
CS624: Analysis of Algorithms

Assignment 4

Due: Thursday, Nov. 7, 2024

Topics: Dynamic Programming, Greedy algorithms

1. Let T be a rooted tree. T is not necessarily a binary tree. That is, each node may have any
finite number of children. We are going to consider a method of visiting each node of the tree.
The method works like this:
At Step 1, we visit the root. The root is then marked as “visited”.
At Step n, all nodes that have already been marked “visited” can visit at most one of their
children. Of course if all the children of a node have already been visited, there is nothing for
that node to do. But other nodes may still do something at that step. (And so in particular,
more than one node might be visited in a single step of the process.)

The question is this: what is the minimum number of steps necessary to visit every node in
the tree?

(a) Draw a picture of a tree in which more than one node is visited at some step of this
process, and show why that happens.

(b) Show that this problem contains optimal substructure. Please be careful when you do
this. You have to state precisely and clearly what the substructure is and show why it is
optimal.

(c) Use that result to write a recursive algorithm to solve this problem.

(d) Turn that algorithm into a dynamic programming algorithm.

(e) What is the cost of the algorithm? (By that, I mean, “What is the cost of the algo-
rithm that computes the minimum cost?”, not “What is the minimum cost?”. In doing
this problem, please write as little pseudo-code as possible. I would much rather read
something that is clearly explained using ordinary language.

2. Determine an LCS of < 1, 0, 0, 1, 0, 1, 0, 1 > and < 0, 1, 0, 1, 1, 0, 1, 1, 0 >. Of course you could
probably solve this problem easily enough just by looking at it. What I want you to do is to
explicitly use the algorithm presented in class. Write out your derivation neatly, including the
table.

3. Exercise 3.2 in the Lecture 8 handout (on page 12).

4. Exercise 3.3 in the Lecture 8 handout (on page 12).

5. Let G = (V,E) be a directed graph with vertices V = {v1, v2, . . . , vn}. The set E of edges has
the following property:

• Each edge goes from a vertex of lower index to a vertex of higher index. For instance,
there might be an edge (v1, v7) from v1 to v7. But there definitely will not be an edge
(v7, v1) from v7 to v1.



• Each vertex except vn has at least one edge leaving it. That is, for every vertex vi
(1 ≤ i ≤ n− 1), there is at least one edge of the form (vi, vj) (of course with i < j).

Here is an example of a graph with this property:

v1 v2 v3 v4 v5

It is called a DAG (directed acyclic graph). We will discuss them later on in the course. By
a path we mean as usual a sequence of vertices {vi1 , vi2 , . . . vik},

such that for each successive pair in the sequence there is an edge from the first to the second.
(That is, there is an edge from vi1 to vi2 , another edge from vi2 to vi3 , and so on.)

The length of a path is just the number of edges in it. Equivalently, it is 1 less than the
number of vertices in it.

We want to find an algorithm to solve the following problem, given such a graph:

Find the length of the longest path that begins at v1 and ends at vn.

Here is a “greedy” algorithm that it is natural to think of at first:

Algorithm 1 FindPath
1: w ← v1 w is the current node we are considering.
2: L← 0 L will hold the greatest length of any path so far.
3: while there is an edge out of w do
4: Choose the edge (w, vj) for which j is as small as possible.
5: w ← vj
6: L← L+ 1
7: end while
8: return L

(a) Show that this algorithm gives the correct answer for the graph drawn above.

(b) Show that this algorithm does not give the correct answer in general.

(c) One could of course solve the problem in general by considering all possible paths from
v1 to vn. Why is this not an efficient algorithm?

(d) Construct an efficient algorithm that does give the correct answer in general. (Hint: use
dynamic programming. You have to prove that the algorithm is correct.)

(e) How efficient is your algorithm?

6. The minimum spanning tree problem is defined on undirected, weighted graphs as follows: a
spanning tree of that graph is a subgraph that is a tree and connects all the vertices together.
The minimum spanning tree is a spanning tree of minimum weight. For example, given the
following graph:



v2

v1

v5
v3

v410

5

6 4

23

7

Its minimum spanning tree is:
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(a) Show that the minimum spanning tree has an optimal substructure by showing that given
an MST for a graph G = (V,E), any sub-tree of the MST is a minimum spanning tree
with respect to the subset of vertices and their edges in G.

(b) A cut in a graph G = (V,E) is a division of the vertices into two disjoint non-empty
subsets, S and T . An edge that crosses the cut is an edge that has one vertex in S and
one vertex in T . An example here shows a cut in the graph above, where S = {v1, v3, v4}
and T = {v2, v5}. Edges crossing the cut are shown in bold. The greedy choice property
says that for any cut in the graph, the lightest edge crossing the cut is a part of a minimum
spanning tree. Prove it is true for any cut (not only this example!). You can show by a
simple exchange argument.
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(c) Show that the lightest edge in the graph is always a part of an MST (there may be more
than one MST if the weights are not unique).

7. Given a tree T = (V,E) (not necessarily binary) an independent set is subset of nodes in the
tree such that no two nodes are adjacent (in a tree it means, no parent and child can be in
the same independent set). The problem of finding the maximum independent set in a tree
involves finding an independent set of maximum size (obviously).

(a) Show that the problem has an optimal substructure by showing that given a maximum
independent set on a tree, every subset of it represents a maximum independent set with
respect to its subtree.



(b) Every tree has at least one leaf. Show that any leaf node v in a tree must be a part of a
maximum size independent set. Hint: Assume we have a maximum independent set S
on the tree. It either contains v of not, take it from there.

(c) Give a linear time algorithm to obtain a maximum size independent set in a tree.

8. Prove that a binary tree that is not full (i.e., that at least one of its nodes has only one child)
cannot correspond to an optimal prefix code.

9. Suppose that a data file contains a sequence of 8-bit characters such that all 256 characters
are about equally common: the maximum character frequency is less than twice the minimum
character frequency. Prove that Huffman coding in this case is no more efficient than using
an ordinary 8-bit fixed-length code.


