
CS 624

Lecture 6: Medians and Order Statistics

1 Definitions

Definition The ith order statistic of a set of n elements is the ith smallest element. (So the

minimum element is the first order statistic, and the maximum element is the nth order statistic.)

Definition The median of a set of n elements is the “one in the middle”—that is,

• if n is odd, it is the
(

(n + 1)/2)
)th

order statistic.

• if n is even, it is either the
⌊

(n + 1)/2
⌋th

or
⌈

(n + 1)/2
⌉th

order statistic. Or, to be more

precise, there are two medians in this case—either one of those two elements can be referred
to as the median.

2 Computing the kth order statistic

How fast can we compute the kth order statistic?

Of course there is a naive method that will certainly work: sort the n elements, and pick the kth

one. This will work in O(n log n + n) = O(n log n) time.

Can we do better? We don’t after all, really need all the information that we get by doing a complete

sort, so it’s reasonable to guess that if all we care about is getting the kth smallest element, we might
be able to do better. And in fact, we can.

Some cases are easy:

• We can obviously get the minimum (i.e., the first order statistic) in linear time, just by
performing a linear scan. The same holds for the maximum.

• What if we want to get the second smallest element? We could do this

1. Find the minimum.

2. Throw it away.

3. Find the minimum of what’s left.

1

2 3 A BETTER ALGORITHM

This would also run in linear time, although the multiplicative constant would be about twice
as large.

We could also do this in one pass, keeping track of the two smallest elements we have found
at each step. This would also work in linear time, although again the multiplicative constant
would be greater than that for simply finding the minimum.

It’s easy to see that the cost of finding the kth order statistic using either of these methods is
Θ(kn). If k is fixed, this is Θ(n).

But if k is not fixed, this is not so good. For instance, suppose we want to find the median.

Then k is about n/2, and so the cost by either of these methods is Θ(n2). That’s awful – we’d
do better just by sorting the whole array to begin with.

• Actually, we can do somewhat better than this. It’s not hard to see that using heaps, we can

find the kth order statistic in time O(n + k log n). This is a little better than Θ(n2). But it’s

still no good for finding the median – it gives us a cost of O(n log n), which again is no better
than simply sorting the whole array.

3 A better algorithm

In fact, there is an algorithm that allows us to find the kth order statistic in average-case time O(n).
That is, the average time needed is completely independent of k.

The algorithm is a modification of Quicksort. The key idea is this: we use Partition repeatedly,
just as before. But now at each step, we only have to recurse on one side of the partitioned set.
That’s where the cost savings comes from.

And for this to work, we hope that in the “average case”, we recurse on a subarray that is about
half the size of the previous subarray. If that is the case, then the total cost will be the cost of the
partitions, which will be roughly some constant times

n +
n

2
+

n

4
+

n

8
+ · · · = 2n

and so the total cost on average should be O(n). We’ll see that this is actually true.

Here is the algorithm. As before, A is an array, and the function finds the ith smallest element in

the subarray A[p . . r]. (Thus to find the kth order statistic of the elements of A, the original call

will be Randomized-Select(A, 1, n, k).)

To understand the notation in the algorithm it helps to study the diagram in Figure 1.

3

1 p q r n
1 π

Figure 1: Notation used in the algorithm Randomized-Select. p, q, and r are indices in the
original array A. π is the 1-based index of the pivot A[q] in the subarray A[p . . r]. (Be careful—π
here is used to denote just an ordinary variable.)

Randomized-Select(A, p, r, i)

if p = r then

return A[p]

q ← Randomized-Partition(A, p, r)

π ← q − p + 1 // this is just the 1-based position of the pivot in A[p . . r]

if i < π then

return Randomized-Select(A, p, q − 1, i)

else if i = π then

return A[q]

else // i > π

return Randomized-Select(A, q + 1, r, i− π)

The idea of this algorithm is simple: Say after the partition step, the position of the pivot element
in the subarray A[p . . r] (when considered as a 1-based array) is π. There are three cases:

Case 1: i < π. In this case just find the ith smallest element of the left-hand partition A[p . . q−1].

Case 2: i = π. In this case we are done. Just return A[q].

Case 3: i > π. In this case find the (i−π)th smallest element in the right-hand partition A[q+1 . . r].

Now we can show that the average cost of this algorithm is linear in the number of elements in the
array, and is independent of i.

First of all, let us note that the cost of Randomized-Select(A, p, r, i) is the same as the cost of

Randomized-Select(A, 1, r − p + 1, i). That is, it really doesn’t matter how we index the array.
It’s only the size of the array that is important.

Now let us denote the average cost of Randomized-Select(A, 1, n, i) by C(n, i). It turns out that

computing C(n, i) directly is very tricky. So we will compute the maximum value of this over i
instead: let us define

T (n) = max{C(n, i) : 1 ≤ i ≤ n}(1)

That is, T (n) is the worst average-case time of computing any ith element of an array of size n using
Randomized-Select.

We have seen above some reason to believe that T (n) = O(n). We can now prove this:

4 3 A BETTER ALGORITHM

3.1 Theorem

T (n) = O(n)

Proof. First, we know that the cost of Partition is O(n). Say the cost of Partition on an array

of size n ≥ 1 is ≤ an for some fixed constant a > 0. (Of course, we really should say this is true for

some n > n0, but by making a large enough, we can assume it is true for all n ≥ 1.)

Then, based on the algorithm, we can construct a recursive inequality.

C(n, i) ≤ an +
1

n

(

i−1
∑

π=1

C(n− π, i− π) +

n
∑

π=i+1

C(π − 1, i)

)

≤ an +
1

n

(

i−1
∑

π=1

T (n− π) +

n
∑

π=i+1

T (π − 1)

)

≤ max

{

an +
1

n

(

i−1
∑

π=1

T (n− π) +

n
∑

π=i+1

T (π − 1)

)

: 1 ≤ i ≤ n

}

= an + max

{

1

n

(

i−1
∑

π=1

T (n− π) +

n
∑

π=i+1

T (π − 1)

)

: 1 ≤ i ≤ n

}

The only line in this computation you really need to be careful about is the first one. After that,
the computations are completely straightforward. The first line encapsulates the knowledge we have
from the algorithm. Here’s how to understand it:

The average cost C(n, i) of finding the ith element in an n-element array is composed of two parts:

• The cost of the partition. This is just an, and doesn’t vary.

• The cost of the recursive call. This varies, depending on where the pivot of the partition winds
up compared with i. In the notation we are using here, π is the position of the pivot.

We assume that the pivot is equally likely to wind up in any of the n positions in the array,

and we take the average over all those n possibilities. That accounts for the factor 1

n
just

outside the big parenthesized term on the right-hand side.

Inside the parentheses is the sum of all the possibilities that can happen. As before, they fall
into three cases:

Case 1: the pivot falls to the left of the ith term in the array. That is to say, π < i.
This accounts for the first sum inside the big parentheses, where π goes from 1 to i− 1.

For each such π, we need to compute the average cost of finding the i− πth element of
the subarray A[π + 1 . . n]. And this is just C(n− π, i− π).

Case 2: the pivot falls on the ith term in the array. That is, π = i. There is nothing
to do in this case, since we return immediately. So there is no term inside the parenthesis
corresponding to this case.

Case 3: the pivot falls to the right of the ith term in the array. That is to say, π >
i. This accounts for the second sum inside the big parentheses, where π goes from i + 1

up to n. For each such π, we need to compute the average cost of finding the ith element
of the subarray A[1 . . π − 1]. And this is just C(π − 1, i).

5

So that explains how the first line of the computation is derived.

Now once we have taken the maximum over i in the last line, we can note that the final right-hand
side is actually independent of i. Therefore since for each i, C(n, i) on the left-hand side is ≤ this
expression, the maximum of them all is as well. That is, we can take the maximum over i of the
left-hand side, (using equation 1) and get

T (n) ≤ an + max

{

1

n

(

i−1
∑

π=1

T (n− π) +

n
∑

π=i+1

T (π − 1)

)

: 1 ≤ i ≤ n

}

(2)

So what we have done so far is this: we started with a really messy recursive inequality for C(n, i),

and derived from it a rather less messy recursive inequality for T (n). And while it might not seem
all that easier to deal with this new recursive inequality, in fact it is a lot easier.

We will in fact use (2) to prove by induction that T (n) = O(n). As usual, our inductive hypothesis
is that there is a fixed constant C > 0 such that

T (k) ≤ Ck(3)

for 1 ≤ k < n.

We can certainly arrange that this is true for n = 2 by making sure (when we finally figure out an

appropriate value for C) that C ≥ a.

So now let us prove that the inductive hypothesis remains true for k = n.

We have two things we can use:

• the inductive hypothesis (3), which we can assume is true for 1 ≤ k < n,and

• the recursive inequality (2).

We start with the recursive inequality:

T (n) ≤ an + max

{

1

n

(

i−1
∑

π=1

T (n− π) +

n
∑

π=i+1

T (π − 1)

)

: 1 ≤ i ≤ n

}

≤ an + max

{

C

n

(

i−1
∑

π=1

(n− π) +
n
∑

π=i+1

(π − 1)

)

: 1 ≤ i ≤ n

}

by the inductive hypothesis

= an + max

{

C

n

(

(i− 1)n−
(i− 1)i

2
+

(n− 1)n

2
−

(i− 1)i

2

)

: 1 ≤ i ≤ n

}

= an + max

{

C

n

(

(i− 1)n− (i− 1)i +
(n− 1)n

2

)

: 1 ≤ i ≤ n

}

Now

(i− 1)n− (i− 1)i = −i2 + (n + 1)i− n

6 3 A BETTER ALGORITHM

and we have to find the maximum value of this between i = 1 and i = n. This is the kind of thing
we’ve seen before: this is a concave function of i—in fact, it’s an “upside-down parabola”—and so
its maximum occurs where the derivative is 0. The derivative is simply

−2i + (n + 1)

and this is 0 when

i =
n + 1

2

(and this is, by the way, between i = 1 and i = n). So the maximum value of the expression

(i− 1)n− (i− 1)i—which is also (i− 1)(n− i)—is

(n + 1

2
− 1
)(

n−
n + 1

2

)

=
n− 1

2

n− 1

2

=
(n− 1)2

4

and so we have

T (n) ≤ an +
C

n

((n− 1)2

4
+

(n− 1)n

2

)

= an +
C

n

(n2 − 2n + 1

4
+

n2 − n

2

)

= an +
C

n

(3n2

4
− n +

1

4

)

= an + C
(3n

4
− 1 +

1

4n

)

≤ an + C
3n

4
for n ≥ 1

=
(

a +
3

4
C
)

n

So we can fix C once and for all so that

• C ≥ a, and

• a + (3/4)C ≤ C

(for instance, C = 4a would work), then we get T (n) ≤ Cn and we are done.

Note that since this algorithm works in O(n) average time regardless of i, it enables us to find the

median in expected time O(n)—that is, we can just set i = ⌈(n + 1)/2⌉.

There is actually an algorithm that finds the median in worst-case time O(n). The text presents
it in Section 9.3. In practice it’s not used, however. It’s pretty complicated to program, and the
algorithm we just analyzed works quite well when the pivoting is randomized, as we did here.

7

4 Appendix: Computing C(n, i) directly

This is really an appendix. I want to reproduce here (with some minor and inessential changes)

Donald Knuth’s derivation of exact bounds on C(n, i). It’s not a hard argument to follow, but

it certainly took some cleverness to come up with it, and a great deal of confidence as well1. He
published this in the paper “Mathematical Analysis of Algorithms” in the journal Information
Processing (pages 19–27) in 1971—this contains the proceedings of the 1971 IFIP conference.

Here’s how he did it: he starts just as we did above, with the recursion

C(n, i) = (n− 1) +
1

n

(

i−1
∑

π=1

C(n− π, i− π) +

n
∑

π=i+1

C(π − 1, i)

)

The only difference between this and what we wrote above is

• The first term on the right is explicitly (n − 1)—we had written an, but Knuth is using a
model where the cost is exactly n− 1.

• He has an equality here (whereas we had an inequality) for pretty much the same reason.

Actually, Knuth finds it a little more convenient to write it like this (only the second sum is changed

somewhat):

C(n, i) = (n− 1) +
1

n

(

i−1
∑

π=1

C(n− π, i− π) +

n−1
∑

π=i

C(π, i)

)

= (n− 1) +
1

n

(

A(n, i) + B(n, i)
)

Multiplying through by n, this becomes

(4) nC(n, i) = n(n− 1) + A(n, i) + B(n, i)

Now he wants to simplify this. It doesn’t really look like much can be done here, but he plows
ahead: First he notices that

A(n + 1, i + 1) = A(n, i) + C(n, i)

B(n + 1, i) = B(n, i) + C(n, i)

He uses these two relations to write four equations:

A(n + 1, i + 1)−A(n, i) = C(n, i)(5)

A(n, i + 1)−A(n− 1, i) = C(n− 1, i)(6)

B(n + 1, i + 1)−B(n, i + 1) = C(n, i + 1)(7)

B(n, i)−B(n− 1, i) = C(n− 1, i)(8)

1He gives this derivation as a problem in Volume 1 of The Art of Computer Programming, but the sketch of the
solution he provides there is pretty opaque. Here I am following the original paper.

8 4 APPENDIX: COMPUTING C(N, I) DIRECTLY

Subtracting (6) from (5) and (8) from (7) and then adding the two results, he arrives at

A(n + 1, i + 1)−A(n, i + 1)−A(n, i)−A(n− 1, i)

+ B(n + 1, i + 1)−B(n, i + 1)−B(n, i) + B(n− 1, i)

= C(n, i)− C(n− 1, i) + C(n, i + 1)− C(n− 1, i)

(9)

And—here is the (inspired or lucky, depending on your view of these things) key step2. From (4)

(for the first equality) followed by (9) (for the second), he gets

(n + 1)C(n + 1, i + 1)− nC(n, i + 1)− nC(n, i) + (n− 1)C(n− 1, i)

= (n + 1)n− n(n− 1)− n(n− 1) + (n− 1)(n− 2)

+ A(n + 1, i + 1)−A(n, i + 1)−A(n, i) + A(n− 1, i)

+ B(n + 1, i + 1)−B(n, i + 1)−B(n, i) + B(n− 1, i)

= 2 + C(n, i)− C(n− 1, i) + C(n, i + 1)− C(n− 1, i)

(10)

and the result of this simplifies to

(n + 1)C(n + 1, i + 1)− (n + 1)C(n, i + 1)− (n + 1)C(n, i) + (n + 1)C(n− 1, i) = 2

which even Knuth remarks is “an extraordinary coincidence that n + 1 [is] a common factor in each
of the C’s”. Dividing by n + 1 then, he gets

(11) C(n + 1, i + 1)− C(n, i + 1)− C(n, i) + C(n− 1, i) =
2

n + 1

Now this is a recurrence that Knuth will find easy to solve. However, first, he has to deal with the
boundary cases i = 1 and i = n. First we see what happens when i = 1:

C(n, 1) = (n− 1) +
1

n

(

C(1, 1) + C(2, 1) + . . . + C(n− 1, 1)
)

Writing the same equation for n + 1 instead of n and then subtracting one equation from the other,
we get

(n + 1)C(n + 1, 1)− nC(n, 1) = (n + 1)n− n(n− 1) + C(n, 1)

which is just

(12) C(n + 1, 1)− C(n, 1) =
2n

n + 1
= 2−

2

n + 1

and we know also that C(1, 1) = 0. Therefore we can solve (12) immediately to get

(13) C(n, 1) = 2n− 2Hn

and by symmetry, we also have

(14) C(n, n) = 2n− 2Hn

2It’s the only part of the derivation that’s not fairly standard.

9

Now we can go back to the recurrence (11). We can write it as

(

C(n + 1, i + 1)− C(n, i)
)

−
(

C(n, i + 1)− C(n− 1, i)
)

=
2

n + 1

From this, we get immediately that

C(n + 1, i + 1)− C(n, i) =
2

n + 1
+

2

n
+ . . . +

2

i + 2
+ C(i + 1, i + 1)− C(i, i)

= 2(Hn+1 −Hi+1) + 2−
2

i + 1

We can telescope this equation, adding up the following instances of it:

C(n, i)− C(n− 1, i− 1) = 2
(

Hn −Hi + 1−
1

i

)

C(n− 1, i− 1)− C(n− 2, i− 2) = 2
(

Hn−1 −Hi−1 + 1−
1

i− 1

)

C(n− 2, i− 2)− C(n− 3, i− 3) = 2
(

Hn−2 −Hi−2 + 1−
1

i− 2

)

...

C(n− i + 2, 2)− C(n− i + 1, 1) = 2
(

Hn−i+2 −H2 + 1−
1

2

)

to yield

C(n, i)− C(n− i + 1, 1) = 2
i
∑

j=2

(

Hn−i+j −Hj + 1−
1

j

)

Now we can apply the identity

n
∑

k=1

Hk = (n + 1)Hn − n

(together with the fact that H1 = 1) to get

C(n, i)− C(n− i + 1, 1) = 2
(

(

(n + 1)Hn − n
)

−
(

(n− i + 2)Hn−i+1 − (n− i + 1)
)

)

− 2
(

(

(i + 1)H − i− i
)

− (2H1 − 1)
)

− 2

i
∑

j=2

(

1−
1

j

)

= 2
(

(n + 1)Hn − (n− i + 2)Hn−i+1 − (i + 1)Hi − n + n− i + 1 + i− 1
)

+ 2(i− 1)− 2(Hi − 1)

= 2(n + 1)Hn − 2(n− i + 2)Hn−i+1 − 2(i + 2)Hi + 2i− 4

10 4 APPENDIX: COMPUTING C(N, I) DIRECTLY

and since we have already seen above that

C(n− i + 1, 1) = 2(n− i + 1)− 2Hn−i+1

we end up with

(15) C(n, i) = 2(n + 1)Hn − 2(n− i + 3)Hn−i+1 − 2(i + 2)Hi + 2(n− 1)

So this is Knuth’s result. It’s interesting, mainly because it’s not at all obvious that one could solve
the original recurrence at all. I don’t, however, think it’s all that useful. It looks, for instance, like
the terms in the final expression are O(n log n). In fact, there is a lot of cancellation that goes on,

and so one actually gets O(n) behavior, as we know one should. But doing all that probably gets
you no more than our original derivation did.

To be precise, here’s how one could go about bounding the expression we have just arrived at. Note
that we can write the right-hand side as the sum of two terms:

2
(

nHn − (n− i + 1)Hn−i+1 − (i− 1)Hi−1

)

+2
(

Hn − 2Hn−i+1 − 3Hi + (n− 1)
)

Since Hn = O(log n), it is clear that the second term is O(n). So it’s the first term we have to deal
with, and that’s where the cancellation happens. We know that

log n < Hn < log n + 1

and so we can bound the first term as follows3:

nHn − (n− i + 1)Hn−i+1 − (i− 1)Hi−1 < n(log n + 1)− (n− i + 1) log(n− 1 + 1)− (i− 1) log(i− 1)

= n log n− (n− i + 1) log(n− i + 1)− (i− 1) log(i− 1) + n

We can ignore the final term, since we are just going to prove that this whole thing is O(n). As for

the rest, it is just f(i− 1), where we we define

f(t) = n log n− (n− t) log(n− t)− t log t

f(t) clearly equals 0 when t = 0 and also when t = n. And in fact, f(t) = f(n − t). Further, one

can, simply by taking the derivative, see that f is increasing on the interval [0, n/2].

4.1 Exercise Prove this fact4.

3Actually, we’ll ignore the factor of 2, since it clearly won’t matter for what we’re doing.
4By the way, you might be wondering how I thought of extracting this expression in the first place. The answer is

this: I noticed that if we replace Hn by log n in the expression that Knuth wound up with in (15), we get something
that is reasonably close to

log
nn

(n − i + 1)n−i+1(i − 1)i−1

which in turn is the value of

log
nn

tt(n − t)n−t

for t = i − 1. So I went from there. What the argument here shows in fact is that n
n

tt(n−t)n−t
has its greatest value

when t = n/2, at which point the value is 2n. This is kind of a nice result in itself, I think.

11

Therefore, f(t) is bounded by its maximum value, which must be f(n/2), and

f
(n

2

)

= n log n− 2
n

2
log

n

2

= n log n− n(log n− log 2)

= n log 2

So we see that in fact C(n, i) = O(n).

