
CS 624

Lecture 1: The Analysis of Algorithms

1 General stuff

1. Read the course home page carefully if you haven’t already. You are responsible for everything
on that page.

2. Immediately apply for a course account. Even though you will not use that account to pass
in work, it will enable me to send email to the class. If you don’t have an account, you won’t
get my emails. (And do check your email here!)

3. Assignments will be posted on the course home page.

4. As I explain on the course home page, I encourage you to talk with other students in the class
and in fact with anyone else about this course and (in general) about problems in the course.
You should state whom you discussed things with in your written work. This will not lower
your grade.

5. However: all the work you hand in must be written entirely by you. You may not copy
all or even part of a solution from anyone else, or from the web, or from a book,
or from anything else—even if you acknowledge the source. I have absolutely no
tolerance for this.

And you may not get help from anyone in writing things up.

With one exception: me. You may ask me for help (either in person or by email) in expressing
things, and I’ll be happy to give what help I think is appropriate. This will not lower your
grade. And—please be careful about this—I expect you to be able to explain to me anything
you have written.

6. There will be two exams in class, and there will be a final exam. All exams will be closed-book.
You should bring nothing to the exams except something to write with.

7. Don’t be afraid to ask questions. I like questions. Don’t be afraid that you might appear
“stupid”. None of you are stupid.

8. Don’t be afraid to send me email. I expect to get email. It doesn’t offend me. It won’t lower
your grade.

9. You may typeset your homework if you want, but you really don’t need to. You can just write
it out neatly. And you must explain things clearly. I do need to be able to read it easily! This
is very important. I’m not a mind reader. I don’t automatically know what you were thinking
when you wrote something. If I can’t understand it, then it’s wrong.

10. Finally, please staple your homework together. No paper clips or anything else. Just one
staple.

1



2 3 THE ANALYSIS OF ALGORITHMS

2 A Word From Our Founder

Algorithms—including some very sophisticated algorithms—go back at least to the ancient Greeks
several thousand years ago. The term “algorithm” was borrowed from Arabic sometime in the
Middle Ages.

The term “analysis of algorithms” however, which is the title of this course, and which names one
of the main branches of computer science, is actually not very old at all. In fact, it originated with
Donald Knuth in the introduction to his famous series of books in 1967:

The subject of these books might be called “nonnumerical analysis.” Although com-
puters have traditionally been associated with the solution of numerical problems such
as the calculation of the roots of an equation, numerical interpolation and integration,
etc., topics like this are not treated here except in passing. Numerical computer pro-
gramming is a very interesting and rapidly expanding field, and many books have been
written about it. In recent years, however, a good deal of interesting work has been
done using computers for essentially nonnumerical problems, such as sorting, translat-
ing languages, theorem proving, the development of “software” (programs to facilitate

the writing of other programs), and simulation of various processes from everyday life.
. . .

Of course, “nonnumerical analysis” is a terribly negative name for this field of study,
and it would be much better to have a positive, descriptive term which characterizes
the subject. “Information processing” is too broad a designation for the material I
am considering, and “programming techniques” is too narrow. Therefore I wish to
propose analysis of algorithms as an appropriate name for the subject matter covered
in these books; as explained more fully in the books themselves, this name is meant
to imply “the theory of the properties of particular computer algorithms.”

Donald E. Knuth, from the preface to The Art of Computer Programming, Vol. 1

3 The Analysis of Algorithms

This course could really be thought of as a mathematics course. In particular, there is no program-
ming in this course at all, although if you have not had some serious programming experience, you
probably won’t get the full benefit out of what we’re doing here.

Nor is this course a “cookbook” course. It’s not a course in “really neat algorithms you can use”.
Of course we will be discussing some interesting and important algorithms. But the course focuses
entirely on two topics:

• Given an algorithm for computing something, we need to be able to prove that the algorithm
is correct, in the sense that

1. It actually halts on every input, and

2. When it does halt, it has computed what it is supposed to compute; i.e., “the correct
answer”.

• Given an algorithm for computing something, we need to know how “good” or “efficient” that
algorithm is. As I just stated it, this is a vague question, and there are several different ways



3

to ask it. For instance, we might ask how much space (memory or disk space) an algorithm
needs. Or we might ask how much time it takes. And there are subtle but important variations
of these questions that will be very important to us.

For example, let us consider what computer scientists call a “dictionary”:

A dictionary is a set of 〈key, value〉 pairs. A value is retrieved by looking up its associated key.
Dictionaries come up all over the place in computer science.

1. Some dictionaries are built once and items are never deleted from them. An example would
be a symbol table in a compiler. In such a case, a hash table is the best thing to use.

2. Some dictionaries need to handle both insertions and deletions. In such a case, some kind of
binary search tree might be a better choice.

Note that I haven’t proved either of these statements. And I’m not going to do it right now, either.
We will be looking into some of this material later in the course, in some detail.

One important thing to notice, however—and it’s a common phenomenon—is that many problems
can be solved by more than one kind of algorithm. Often there is no “best” one—the one you want
to use may depend on the situation.

We need to have a way of reasoning about these things so that the answers we come up with are
not just things like “well, it seemed to work out best for me this way rather than that.”

The “ways of reasoning” are all based on the mathematical analysis of algorithms. Mathematics
provides us with a powerful tool that in many cases can tell us very accurately what an algorithm’s
strengths and weaknesses are.

Mathematical reasoning is also used in our first goal—proving that an algorithm actually does what
we want it to do—i.e., that it is “correct”. And such such proofs are important in themselves, because
they usually give us some important insight into why the algorithm works. This is important for
a computer scientist. (Suppose for example that we want to modify the algorithm slightly. Will it

still work? Will it still be efficient?)

So we will be writing a lot of proofs in this class—both proofs of correctness and proofs of measures
of efficiency. Some of the mathematics we will be using is pretty sophisticated. This is not a
“plug-and-chug” course. You will have to think hard about a lot of this.

Don’t be afraid of mathematics!

So now to get going, we’re going to talk about a central problem in computer science—the problem
of sorting—and two algorithms that can be used to solve it, and we’ll say a little about how those
two algorithms can be analyzed. Think of this as a general introduction to how this course will
proceed. As we go on, our methods will use more far-reaching techniques.

4 Insertion sort

Here is the code for insertion sort as given in the text. To make things simple to state, let us assume
that we are sorting an array A[1 . . n] of numbers. The same reasoning would apply if A were an
array of any sort of elements that could be compared. For instance, we could have an array of words,
and compare the words using alphabetical order. Also, to make things simple, let us assume that
all the elements of A are distinct.



4 4 INSERTION SORT

Insertion-Sort(A) // A is a 1-based array.

for j ← 2 to A.length do

key ← A[j]

// Insert A[j] into the sorted sequence A[1 . . j − 1].

i← j − 1

while i > 0 and A[i] > key do

A[i + 1]← A[i]

i← i− 1

A[i + 1]← key

2 8 7 1 3 5 6 4

The initial unsorted array.

1 2 7 8 3 5 6 4

j

3

key

Beginning of step j. In this case, j = 5. The vari-
able key holds the value 3. All the gray elements
(to the left of the thick vertical line) are in order.
The lightly shaded elements are the ones greater
than the value 3 of the key.

1 2 3 7 8 5 6 4

End of step j. Now all the elements to the left of
the thick line (which has been moved 1 element to
the right) are in order. The next step will start
with j = 6 and key will hold the value 5.

Figure 1: How insertion sort works.

There are two important questions we need to address:

Correctness. How do we know that this algorithm is correct? That is, can we prove it always
gives the correct answer?

Efficiency. How efficient is it? What is the running time?

So now we address those two problems.



4.1 Proof of correctness of insertion sort. 5

4.1 Proof of correctness of insertion sort.

This is essentially an inductive proof, where the induction is over the iterations of the for loop.

When you prove something by induction, there is always what we call the inductive hypothesis. It’s
a statement that should be pretty obviously true at the beginning of the process and that you have
to prove continues to be true as the process goes on.

When you give a proof by induction, you have to state explicitly what the inductive hypothesis is.

If you don’t, you haven’t given a proof by induction1.

In this case, the inductive hypothesis is what the text calls a loop invariant:

4.1 Lemma (The inductive hypothesis) At the start of each iteration of the loop (each iteration

being characterized by a value of j), the numbers in A[1 . . (j− 1)] are in sorted order. (In fact, they

are the numbers that were originally in A[1 . . (j − 1)], but they are now in sorted order.)

Proof. When j = 2, this is trivially true. (Why?)

To pass from j − 1 to j, we insert the jth element (i.e., the key) just below the least element in

A[1 . . (j−1)] that is greater than it. So it is less than all the elements on its right, and greater than

all the elements on its left. (Why is this?) And this just means that the elements in A[1 . . j] are
now in sorted order.

Thus, when we are done (i.e., after the last iteration, which we can regard as the start of the

nonexistent “next one”), all the elements in A are sorted.

And that’s the proof.

4.1.1 What do we really mean by “the inductive hypothesis”?

People often get very confused about what the inductive hypothesis is. In fact, it might be better—
and I encourage you to do this—to think of the inductive hypothesis as a sequence of statements.
In this case, the statements are as follows:

• Statement 5 is: “At the start of iteration 5 of the loop, the numbers in A[1 . . 4] are in sorted
order.”

• Statement 6 is: “At the start of iteration 6 of the loop, the numbers in A[1 . . 5] are in sorted
order.”

and so on. You should be able to see that Statement 1 is vacuously true2 And Statement 2 is trivially
true. So we do have somewhere to start (as we already noted above). The proof then showed that

if for some number j, Statement j was known to be true, then it follows (by the algorithm; i.e.,

the pseudo-code) that the next statement (i.e., Statement j + 1) must be true. Since we know that
Statement 2 is true, it thus follows that Statement 3 must be true. And the same reasoning shows
us that we can continue in this manner and conclude that Statement j is true for all values of j ≥ 2,
which is what we needed to show.

1And quite likely, you haven’t given a proof at all.
2Do you know what that means? If you don’t, you need to look it up immediately. It’s important for everything

we do in this course.



6 4 INSERTION SORT

4.1.2 A warning

For some reason, inductive proofs seem to be difficult at first. And I have seen many students who
believe that you can get from “statement j” to “statement j + 1” by simply substituting j + 1 for
j. That can’t be true. That would only work if we knew from the beginning that the inductive
hypothesis was true for all j. And we don’t. (Because if we really knew that to begin with, we

would be done, right?)

So we have to use something special to get from the presumed fact that statement j is true to deduce
that statement j + 1 is then true. And that “something special” has to be something based on how
the algorithm actually works. In the case here, that “something special” was the red paragraph
above.

You should take whatever time you need in order to understand what I have written here. I’m not
going to go over this any more in class. You should all have had this in at least one previous class
anyway, and I expect you to understand it and be able to use it.

4.2 Efficiency of insertion sort

What’s the running time? Clearly, it depends on the input. For instance,

• A longer input will generally take longer.

• An already sorted input will take less time.

Let’s express the running time in terms of the length n of the input. This takes care of the first
item above. As for the second, there are three possibilities to consider:

the worst-case time For an input of size n, imagine finding the input A[1 . . n] which takes the

longest time to sort. That gives the worst-case time (as a function of n). The worst-case time
is useful because it gives a guarantee: you know that no matter what the input is, you will
certainly do at least that well.

the best-case time For an input of size n, imagine finding the input A[1 . . n] which takes the
shortest time to sort. That gives the best-case time. Leiserson says this is “bogus”, because
you almost never get the best-case time in practice. It’s sort of “cheating”, he thinks. But it
does tell something—it tells you that using this algorithm, you will never do better than the
best-case time.

the average-case time Average the times that the algorithm takes over all possible inputs of
length n. To do this, we need some assumption of the statistical distribution of the inputs.
(For instance, if we know that for our particular application certain inputs will never occur,

we can ignore them in figuring out the average.)

Average-case analysis is the most difficult to figure out in general, but it is also the most useful.
We will spend serious time on this in this course.

Note that there are a number of things we don’t care about when we compute running time for an
algorithm:



4.2 Efficiency of insertion sort 7

1. The speed of the machine.

2. The amount of memory it has.

3. The cache or caches it has.

(Well, this is not quite true. Sometimes we do care about these things, but not in this course.)

So what do we care about? Answer: the number of “operations”. What is an operation? Answer:
any arithmetic operation such as addition, or multiplication; any data structure operation such as
assignment. We will generally assume in this course that these are all equally expensive. (For some
very sophisticated scientific computations, this is not strictly speaking the right thing to do, but for
most algorithms, and in particular, for the ones we will be considering here, it is fine.)

4.2.1 Some plausible but not rigorous estimates

So let’s start looking at these efficiency questions. We can make reasonable guesses about the
worst-case and best-case running times as follows:

1. It’s reasonable to guess that the best-case time will occur when the input array is already
sorted in the correct order. In this case, the while loop in the algorithm will have a constant
cost for each value of j—in fact, it will not even be executed once, ever. The only cost will
be the cost of the test at the top of the loop. So the cost for each iteration of the j loop is
constant. Let’s call it c. Then the running time is

T (n) =
n

∑

j=1

c = (n− 1)c

so it’s essentially linear in n.

2. It’s also reasonable to guess that the worst-case time will occur when the input array is sorted,
but in reverse order. In this case, the body of the while loop is executed j − 1 times on the

jth iteration of the outer loop. And so if we say that a is the cost of the constant overhead of
the instructions outside the while loop, and if the cost of the body of the while loop is c, we
have

T (n) =

n
∑

j=2

(

a + (j − 1)c
)

which is of the form An2 + Bn + C for some constants A, B, and C.

Thus in this case, the cost is quadratic in n. This is of course considerably worse than linear.

4.2 Exercise Prove the assertion made above: that if there are positive constants a and c such that

T (n) =
n

∑

j=2

(

a + (j − 1)c
)



8 4 INSERTION SORT

then there are constants A, B, and C such that

T (n) = An2 + Bn + C

Of course A, B, and C depend on a and c, but do not depend on n. You should show also that
A > 0. That’s an important fact.

4.2.2 A careful and rigorous analysis

Well, actually this was just a little bit sloppy. We can do rather better by a careful analysis of the
code. We can see that the key to determining the cost of the algorithm is the number of times the
while loop is executed. And this may differ for different values of the for loop index j. So we will
let tj denote the number of times the test at the head of the while loop is executed. This is 1 more

than the number of times the body of the while loop is executed.

Note that we have

1 ≤ tj ≤ j

Then we can annotate the code like this:

Insertion-Sort(A) cost times

for j ← 2 to A.length do c1 n

key ← A[j] c2 n− 1

// Insert A[j] into the sorted sequence A[1 . . j − 1].

i← j − 1 c4 n− 1

while i > 0 and A[i] > key do c5

∑n

j=2 tj

A[i + 1]← A[i] c6

∑n

j=2(tj − 1)

i← i− 1 c7

∑n

j=2(tj − 1)

A[i + 1]← key c8 n− 1

The first thing we should do is write down an expression for the total running time T (n) of this

algorithm. It might at first appear that the expression
∑n

j=2 tj should be pulled out by itself.

However, it turns out (as we’ll see below) that it actually is more natural to pull out
∑n

j=2(tj − 1).

When we do this, we get

T (n) = (c1 + c2 + c4 + c5 + c8)n− (c2 + c4 + c5 + c8) + (c5 + c6 + c7)
n

∑

j=2

(tj − 1)

Now we can be precise about our estimates:

worst-case time T (n) will be as big as possible when tj = j. This will happen precisely when A



4.3 Permutations and inversions 9

is initially sorted in reverse order. Since

n
∑

j=2

(j − 1) =

n−1
∑

j=1

j =
n(n− 1)

2

we see that T (n) is of the form an2 + bn + c—it is “quadratic in n”.

best-case time T (n) will be as small as possible when tj = 1. This will happen precisely when A

is initially sorted in the proper order. In this case we have

∑

j=2

n(1− 1) = 0

and so T (n) is of the form an + b—it is “linear in n”.

Finding the average-case time is much more difficult, because it involves finding the average value

of the sum
∑n

j=2(tj − 1) over all possible permutations of the input. This seems at first to be

impossible. However, it turns out that it can actually be done, and quite elegantly, in fact, as we
will now show.

4.3 Permutations and inversions

Remember that we are taking the average over all permutations of the input data.

Now associated with each permutation is a set of inversions.

Definition An inversion of a sequence of numbers (a1, a2, . . . , an) is an ordered pair (i, j) such that

• i < j, and

• ai > aj

In other words, it is the set of ordered pairs of indices which are “in order” but whose corresponding
values are “out of order”.

Suppose, for instance we consider the sequence (5, 2, 3, 7, 1), which we denote as follows:

n an

1 5

2 2

3 3

4 7

5 1

So a3 = 3, and a4 = 7. This sequence has 6 inversions:



10 4 INSERTION SORT

inversion (i, j) elements (ai, aj)

(1, 2) (5, 2)

(2, 5) (2, 1)

(3, 5) (3, 1)

(4, 5) (7, 1)

(1, 3) (5, 3)

(1, 5) (5, 1)

Note that if I tell you I have a permutation of 11 elements and that (2, 4) is
an inversion in that permutation, that tells you nothing about what the actual
elements are—2 and 4 are just the indexes of the elements, not the values of the
elements.

In the above example, for instance, if I did not tell you that the permutation was
the ordered set (5, 2, 3, 7, 1), but I only told you that the permutation I had in mind
had the inversion (4, 5), you would have no way of knowing that the two elements
in question were 7 and 1.

The way inversions come into our problem is this: (I’ll write it as a lemma as a way of isolating it

as a separate result.)

4.3 Lemma The number of inversions of the input data is the number of times the while loop is
executed.

Proof. When we are at the top of the while loop, we have to decide whether or not A[i] is bigger

than the key (which was the original A[j]). Now the index j of the element A[j] is the original index

in the input data, because until we get to the end of the jth iteration of the for loop we have not
moved the element A[j]. The element A[i] may have a different index than it did originally, but in

any case, its original index as well as i (which is its current index) are both < j. Therefore while

we are executing the jth iteration of the for loop, we know that the number of inversions (i, j) with

i < j in the current array is the same as in the original array—that is, A[j] is still in its original

position, and each of the elements A[i] may have moved from its original position A[iorig], but in

any case, both i and iorig are < j.

Now there are two possibilities:

• A[i] < A[j]. In this case, the pair (i, j) is not an inversion of the current sequence. And in
this case, we do not execute the body of the while loop—we exit the loop and continue on to
the last statement of the for loop.

• A[i] > A[j]. In this case, the pair (i, j) is an inversion of the current sequence. And in this
case, we do execute the body of the while loop, which has the effect of getting rid of that
inversion by moving A[i] up one, freeing up a place below it for A[j] to be inserted.



4.4 How many inversions are there? 11

Further, because we know that at the beginning of the jth iteration of the for loop the elements
A[1 . . (j − 1)] are in increasing order, we know that the number of iterations of the while loop on

the jth iteration of the for loop is exactly the number of inversions (i, j) with i < j. And by what

we have seen above, this is exactly the same as the number of inversions (i, j) with i < j in the
original sequence.

As the for loop continues, therefore, the total number of times the while loop executes is just the
total number of inversions in the entire original sequence.

Thus, we have shown that the total number of inversions in the original sequence is just the expres-

sion
∑n

j=2(tj − 1).

4.4 How many inversions are there?

Remember that our problem was to find the average value of the sum
∑n

j=2(tj − 1) over all permu-

tations. We now have just seen that this is just the total number of inversions in all permutations,
divided by the number of permutations (which, as we know, is n!).

So we have reduced the problem to finding the total number of inversions in all permutations on n
elements.

At first, this may seem not to be of much help. But in fact, there is a nice way of looking at it
which gives us the answer very quickly:

To each permutation (a1, a2, . . . , an) there is a reverse permutation, namely (an, . . . , a2, a1), which
consists of the same numbers in the reverse order. Just to establish some notation, we can name
the elements of the reverse permutation like this: (b1, b2, . . . , bn). So we have b1 = an, b2 = an−1,
and so on.

For example, the permutation we considered above

(5, 2, 3, 7, 1)

corresponds to the reverse permutation

(1, 7, 3, 2, 5)

Here we have

a1 = 5 = b5

a2 = 2 = b4

a3 = 3 = b3

a4 = 7 = b2

a5 = 1 = b1

We can use this to make some correspondences, like this:



12 4 INSERTION SORT

pair of indices corresponding pair of elements

original permutation (2, 3) (a2, a3)

reverse permutation (3, 4) (b3, b4)

Note that

• We have the ordered pair of indices (2, 3) in the original permutation corresponding to (3, 4)

(rather than (4, 3)) in the reverse permutation, because we consider pairs of indices where the
first is less than the second.

• (2, 3) is not an inversion in the original permutation, but its corresponding pair of indices

(3, 4) is an inversion in the reversed permutation.

In fact, we could write this more systematically:

pair of indices corresponding pair of elements

original permutation (i, j) (ai, aj)

reverse permutation (j′, i′) (bj′ , bi′)

Again, note that we have written (j′, i′), because (just as we have i < j) we want to have j′ < i′.

4.4 Exercise Assume that the number of elements in the permutation is n. What is the formula for i′

as a function of i (and n, of course)?

Now here’s the key idea: as we noticed above, the pair of indices (i, j) is an inversion in the original

permutation iff the pair of indices (j′, i′) is not an inversion in the reversed permutation.

Now how many pairs (i, j) with i < j are there in the original sequence? Think of it this way:

There are
(

n

2

)

2-element subsets of the original sequence. Each 2-element subset corresponds to two

ordered pairs, of which one has its indices “in the right order”. (For example, the 2-element subset

{3, 4} corresponds to the two ordered pairs (3, 4) and (4, 3). One of these—(3, 4)—is in the right

order.)

Therefore the number of pairs (i, j) in the original sequence with i < j is just
(

n

2

)

. And each one of

these pairs is either an inversion in the original sequence or corresponds to one (i.e, to an inversion

(j′, i′) in the reverse sequence. Therefore the number of inversions in both those sequences together

must be exactly
(

n

2

)

. That’s the key.

In the example we’ve been using, there are 5 elements, and so there are
(

5

2

)

pairs:

pairs of indices pairs of elements

in the original permutation in the original permutation

(1, 2) (1, 3) (1, 4) (1, 5) (5, 2) (5, 3) (5, 7) (5, 1)

(2, 3) (2, 4) (2, 5) (2, 3) (2, 7) (2, 1)

(3, 4) (3, 5) (3, 7) (3, 1)

(4, 5) (7, 1)



4.5 The Average-case analysis: putting it all together 13

The red pairs of indices (on the left) are inversions in the original permutation, and the blue pairs
correspond to inversions in the reverse permutation.

We’re almost done.

The total number of permutations is n!. Since each permutation can be paired with its reverse
permutation, the total number of such pairs of permutations is n!/2. Each such pair of permutations

contains a total of
(

n

2

)

inversions. Therefore the total number of inversions in all the permutations

together is

n!

2

(

n

2

)

The average number of inversions in a permutation then, is this divided by the number of permu-
tations (which is n!). That is, the average number of inversions in a permutation is

1

2

(

n

2

)

=
n(n− 1)

4

4.5 The Average-case analysis: putting it all together

We thus find that the average value of T (n) (averaged over all permutations of the input data) is

(c1 + c2 + c4 + c5 + c8)n− (c2 + c4 + c5 + c8) + (c5 + c6 + c7)
n(n− 1)

4

And without dragging this out any more, it is clear that this is of the form an2 + bn + c. So the
average running time of insertion sort is quadratic in the size of the input data.

5 Merge sort

Merge sort (which I think is due to von Neumann) is an example of a “divide-and-conquer” algorithm.
Such algorithms are generally very powerful. Here’s the basic idea:

• Divide the problem into two smaller problems.

• Solve each of the smaller problems. (This amounts to a recursive call.)

• Combine the two solutions into a solution of the original problem.

For this to work, of course, there must be a way of dividing the original problem into subproblems
in such a way that the solutions of the two sub problems are related in some easy-to-understand
way to the solution of the original problem. And—related to this—the costs of steps 1 and 3 must
be relatively cheap.

Merge sort works in this way. We start as before with an array A[1 . . n] of numbers to be sorted.
The top-level call is

Merge-Sort(A, 1, n)



14 5 MERGE SORT

which sorts all the elements in array A in positions 1 . . n. And in general, we have calls Merge-Sort(A, p, r)

which (called recursively) sort all the elements in array A in positions p . . r. It works like this:

Merge-Sort(A, p, r)

if p < r then

q ←
⌊

p+r

2

⌋

Merge-Sort(A, p, q)

Merge-Sort(A, q + 1, r)

Merge(A, p, q, r)

So the whole algorithm (in this case) really depends on step 3—the combining step, which is imple-
mented by the auxiliary function Merge. Here’s how Merge works:

We start with two lists (from the two previous calls to Merge-Sort. By induction they are already
sorted.

5.1 Exercise What does “by induction” really mean here?

Let us denote the two lists by L and R (for “left” and “right”), and say we are looking at them
“from the bottom up”:

L R

20 12

13 11

7 9

1 2

At each step we pick the least of the two visible numbers. So the first number we pick is 1.

1

L R

20 12

13 11

7 9

2

1 2

20 12

13 11

7 9

1 2 7



15

20 12

13 11

9

1 2 7 9

20 12

13 11

1 2 7 9 11

20 12

13

1 2 7 9 11 12

20

13

1 2 7 9 11 12 13

20

1 2 7 9 11 12 13 20

Figure 2 shows the code for Merge(A, p, q, r). This picture helps explain some of the code in that
figure:

p q r

q − p + 1 r − q

Proof of correctness. Here’s our inductive hypothesis, which again in this case has the form
of a loop invariant:

5.2 Lemma (The inductive hypothesis) At the start of each iteration of the for loop on k, the

subarray A[p . . k − 1] contains the k − p smallest elements of L[1 . . n1 + 1] and R[1 . . n2 + 1], in

sorted order. Moreover, L[i] and R[j] are the smallest elements of their arrays that have not been
copied back into A.

Proof. When k = p, this is vacuously true. (Why?)

To go from k − 1 to k, there are two possibilities: either L[i] ≤ R[j] or L[i] > R[j].

In the first case, L[i] is the smallest element not yet copied back into A. (Why is this?) So we copy

it into A (at the right position), and the loop invariant is maintained.

The second case is similar.



16 5 MERGE SORT

Merge(A, p, q, r)

n1 ← q − p + 1

n2 ← r − q
// Create arrays L[1 . . n1 + 1] and R[1 . . n2 + 1]
for i← 1 to n1 do

L[i]← A[p + i− 1]
for j ← 1 to n2 do

R[j]← A[q + j]
L[n1 + 1]←∞
R[n2 + 1]←∞
i← 1

j ← 1

for k ← p to r do
if L[i] ≤ R[j] then

A[k]← L[i]
i← i + 1

else

A[k]← R[j]
j ← j + 1

Figure 2: Pseudo-code for Merge(A, p, q, r).

And that finishes the proof of correctness, because when we’re done, k is r + 1.

5.3 Exercise Rewrite the inductive hypothesis as a sequence of statements, as we did before. Then
rewrite the proof using that sequence of statements.

We note that Merge(A, p, q, r) takes time “linear” in n = r − p + 1. (By this I simply mean that

the running time is of the form an + b).

To analyze the running time of Merge-Sort, we look at the steps involved. Say the time to perform
Merge-Sort on an array of n elements is T (n). Then T (n) must be the sum of three terms:

Step 1. (“Divide”) This just finds the middle of the array. This can be done in constant time.
Say the constant is c.

Step 2. (“Conquer”) This consists of the two recursive calls, each on an array of half the size.

So the cost of this step is 2T (n/2).

Step 3. (“Merge”) We have just seen that this is linear in n. Say it is cn. (Note that we’re using
the same constant c here as in Step 1. This is really OK; we could use any sufficiently large
c and get a slightly worse upper bound on the running time; for our purposes that would be
fine.)

And finally, there is a “base case”: when A contains only 1 element. In this case, certainly the cost
is simply some constant. So—since we don’t really care what these constants are—we can see that

T (n) =

{

d if n = 1

2T (n/2) + cn otherwise



17

Note how the recursion in the algorithm is mirrored in the recursive nature of this identity.

Now identities like this come up frequently in algorithmic analysis. It’s important to have ways of
solving them. We’ll see a couple. One basic way is to form a recursion tree. Figure 3 shows how we
do it:

T (n) cn

T
(

n
2

)

T
(

n
2

)

cn

T
(

n
4

)

T
(

n
4

)

T
(

n
4

)

T
(

n
4

)

cn

cn

...

dn

Figure 3: Recursion tree for Merge-Sort in the simplest case where n is a power of 2.

If n = 2p then there are p rows with cn on the right, and one last row with dn on the right. Since
p = log2 n, this means that the total cost is

cn log2 n + dn

In other words, this is what we call an “n log n” algorithm.


