
CS 624

Lecture 7: Binary Search Trees

1 Graphs, paths, and trees

Definition A path in a graph is a sequence

v0, v1, v2, · · · , vn

where each vj is a vertex in the graph and where for each i, vi and vi+1 are joined by an edge. (If

the graph is directed, then the edge must go from vi to vi+1.)

To make things simple, we insist that any path contain at least one edge.

Usually we write

v0 → v1 → v2 → · · · → vn

to denote a path. It is understood that the arrow represent edges.

A path in a graph is simple iff it contains no vertex more than once.

Definition A loop in a graph is a path which begins and ends at the same vertex.

A loop v0 → v1 → v2 → · · · → vk is simple iff

1. k ≥ 3 (that is, there are at least 4 vertices on the path), and

2. it contains no vertex more than once, except of course for the first and last vertices, which are
the same, and

3. That (first and last) vertex occurs exactly twice.

1.1 Exercise Prove that a simple loop contains no edge more than once.

Definition A tree is a connected1 undirected graph in which there are no simple loops.

1.2 Exercise Prove that if x and y are any two distinct vertices in a tree, there is a unique simple path
from x to y.

Hint: If there were two simple paths from x to y, then of course you could follow one forwards,
followed by the other one backwards to see that there is a loop in the graph. However, this loop

1Do you know what it means to say that a graph is connected? If you don’t, you need to look it up right now.

1



2 2 TRAVERSING BINARY TREES

might not be a simple loop, which is what you would need to get a contradiction. However, if the
paths are not identical, then you should be able to take part of the first path followed by part of the
second (going backwards) to produce a simple loop in the graph. Be as precise as you can in doing
this. Give names to everything you are talking about. Remember that I can’t read your mind.

Definition A rooted tree is a tree with a distinguished vertex, which we call the root. We will
denote the root by r.

Definition If T is a rooted tree with root r, if x and y are vertices in T (and either or both of them

might be r) and if there is a simple path from r through x to y, then we say that x is an ancestor

of y and y is a descendant of x. If the part of the path from x to y consists of exactly one edge,
we say that x is the parent of y and y is a child of x.

Note that a vertex is both an ancestor and a descendant of itself. But a vertex cannot be its own
parent.

1.3 Exercise

1. Prove that a vertex in a rooted tree can have at most one parent.

2. Prove that every vertex other than the root has exactly one parent.

1.4 Exercise Prove that in a rooted tree T , if x is an ancestor of y and y is an ancestor of x, then
x = y.

1.5 Exercise Suppose T is a rooted tree with root r and x 6= r is an vertex in T . (This is just a standard

way of saying that x is a vertex in T and x 6= r.)

Further, suppose a and b are both ancestors of x. And to make things simple, suppose that a 6= b.

Prove that either a is an ancestor of b or b is an ancestor of a.

1.6 Exercise Prove that any two nodes x and y in a rooted tree have a unique least common ancestor

z. This simply means that there is a path P1 from z to x, and a path P2 from z to y, and that the
only vertex those two paths have in common is z. (And further, that there is exactly one node z

with this property.)

We think of the root as being at the top of the tree, so the least common ancestor is the ancestor
that is as far away “down” the tree as possible. That’s where the term “least” comes from.

2 Traversing binary trees

When we write pseudocode involving binary trees, we will denote the left and right children of a
node x by x. left and x. right, respectively, and for brevity, we will denote the parent of x by x.p. If
x has no parent (which of course can only happen if x is the root) then by convention we say that
x.p = nil.

There are three basic ways to traverse (or “walk”) a binary tree. The idea is that we want to perform
some function at each node. This is called “visiting” the node. And we want to recursively traverse
each child of the node. The only difference between these three methods of traversal is the order in
which these things happen.



3

preorder tree walk. Visit the node. Then traverse its children, left-to-right.

inorder tree walk. Traverse the left child. Then visit the node. Then traverse the right child.

postorder tree walk. Traverse the children, left-to-right. Then visit the node.

The reason for the use of the term “order” is that (as we will see below, a major use of binary trees
is to keep ordered data in such a way that all the elements on the left subtree of a node are less
than the element at the node, and all the elements on the right subtree of the node are greater than
the element at the node. So an inorder tree walk visits the nodes “in order”.

The pseudocode for these three methods is then quite immediate.

Preorder-Tree-Walk(x)

if x 6= nil then

visit x

Preorder-Tree-Walk(x. left)

Preorder-Tree-Walk(x. right)

Inorder-Tree-Walk(x)

if x 6= nil then

Inorder-Tree-Walk(x. left)
visit x

Inorder-Tree-Walk(x. right)

Postorder-Tree-Walk(x)

if x 6= nil then

Postorder-Tree-Walk(x. left)

Postorder-Tree-Walk(x. right)

visit x

It’s intuitively obvious that the cost of any of these tree walks on a tree with n nodes is Θ(n). Here’s
a proof:

2.1 Theorem If x is the root of a binary tree with n nodes, then each of the above traversals takes Θ(n)
time.

Proof. Let us define

c = time for the test x 6= nil

v = time for the call to visit x

T (k) = time for the call to traverse a tree with k nodes

Then certainly we have

T (0) = c(1)

and if the tree with n nodes has a right child with k nodes (so its left child must have n − k − 1

nodes), then

T (n) = c + T (k) + T (n− k − 1) + v(2)

Exercise 2.2 then shows that T (n) = (2c + v)n + c



4 4 OPERATIONS ON BINARY SEARCH TREES

2.2 Exercise Let us guess that perhaps T (n) can be expressed as an affine function of n:

T (n) = αn + β(3)

(We have already seen that this is a reasonable guess.) Substitute equation (3) in the equations (1)

and (2) and solve the two resulting equations for α and β.

3 Binary search trees

Definition A binary search tree is a binary tree, each node of which contains some data, one of
whose fields is a key, such that for each node x,

• If y is a node in the left subtree of x, then y. key ≤ x. key.

• If y is a node in the right subtree of x, then y. key ≥ x. key.

As a consequence, we can print out all the nodes in a binary search tree in the order of their keys
by using an inorder tree walk, where the “visit” procedure just consists of printing out the node.

4 Operations on binary search trees

Searching Here is a procedure which starts at a node x and searches all the descendants of x

until it finds one with key k. It returns that node (or nil if it doesn’t find one).

Tree-Search(x, k)

if x = nil or k = x. key then

return x

if k < x. key then

return Tree-Search(x. left, k)

else

return Tree-Search(x. right, k)

The running time is O(h), where h is the height of the tree.

Here is an iterative version:

Iterative-Tree-Search(x, k)

while x 6= nil and k 6= x. key do

if k < x. key then

x← x. left
else

x← x. right

return x

Minimum and maximum This procedure finds the descendant of x whose key is minimum. It
just follows the left child as far as possible. And to find the maximum, we just follow the right child
as far as possible.



5

Tree-Minimum(x)

while x. left 6= nil do

x← x. left
return x

Tree-Maximum(x)

while x. right 6= nil do

x← x. right

return x

The cost of each of these procedures is also O(h).

Successor and predecessor By the successor of a node in a binary search tree we mean the
node which is the successor in the order determined by the tree. (Be careful: “successor” is not

generally the same as “child”.)

4.1 Exercise In doing this exercise, you may assume that all the keys in a binary search tree are
distinct, i.e., that no two are equal.

Let x be a node in a binary search tree.

1. If a is an ancestor of x and a. key > x. key, then for any descendant d of x, we have a. key >

d. key.

2. If a is the successor of x, then a is either an ancestor or descendant of x. (Hint: use the result

of Exercise 1.6.)

3. If the right subtree of x is nonempty, then the successor of x is just the leftmost node in the
right subtree. (Hint: use the previous result.)

4. If the right subtree of x is empty, and if x has a successor y (i.e., x is not the largest element

in the tree), then y is the lowest ancestor of x whose left child is also an ancestor of x. (Hint:

again use part 2 of this exercise.)

5. If x has a right child, then the successor of x does not have a left child.

6. Similarly, if x has a left child, then the predecessor of x does not have a right child.

For instance, in Figure 1,

1. The successor of the node with key 15 is the node with key 17.

2. The successor of the node with key 13 is the node with key 15.

3. The successor of the node with key 17 is the node with key 18.

Tree-Successor(x)

if x. right 6= nil then

return Tree-Minimum
(

x. right
)

y ← x.p

while y 6= nil and x = y. right do

x← y

y ← x.p
return y



6 4 OPERATIONS ON BINARY SEARCH TREES

15

6 18

3 8 17 20

2 4 13

9

Figure 1: A binary search tree.

(What happens when we apply this procedure to the node in Figure 1 whose key is 20?)

The running time of Tree-Successor on a tree of height h is again O(h), since the algorithm
consists on following a path from a node to its successor, and the maximum path length up or down
the tree is by definition h.

Tree-Predecessor is defined similarly and also has running time O(h) on a tree of height h. Thus
we have proved the following theorem:

4.2 Theorem The dynamic-set operations Search, Minimum, Maximum, Successor, and Prede-

cessor can be made to run in O(h) time on a binary search tree of height h.

Insertion To insert a new node z in the binary search tree T , we just walk down from the root,
comparing each node to z until we get to a place where we can insert z as a new leaf. None of the
other nodes in the tree is moved by this procedure. Figure 2 illustrates how a new node with key 7
is inserted into the tree in Figure 1.

As we walk down the tree, x is the node we currently are at, and y is its parent.

Tree-Insert(T, z)

y ← nil

x← T. root
while x 6= nil do

y ← x

if z. key < x. key then

x← x. left
else



7

x← x. right

z.p ← y

if y = nil then

// This can only happen if the tree T was empty to begin with.

T. root ← z

else if z. key < y. key then

y. left ← z

else

y. right ← z

15

6 18

3 8 17 20

2 4 7 13

9

Figure 2: Inserting a new node in a binary search tree.

For exactly the same reason as before, the procedure Tree-Insert runs in O(h) time on a tree of
height h.

Deletion Deleting a node is somewhat more complicated, since if the node is buried within the
tree, we will have to move some of the other nodes around. Nevertheless, the idea is quite simple.
There are three possible cases we need to consider; they are shown in Figure 3.

Let us say that we are deleting a node d.

Case I: d is a leaf. This case is trivial. Just delete the node. This amounts to figuring out which
child it is of its parent, and making the corresponding child pointer nil. The node d itself
can be returned from the procedure (to be used or recycled by the caller), or it can simply be
deleted inside the procedure itself.

Case II: d has one child. In this case, delete d and “splice” its child to its parent—that is, make
the parent’s child pointer that formerly pointed to d now point to d’s child, and make that



8 4 OPERATIONS ON BINARY SEARCH TREES

Case I: 0 children 15

6 18

3 10 17 20

2 4 7 13

8

15

6 18

3 10 17 20

2 4 7

8

Case II: 1 child 15

6 18

3 10 17 20

2 4 7 13

8

15

6 18

3 10 17 20

2 4 8 13

Case III: 2 children 15

6 18

3 10 17 20

2 4 7 13

8

15

7 18

3 10 17 20

2 4 8 13

Figure 3: Deleting a node in a binary search tree. In each case, the red node is the node that is
being deleted.

The only somewhat tricky case is Case III. In that case, the red node is replaced by the blue node,
which is its successor in the tree. Then the blue node is deleted from its original position. We know
that the blue node has at most 1 child, so it falls into Case I or Case II.

child’s parent pointer now point to d’s parent.

Case III: d has two children. In this case we can’t simply move one of the children of d into the
position of d. We we need to do is find d’s successor and replace d with it. Then delete d’s
successor.

This sounds like a recursive call, but it really isn’t. We know that d’s successor has at most 1
child, so we can immediately apply either Case I or Case II to it, and then we are done.

The text has some pseudocode which performs essentially this processing, but they have organized
it in a clever fashion which is probably slightly more efficient. Nevertheless, this is the idea, and
this is really all you have to understand.



9

5 Expected cost of building a binary search tree

An algorithm to build a binary search tree from an array A[1 . . n] of unsorted inputs would be
something like this:

Build-Binary-Search-Tree
(

A[1 . . n]
)

T ← ∅ // Create an empty tree

for i← 1 to n do

Tree-Insert
(

T, A[i]
)

How expensive is this?

• If A is already in sorted order, this is Θ(n2).

• The best case would appear to be Θ(n log n).

This looks suspiciously like quicksort, and indeed the analysis is entirely the same:

5.1 Exercise Here is a modified version of the Partition algorithm for Quicksort:

Modified-Partition(A, p, r)

pivot ← A[p]

Let L be the sequence of elements of A[p + 1 . . q] that are less than pivot,

in the order they appear in A.

Let U be the sequence of elements of A[p + 1 . . q] that are greater than pivot,

in the order they appear in A.

Rearrange the elements in A[p . . q] so that they appear like this:

L pivot U

To implement this would be some constant multiple more expensive than the cost of the original
Partition—which doesn’t matter for our analysis—and would require more memory. For instance,
one obvious way to implement this would be to allocate a new array of the same size as the original
array and perform the Modified-Partition by putting the original elements in the new array one
by one. This would still be an O(n) partition algorithm. And since all we’re concerned about here

is running time, the fact that this uses more memory is irrelevant. (Also, Modified-Partition

chooses the pivot element to be the left-most, rather than the right-most element of the array. This
is a small point of no real significance.)

So in any case, the analysis of the running time of quicksort is the same with Modified-Partition

as with Partition.

Prove that the comparisons needed to build a binary search tree from an array A[1 . . n] are exactly the
same comparisons needed to run Quicksort on that array, providing we use Modified-Partition.

Hint: the comparisons used in Quicksort are the comparisons with appropriate pivot elements.
And the successive pivot elements are exactly the successive elements added to the binary search
tree. Your job is to write this up clearly and convincingly.

A good way to start would be to take a simple example—say, a very small array—and work through
it by hand. Perform Quicksort using the Modified-Partition algorithm. Then start again



10 7 EXPECTED WORST-CASE COST OF SEARCH IN A BINARY SEARCH TREE

with the same initial array and perform Build-Binary-Search-Tree. Convince yourself that
exactly the same comparisons are performed, and that the successive pivot elements in the modified
Quicksort algorithm are the same as the successive elements added to the binary search tree in
Build-Binary-Search-Tree.

Then when you have convinced yourself of this for a relatively small array (don’t make it too small!),
you should be able to write an explanation—a convincing explanation—that works for any array.

We know that the average-case running time of Quicksort is Θ(n log n). What would it mean to
talk about the “average-case” running time to build a binary search tree?

What we would need to do is to average the running time over all permutations of the input array.
This is exactly what we get when we computing the running time of randomized Quicksort.
Therefore, we can say that

5.2 Theorem The average-case running time of Build-Binary-Search-Tree is Θ(n log n).

6 Expected cost of a search in a binary search tree

We have already seen that the cost of a search in a binary search tree is O(h), where h is the height
of the tree. So this leads naturally to the question: What’s the cost on average?

Questions like this are tricky, and this is in part because small changes in the wording of the question
can give vastly different answers.

Here is one way we might approach this: We know that the cost of searching for a node is the depth
of that node. Now the depth of a node is also the number of comparisons that are made in inserting
the node into the tree. And we have seen that the total number of comparisons that are made in
building an “average” tree with n nodes is O(n log n). Therefore the average node depth is that

divided by the number of nodes (i.e., divided by n), which is O(log n). That is, the average node

depth (averaged over all binary search trees) is O(log n), and so the average cost of searching for a

node in a randomly built binary search tree is O(log n). That is, we have proved the following:

6.1 Theorem The expected cost of a search in a binary search tree with n vertices is O(log n).

7 Expected worst-case cost of search in a binary search tree

What we just proved is an interesting result. However, it still might be that even though the average
cost of searching for a node is (log n), there might still be some nodes with much higher costs. Of
course this can be true—if we have a “linear” tree, then the average cost of searching for a node
is O(n). And even if some tree containing n nodes is reasonably balanced so that the average of

searching for a node in that tree is O(log n), it still might be the case that the tree in question
contains a long “linear spike” leading to a leaf node of much higher cost. Thus, there might be a
significant sub-family of trees having a nice O(log n) cost on average, but perhaps an Ω(n) worst-case
cost.

In fact however, this can’t happen to any great extent. It turns out that the average worst-case cost
(again, averaged over all binary search trees) is still O(log n). This is remarkable.

We will show this by proving the following theorem:



11

7.1 Theorem The expected height of a binary search tree with n vertices is O(log n).

Let Xn be a random variable whose value is the height of a binary search tree on n keys. What
does this actually mean? It actually means this:

Let Pn be the set of all permutations of those n keys. (So the number of elements of Pn is n!.)
Suppose we use the symbol π to denote a permutation in Pn. Xn is actually a function on Pn. Its
value Xn(π) when applied to a permutation π ∈ Pn is the height of the binary search tree built
from that permutation π.

We want to find E(Xn), the expectation of Xn. This is by definition simply

∑

π∈Pn

p(π)Xn(π)

where p(π) denotes the probability of the permutation π. We are assuming that all permutations

have equal probability, so p(π) = 1
n! for all π, and so

E(Xn) =
1

n!

∑

π∈Pn

Xn(π)

The derivation I will give here is a bit simpler than that in the text, I think.

Note, by the way, that if A and B are two random variables on the same space Pn, then

E(A + B) =
∑

π∈Pn

p(π)
(

A(π) + B(π)
)

=
∑

π∈Pn

p(π)A(π) +
∑

π∈Pn

p(π)B(π)

= E(A) + E(B)

Note that max{A, B} is also a random variable on Pn—its value at π is just max
{

A(π), B(π)
}

.

And we have the useful inequality (provided only that A(π) and B(π) are both ≥ 0 for all π)

E
(

max{A, B}
)

=
∑

π∈Pn

p(π) max
{

A(π), B(π)
}

≤
∑

π∈Pn

p(π)
(

A(π) + B(π)
)

= E(A + B)

= E(A) + E(B)

Now consider a permutation π. The root of the tree will be the first element of π. Suppose the root
has position k in the sorted list of keys. That means that there will be k − 1 keys less than it and
n − k keys greater than it. So the left subtree will have k − 1 elements and the right subtree will
have n− k elements. And those elements are also chosen randomly from sets of size k− 1 and n− k

respectively, so we have

Xn(π) = 1 + max{Xk−1(π), Xn−k(π)}(4)



12 7 EXPECTED WORST-CASE COST OF SEARCH IN A BINARY SEARCH TREE

This is our fundamental recursion2.

Now in fact, since each value of k is chosen with the same probability (that probability being 1
n

),

we have

E(Xn) =
n

∑

k=1

1

n
E

(

1 + max{Xk−1, Xn−k}
)

(5)

Here is where something tricky happens: it turns out that if we continued in this manner, we would
not be able to get a good estimate for E(Xn). What turns out to be more effective is this:

• Set Yn = 2Xn . So Yn is itself a random variable defined on the set P whose value on the
permutation π is

Yn(π) = 2Xn(π)

There is no intuitive significance to the reason for doing this—at least, not at first. It’s just
that we can do better with the mathematics that way.

• Compute E(Yn).

• Then use this to get a bound on E(Xn). This step is also somewhat tricky if you haven’t seen
it before, but it is a general technique.

So let us proceed.

Starting with equation (4) using each side as a power of 2, we get

Yn(π) = 2Xn(π)

= 21+max{Xk−1(π),Xn−k(π)}

= 2 · 2max{Xk−1(π),Xn−k(π)}

= 2 ·max{2Xk−1(π), 2Xn−k(π)}
= 2 ·max{Yk−1(π), Yn−k(π)}

(6)

and so (again, since each value of k is chosen with probability 1
n

)

E(Yn) =

n
∑

k=1

1

n
· 2E

(

max{Yk−1, Yn−k}
)

=
2

n

n
∑

k=1

E
(

max{Yk−1, Yn−k}
)

≤ 2

n

n
∑

k=1

(

E(Yk−1) + E(Yn−k)
)

(7)

2This notation is actually a bit sloppy. Xk−1 really should be a function on permutations of k − 1 elements.
So what I really mean by Xk−1(π) is the depth of the binary search tree built from the first k − 1 elements of the
permutation π (which are less than the pivot). And Xn−k(π) really is the depth of the binary search tree built from
the n − k nodes of the permutation π which are greater than the pivot. It should be at least intuitively clear that
the average value of Xk−1(π) as π runs over all permutations of size n is the same as the average value of Xk−1(π′),
where π

′ runs over all permutations of size k − 1—this is what we would normally mean by the average value (or
“expectation”) of Xk−1



13

Now each term in the sum occurs twice (once as the “left term” and once as the “right term”). So
we can simplify to get this:

E(Yn) ≤ 4

n

n
∑

k=1

E(Yk−1)

=
4

n

n−1
∑

k=0

E(Yk)

It would actually be a lot more convenient for us if this were a strict equality, rather than an
inequality. It turns out that we can actually assume this to be the case, for the following reason:
we’re really only concerned here with an upper bound. Now here’s a lemma that gives us what we
need:

7.2 Lemma If f and g are two functions such that

f(0) = g(0)(8)

f(n) ≤ 4

n

n−1
∑

k=0

f(k)(9)

g(n) =
4

n

n−1
∑

k=0

g(k)(10)

then f(k) ≤ g(k) for all k ≥ 1.

Proof. We’ll prove this by induction. The inductive hypothesis is that f(k) ≤ g(k) for all k < n.

We know that this statement is true for n = 2 by (8). The inductive step is then to show that this
statement remains true for k = n. To show this, we just compute as follows:

f(n) ≤ 4

n

n−1
∑

k=0

f(k) (by (9))

≤ 4

n

n−1
∑

k=0

g(k) (by the inductive hypothesis)

= g(n) (by (10))

and that completes the proof of the lemma.

So based on this, we can assume that

E(Yn) =
4

n

n−1
∑

k=0

E(Yk)(11)

because by the Lemma, any upper bound we obtain for E(Yn) from this identity will also be an

upper bound for the “real” E(Yn).

Now (11) might remind you of the clever device we used in deriving the average case running time of
Quicksort. We can in fact do something very similar here, although it is a little more complicated
(but not much):



14 7 EXPECTED WORST-CASE COST OF SEARCH IN A BINARY SEARCH TREE

First, we want to get rid of the sum. So we write

E(Yn+1) =
4

n + 1

n
∑

k=0

E(Yk)

E(Yn) =
4

n

n−1
∑

k=0

E(Yk)

This is almost ready to be subtracted. To make it come out cleanly, we multiply through by n + 1
(in the first equation) and n (in the second):

(n + 1)E(Yn+1) = 4

n
∑

k=0

E(Yk)

nE(Yn) = 4
n−1
∑

k=0

E(Yk)

Now we can subtract. We get

(n + 1)E(Yn+1)− nE(Yn) = 4E(Yn)

so

(n + 1)E(Yn+1) = (n + 4)E(Yn)

Now let us divide both sides by (n + 1)(n + 4). We get

E(Yn+1)

n + 4
=

E(Yn)

n + 1

This is starting to look better. And if you look at it closely for a little while, you will see that if we
now divide each side by (n + 2)(n + 3), we will get something that is very good indeed:

E(Yn+1)

(n + 4)(n + 3)(n + 2)
=

E(Yn)

(n + 3)(n + 2)(n + 1)

and so if we define

g(n) =
E(Yn)

(n + 3)(n + 2)(n + 1)

then we have just derived the fact that

g(n + 1) = g(n)

In other words, g(n) is some constant. Call it c. Then we have

E(Yn) = c(n + 3)(n + 2)(n + 1) = O(n3)

Now we’re almost done. Since the function f(x) = 2x is convex, we can apply Jensen’s inequality to

go from our bound on E(Yn) to an even better bound on E(Xn): We know that there is a constant



15

C > 0 and a number n0 ≥ 0 such that for all n ≥ n0, E(Yn) ≤ Cn3. Hence for all n ≥ n0,

2E(Xn) ≤ E(2Xn) = E(Yn) ≤ Cn3

and so (taking the logarithm of both sides)

E(Xn) ≤ log2 C + 3 log2 n = O(log n)

And that’s it: we have proved that the expected height of a randomly built binary search tree is
O(log n).

By the way, it’s important to be very precise in stating things like this. If you look back at what I’ve
written above, you’ll see that I’ve been careful to talk about the “average binary search tree”, not
the “average binary tree”. And in fact, if we talk instead about average binary trees, things work
out differently. For instance, what do you think the average height of a binary tree with n nodes

is? Well, it’s not O(log n). It’s actually O
(√

n
)

, which is rather larger. This is because a binary

tree might correspond to several randomly built binary search trees. For example, the sequences (2

1 3) and (2 3 1) yield the same binary tree, but when we are randomizing, we regard them as two
separate cases. In fact, we build randomized binary search trees from n! different permutations of
the input. But there are not n! binary trees with n nodes.


