
CS 624

Lecture 3: Heapsort

1 Pre-heaps

Definition The height of a node in a tree is the number of edges on the longest path from that node
down to a leaf.

For instance, in the tree on the left of Figure 1,

4

3 1

1 2 0 0

0 0 1

0

0

1 1

2 2 2 2

3 3 3

4

Figure 1: Heights (on the left) and levels (on the right).

each node has its height indicated by a number. The red nodes are at height 0, the green nodes are
at height 1, and so on. In this picture, the tree was a binary tree, but certainly this definition of
height applies to nodes in any tree.

Definition The height of a tree is the height of the root.

We will generally use the variable H to refer to the height of a tree.

1

2 1 PRE-HEAPS

We say that each node in a tree is on some level. The root is at level 0. The children of the root
are at level 1. And in general, the children of a node at level k are at level k + 1. So we could also
say that the height H of a tree is the greatest level of any node in the tree.

In a binary tree, there are at most 2k nodes at level k. Further, if the highest level is completely

filled in, then that level contains 2H nodes, and the tree contains

1 + 2 + 4 + · · ·+ 2H = 2H+1 − 1

nodes.

We are going to study a particular kind of data structure called a heap. In computer science
generally, the term heap normally refers to memory that is allocated explicitly by the programmer
(for instance, by a “new” statement). In the world of algorithms, however, a heap is a particular
kind of data structure. That is the meaning we will use in the course.

There are two parts to the definition of a heap:

• It is a special kind of binary tree—a binary tree with a specific kind of shape.

• Each node contains some data satisfying certain constraints.

For clarity, I’m going to abstract out just the first part—we will call such a data structure a pre-heap1

Definition A pre-heap is a binary tree such that

• All leaves are on at most two adjacent levels.

• With the possible exception of the lowest level, all the levels are completely filled. The leaves
on the lowest level are filled in, without gaps, from the left.

Because of the shape of a pre-heap, we can represent the elements simply in a 1-dimensional array:

A[1]

A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10] A[11] A[12]

1.1 Exercise The children of the node holding A[n] are the nodes holding A[2n] and A[2n + 1], and the

parent of the the node holding A[n] is A
[

⌊n/2⌋
]

.

1Please note that this term is not at all standard. I made it up just for these notes. You probably won’t find it
anywhere else.

3

Here is another example of a pre-heap. Each node is tagged with its height. The height of the tree

itself is 3. All the levels less than 3 are completely filled in, and there are a total of 23 − 1 nodes at
those levels.

3

2 1

1 1 0 0

0 0 0 0

If we have a pre-heap with n nodes, let us denote its height by H. By what we have already seen
above, the tree must look like what is shown in Figure 2. Based on that figure, we can see that

2H ≤ n ≤ 2H+1 − 1 < 2H+1

Equivalently,

H = ⌊log2 n⌋

1.2 Lemma In a pre-heap with n elements, there are
⌈

n

2

⌉

leaves.

Proof. Some leaves are at level H, and some are at level H − 1.

Since the number of nodes at level H − 1 or less is 2H − 1, the number of leaves at level H is

n− (2H − 1).

The parent of node n is node
⌊

n

2

⌋

, and that node is the last node of height 1. So all the rest of the

nodes at level H − 1 are of height 0, i.e., are leaf nodes. Therefore the number of leaves at level

H − 1 is (2H − 1)−
⌊

n

2

⌋

.

Hence the total number of leaves is

n− (2H − 1) + (2H − 1)−
⌊n

2

⌋

= n−
⌊n

2

⌋

=
⌈n

2

⌉

1.3 Exercise We used the fact that if a is any number of the form n/2 where n is an integer, then

⌊a⌋+ ⌈a⌉ = 2a

Prove this. Hint: since n is an integer, there are two possibilities: either n is even, or n is odd.
Consider those two cases separately.

1.4 Corollary In a pre-heap with height H, there are at most 2H leaves.

4 1 PRE-HEAPS

.

. .

.

Level 0

Level 1

Level 2

Level 3

Level H − 1

Level H

node 2H − 1

node 2H

node n

Figure 2: A pre-heap with levels and heights indicated. The leaves are the elements in the yellow
regions.

Proof. If n is the number of elements in the pre-heap, we know that 2H ≤ n ≤ 2H+1 − 1 < 2H+1.
Then by the Lemma, the number of leaves is

⌈n

2

⌉

≤

⌈

2H+1

2

⌉

=
⌈

2H
⌉

= 2H

This next result is intuitive, but also essential for what we do below.

1.5 Theorem In a pre-heap with n elements, there are at most n

2h nodes at height h.

Proof. We have just seen that there are at most 2H leaves in such a tree, and the leaves are just
the nodes at height 0.

Now if we take away the leaves, we have a smaller pre-heap with at most 2H−1 leaves, and these
leaves are exactly the nodes at height 1 in the original tree. Continuing, we see that there are at

most 2H−h nodes at height h in the original tree. And

2H−h =
2H

2h
≤

n

2h

so we are done.

5

2 Heaps

Definition A heap is a binary tree with a key in each node. The keys must be comparable—that
is, we must be able to say which of two keys is greater or lesser. (So for our purposes here, we

can think of the keys as being numbers.) To be a heap, such a binary tree must have the following
properties:

• The tree must be a pre-heap. That is,

– All leaves are on at most two adjacent levels.

– With the possible exception of the lowest level, all the levels are completely filled. The
leaves on the lowest level are filled in, without gaps, from the left.

and in addition,

• The key at each node is greater than or equal to the key in any descendant of that node.

The last of these conditions could also be phrased recursively, like this:

• The key in the root is greater than or equal to that of its children, and its left and right subtrees
are again heaps.

Even though the shape of a heap containing n elements is uniquely determined (since it is a pre-

heap), the arrangement of those n elements is not. For example, here are two heaps, both containing
the same set of keys:

16

14 10

8 7 9 3

2 4 1

16

14 8

4 10 3 7

1 2 9

Because of the regular structure of a pre-heap, it is most efficient to store a heap as an array. The
key held by element i is A[i].

Note the special trivial case: if the tree contains only one node, then automatically it must be a
heap. This is used as the base of the recursive algorithm for creating heaps; it is also used as the
base of the inductive argument showing that the algorithm is correct. Of course those two uses are
at bottom the same.

6 3 THE HEAPIFY PROCEDURE

3 The Heapify procedure

Heaps are remarkable data structures in that they seem to carry “just the right amount” of informa-
tion. Not too much—they don’t have the set of elements completely sorted, and not too little—they
do have some extremely important order relations encoded in them.

For this reason, it is extraordinarily efficient to create and modify heaps. We do this using a helper
routine named Heapify. And as we will see, Heapify is very cheap indeed.

The idea is this: we have a binary tree in the shape of a heap (but perhaps not actually a heap). For

convenience, we represent the tree as an array A[1..n], where n = A.heapsize. Further, we specify a

distinguished node i (holding the value A[i]). (It would probably be better to be more careful and

refer to this node as “the node having index i”.)

We will follow our text in using the following notation:

• Left(i) is the index of the left child of the node having index i, if that node exist. So if the

node having index i has a left child, then Left(i) = 2i.

• Right(i) is the index of the right child of the node having index i, if that node exists. So if

the node having index i has a right child, then Right(i) = 2i + 1.

Heapify takes as input the array A and one of the nodes, say i. So it is called like this: Heapify(A, i).

It is assumed (and it must be true) that the children of node i are the roots of heaps. That is, if
the node having index i has two children, then it must be the case that

• The tree rooted at l = Left(i) is a heap.

• The tree rooted at r = Right(i) is a heap.

We do not, however, assume that A[i] ≥ max
{

A[l], A[r]
}

. Equivalently, we do not assume that the

tree rooted at i is a heap. And it also might be that

• node i has only one child (in which case that one child must be the root of a heap), or

• node i has no children.

If node i has no children there there is no assumption that has to be made; in such a case, Heapify

will return without doing anything.

Heapify, when applied to this situation, will reorganize the nodes at and under A[i] so that they

form a heap rooted at A[i]. (That is, it will move values from one node to another, so that when it

is done, the value of A[i] may be different from what it was originally. If so, however, the original

value will be at some descendant of A[i].) It’s important to note that this procedure does not change
the shape of the tree—it only changes where values are located in the tree.

The procedure works by letting the value A[i] “float down” to its proper position in the heap.

In the following pseudocode the condition “if l ≤ A.heapsize” is just a test to make sure that there
actually is a node at position l.

7

Heapify(A, i)

l← Left(i)

r ← Right(i)

// First figure out which of the top three nodes (i.e., the node at

// i and its children, whether there are 0, 1, or 2 of them) holds

// the largest value.

if l ≤ A.heapsize and A[l] > A[i] then

largest ← l

else

largest ← i

if r ≤ A.heapsize and A[r] > A[largest] then

largest ← r

// Then switch that node with the node at position i.

if largest 6= i then

exchange A[i]↔ A[largest]

Heapify(A, largest)

Figure 3 shows an example (from the text) of how Heapify works.

You should convince yourself (by looking at the pseudocode) that Heapify correctly handles the
cases in which node i has only 1 child, or no children at all.

3.1 Exercise Prove that the call to Heapify(A, i), when used as directed, does actually transform the
subtree rooted at i into a heap.

This proof will of necessity be inductive. The point of this exercise is to write your proof in a way
that makes that clear.

What’s the running time of Heapify? The time needed to run Heapify on a subtree of size n
rooted at a given node i is

• time Θ(1) to fix up the relationships among the elements A[i], A
[

Left(i)
]

, and A
[

Right(i)
]

,

plus

• time to run Heapify on a subtree rooted at one of the children of node i. If the subtree rooted
at node i has n nodes, the subtree rooted at either of its children has size at most 2n/3—the
worst case occurs when the last row of the subtree rooted at node i is exactly half full.

3.2 Exercise Prove this last statement. Note that in any case, any subtree of a pre-heap that consists
of an element and all its descendants is also a pre-heap. Then what you have to prove is that if a
pre-heap has n nodes, then either subtree of the root has at most 2n/3 nodes.

So the running time T (n) can be characterized by the recurrence

T (n) ≤ T (2n/3) + Θ(1)

This falls into case 2 of the “master theorem”, and so we must have

T (n) = O(log n)

8 4 BUILDING A HEAP

16

4 10

14 7 9 3

2 8 1

This is node 2.
A[2] = 4.

16

14 10

4 7 9 3

2 8 1

This is node 2.
A[2] = 14.

16

14 10

8 7 9 3

2 4 1

This is node 2.
A[2] = 14.

Figure 3: How Heapify works. In the original picture, the children of the node 2 (with value
A[2] = 4) are both roots of heaps. Node 2 however, is not. Heapify(A, 2) allows the original value
in node 2 (that is, 4) to “float down” until it finds its proper place.

(Well, actually there is something to be considered here: the master theorem deals only with
recursive equalities, and this is an inequality. The Remark after the Master Theorem in Lecture 2
handles this, however.)

Another way to express this is to say that the running time of Heapify(A, i) is

O(the height of the element A[i])

4 Building a heap

Now that we have the helper routine Heapify, we can use it to construct a heap very easily: We just
start with an array A of numbers (organized in no particular order) and we rearrange the numbers
in the array to form a heap. We do this starting at the “far end” of the array and working back to

4.1 The cost of Build-Heap—a remarkable result 9

the beginning:

Build-Heap(A)

A.heapsize ← A.length

for i←
⌊

A.length/2
⌋

down to 1 do

Heapify (A, i)

For the proof of correctness, we use the following loop invariant:

4.1 Lemma (The inductive hypothesis) At the start of each iteration of the for loop, each node
i + 1, i + 2, . . . , n is the root of a heap.

Proof. On the first iteration of the loop, i = ⌊n/2⌋. Each node ⌊n/2⌋ + 1, ⌊n/2⌋ + 2, . . . , n is a
leaf and is thus the root of a trivial heap.

For the inductive step—going from i to i − 1 (!), we are allowed to assume that each element

i+1, i+2, . . . , n is the root of a heap. So in particular, each of the two children of node i (i.e., nodes

2i and 2i+1) is the root of a heap. Therefore2 the call to Heapify(A, i) makes i the root of a heap.

Further, all nodes which are not descendants of i are untouched by the call to Heapify(A, i), (Do

you see why?) and so we can conclude that each node i, i + 1, . . . , n is now the root of a heap.

Thus when the algorithm terminates, i = 0 and so each node i = 1, 2, . . . n is the root of a heap, and
in particular node 1 is the root of a heap. This concludes the proof of correctness of the Build-Heap

algorithm.

4.2 Exercise Rewrite the inductive hypothesis as a sequence of statements, as we have done before, and
then rewrite the proof using that sequence.

4.1 The cost of Build-Heap—a remarkable result

What is the running time of Build-Heap? Here’s a simple estimate: there are n calls to Heapify,
and each one costs O(log n). Therefore the running time of Build-Heap is O(n log n).

This is true, but it’s actually an over-estimate. The reason is that the running time of the call to
Heapify(A, i) is linear in the height of the element A[i] on which it is called. And most of these
elements have very small heights. So we can do better, as follows:

Remember that the number of elements of the heap at height h is ≤ n

2h , and the cost of running

Heapify on a node of height h is O(h). The root of a heap of n elements has height ⌊log2 n⌋.
Therefore the worst-case cost of running Build-Heap on a heap of n elements is bounded by

⌊log
2

n⌋
∑

h=0

n

2h
O(h) = O

(

n

⌊log
2

n⌋
∑

h=0

h

2h

)

= O(n)

since the sum converges, so we don’t care what the upper bound of the summation is.

4.3 Exercise How do we know the sum converges?

2This is by the result of Exercise 3.1 on page 7.

10 6 PRIORITY QUEUES

This is really remarkable, for the following reason: Arranging data in a heap doesn’t tell us every-
thing about the data—as we have seen, we can do this in more than one way—but it does tell us
something. For instance, it tells us immediately what the greatest element is, and as we’ll see in a
moment, it tells us really a lot more.

But if we’re willing to settle for the somewhat limited information a heap can tell us, we get
something important in return: heaps are really cheap to construct. Any data structure whose cost
of construction is O(n) is worth remembering.

This O(n) cost for building a heap is the key to understanding why heaps are so useful.

5 Heapsort

Now that we know how to build a heap, we can use it to actually sort an array in place (that is,

without using any significant additional memory).

Heapsort (A)

Build-Heap (A)

for i← A.length down to 2 do

exchange A[1]↔ A[i]

A.heapsize ← A.heapsize − 1

Heapify (A, 1)

5.1 Exercise Prove that Heapsort actually does sort the array A.

Analysis of the running time:

The call to Build-Heap takes time O(n). Each of the n− 1 calls to Heapify takes time O(log n).

Hence the total running time is (in the worst case) O(n log n).

This is a great result. It says that the worst-case running time of Heapsort is O(n log n). And
further, Heapsort uses no additional memory—this makes it much better than Merge-Sort,
which we considered in Lecture 1.

6 Priority queues

It turns out, however, that heaps are not typically used for sorting—Quicksort, which we will
consider in the next lecture, turns out to be a bit better in practice (although the analysis of

Quicksort turns out to be quite a bit more complex). Heaps are often used however, to implement
priority queues:

Definition A priority queue is a data structure that maintains a set S of elements, each with an
associated value called a key. (As usual, the keys must be comparable.) The priority queue supports
the following operations:

Insert(S, x) inserts the element x into the set S.

Maximum(S) returns the element of S with the largest key.

6.1 Heap-Maximum 11

Extract-Max(S) removes and returns the element of S with the largest key.

Increase-Key(S, x, k) increases the value of element x’s key to the new value k, which is assumed
to be at least as large as x’s current key value.

A heap is a great data structure for implementing a priority queue. Here is how we can implement
the four priority queue operations using a heap:

6.1 Heap-Maximum

Heap-Maximum(A)

return A[1]

Clearly, the running time is Θ(1).

6.2 Heap-Extract-Max

Heap-Extract-Max(A)

if A.heapsize < 1 then

error “heap underflow”

max ← A[1]

A[1]← A[A.heapsize]

A.heapsize ← A.heapsize − 1

Heapify(A, 1)

return max

Here the running time is dominated by that of the call to Heapify, so it is O(log n).

6.3 Heap-Increase-Key

For Heap-Increase-Key(A, i, key), we just increase the key of A[i], and then let that node “float
up” to its proper position.

Heap-Increase-Key(A, i, key)

if key < A[i] then

error “new key is smaller than current key”

A[i]← key

while i > 1 and A[Parent(i)] < A[i] do

exchange A[i]↔ A[Parent(i)]

i← Parent(i)

Figure 4 shows how this works—we apply Heap-Increase-Key(A, 9, 15):

The running time is O(log n), since the tree has height O(log n).

12 6 PRIORITY QUEUES

16

14 10

8 7 9 3

2 4 1

16

14 10

8 7 9 3

2 15 1

16

14 10

15 7 9 3

2 8 1

16

15 10

14 7 9 3

2 8 1

Figure 4: An example of Heap-Increase-Key. A[9] (which initially has key 4) has its key increased
to 15 by applying Heap-Increase-Key(A, 9, 15).

6.4 Heap-Insert

Heap-Insert(A, key)

A.heapsize ← A.heapsize + 1

A[A.heapsize]← −∞

Heap-Increase-Key(A, A.heapsize, key)

The running time here is again O(log2 n).

Thus, a heap supports any priority queue operation on a set of size n in O(log n) time.

6.4 Heap-Insert 13

6.1 Exercise Show that there is an algorithm that produces the k smallest elements of an unsorted set
of n elements in time O(n + k log n).

Be careful: To do this problem correctly, you have to do two things:

1. State the algorithm carefully and prove that it does what it is supposed to do. (The proof can

be very simple.)

2. Prove that the algorithm runs in time O(n + k log n).

