run of counting-Sort on the array A = [6, 0, 2, 0, 1, 3, 4, 6, 1, 3, 2]. No need to
draw out every stage. Just show the array C after line 5, C after line 8 and the first three
stages of the final sorting (similar to figure 8.2)
Here is the input array and the frequency count:

6 0 2 0 1 3 4 6 1 3 2A

1 2 3 4 5 6 7 8 9 10 11

2 2 2 2 1 0 2C

0 1 2 3 4 5 6

Here is the input array and the relative order count:

6 0 2 0 1 3 4 6 1 3 2A

1 2 3 4 5 6 7 8 9 10 11

2 4 6 8 9 9 11C

0 1 2 3 4 5 6

And the first three stages of the sorting:

2B

1 2 3 4 5 6 7 8 9 10 11

2 4 5 8 9 9 11C

0 1 2 3 4 5 6



2 3B

1 2 3 4 5 6 7 8 9 10 11

2 4 5 7 9 9 11C

0 1 2 3 4 5 6

1 2 3B

1 2 3 4 5 6 7 8 9 10 11

2 3 5 7 9 9 11C

0 1 2 3 4 5 6

(b) Prove that Counting-Sort is stable. In other words, equal elements appear in the sorted
array in the same order as they were in the original input – if we have two equal elements
A[i] and A[j] such that i < j, A[i] will appear before A[j] in the sorted array.
Answer: Say we have two equal elements A[i] and A[j] such that i < j. Since we
traverse A from end to start, we will look at A[j] before A[i]. It will be placed at the
index indicated by C[A[j]], which is then decreased. When we get to A[i], it will be
placed by C[A[j]] which now has a smaller value, therefore it will appear before A[j].

(c) Show that if we rewrite the for loop header in line 11 of the Counting-Sort pseudo code
as for i=1 to n (going from the start to the end), the algorithm still works properly,
but it is not stable. Then rewrite the pseudocode for counting sort so that elements with
the same value are written into the output array in order of increasing index and the
algorithm is stable.
Solution: If the only thing we change is the loop header in line 11, then we traverse A
from start to end, and we will look at A[i] before A[j]. However, since we still put A[i]
at the index indicated by C[A[i]], and then decrease it, then when later we look at A[j]

it will be placed before A[i], so the order is reversed.

9. Problem 8-5 (a-d only) (page 207 in 3rd edition, 221 in 4th edition).

(a) Being 1-sorted means the array is sorted. If we substitute k = 1 in the formula above we

get
i∑

j=i

A[j] ≤
i+1∑

j=i+1

A[j] → A[i] ≤ A[i+ 1] for each i, which is the definition of sorting.

(b) For example, {2, 1, 3, 4, 5, 6, 7, 8, 9, 10} is 2-sorted. For the first pair,

2∑
j=1

A[j]

2 = 1.5, and
3∑

j=2
A[j]

2 = 2, so the condition holds for the first three indices. For the other consecutive
pairs it’s obviously true because the rest of the array is sorted.

(c) We can show that the definition of k-sorting is equivalent to the condition in the question.

By definition,

i+k−1∑
j=i

A[j]

k ≤

i+k∑
j=i+1

A[j]

k , which means

i+k−1∑
j=i

A[j]

k −

i+k∑
j=i+1

A[j]

k ≤ 0 or equivalently,
i+k−1∑
j=i

A[j]−
i+k∑

j=i+1

A[j] ≤ 0 (after multiplying both sides by k). These two sums have most



terms in common except the first of the first and the last of the last, so when subtracting
one from the other most terms cancel out and we get A[i]−A[i+k] ≤ 0 or A[i] ≤ A[i+k]

(d) According to (c) above, an array is k-sorted iff A[i] ≤ A[i+ k] for every i. Therefore, to
k-sort an array we only need to make sure that every element A[i] is only sorted with
respect to its i+ dk neighbors where d=1,2... . So, we divide the array into k subsets of
size n

k and sort them using merge-sort or heap-sort. Each sorting is O(nk log(nk )), and we
do k such sorting operations, one per subset. Then we write down the smallest of each
element. Next the second smallest etc. This way we make sure every A[i] ≤ A[i + k]

because they are from a sorted set. This only adds an O(n). Overall the runtime is
O(k n

k log(nk )) = O(n log(nk )).


