
CS 624

Lecture 8: Dynamic Programming

We’re now going to investigate a general method of attacking a certain class of problems. The
method is called dynamic programming. It doesn’t work on every problem, and it’s not needed on
many problems. (For instance, we have very good methods of sorting, and we don’t need to use the

technique of dynamic programming to deal with this problem.) But where dynamic programming
is appropriate, it can often give extremely good results.

We’ll start out by talking about a particular problem. We’ll show how it can be solved using dynamic
programming. Then we’ll summarize the technique, and see how it can be applied to a couple of
other problems.

1 Shortest paths in weighted DAGs

I have to start out with a word of caution. There are many variations of this problem, and there
are many different algorithms that have been designed for these variations. So we need to be very
particular about exactly what the problem is, and exactly how we are going to approach it.

And I should say from the beginning that even though you may find another algorithm for this
particular problem, the one I am going to present here is essential for you to understand; and this
is for two reasons:

1. It is as efficient as any other algorithm you will find.

2. It is key to understanding dynamic programming in general, and in particular the other two
problems we will consider afterwards.

So here is the problem:

1. We have a DAG G.

2. Each edge e of G has associated with it a weight w(e). In our problem, it will always be true

that for each edge e, w(e) > 0. (There are other variations of the problem where this is not

true. We are not concerned with those cases.)

3. If n1 → n2 → · · · → np is a path in G (where of course each edge ni → nj is a directed edge

from ni to nj), we define the cost of that path to be the sum of the weights of the edges on

that path.

1



2 1 SHORTEST PATHS IN WEIGHTED DAGS

4. Each node of G has a name. One of the nodes of GR is named start and another node is
named end.

5. There is at least one path from start to end.

6. The problem is to find the path of least cost from start to end.

Figure 1 shows a very simple example of a DAG like this.

n13 n5

start n10

n12 n11 n8 n2

n1 n6 n4

n9

n3 end

n7

20

16

15 12

21
14 16 22

10

35

3

8
17

12

28

5 11

14

186
7

15 20

11 20

21
19

Figure 1: A simple weighted DAG with distinguished start and end nodes

You can think of this kind of problem as a simplified version of what Google maps or the GPS
in a car does when you want to find the shortest path from where you are to some destination.



1.1 First essential property: optimal substructure 3

Each edge is a street, and the weight of each edge corresponds to the length traveled on that street,
or perhaps to a guess of how long it might take to traverse that street. Of course, this is vastly

simplified, because in this problem, all the streets are one-way1.

In this case, it’s not really too hard to find the shortest path between start and end just by trial
and error. But it should be clear that if we had a real graph, with hundreds or thousands of nodes
and edges, the difficulty would become immense, and in fact, intractable.

Nevertheless, there is a very effective way of solving this problem. It depends on two essential
properties of the problem:

1.1 First essential property: optimal substructure

The problem exhibits what our text calls optimal substructure. In this case, this means the
following: Suppose the nodes in our graph are denoted as {ni : 1 ≤ i ≤ N}. Of course one of those
nodes will also be named start and another node will also be named end. And suppose we know
that an optimal path P from node na to node nb is the following:

na → ni1
→ ni2

→ ni3
· · · → nik

→ · · · nir
→ nb

where nik
is just some node on the path. Suppose the sub-path of this path that starts at nik

and
ends at nb is denoted by Q.

Then since we know that the whole path P is optimal—that is, we know that P is the shortest path
from na to nb—we claim that it follows that Q is also optimal, in that it is the shortest path from
nik

to nb.

This claim is something that we need to prove. In this case, the proof is quite simple. It is what is
called a “cut-and-paste” proof. Here it is:

Suppose that Q was not the shortest path from nik
to nb. Then there would be a shorter one—let’s

call it Q′. But then if we follow the original path P from n1 to nik
and then switch to the path Q′

from nik
to nb, the total cost of all the edges on that path will be less than the cost of the original

path P . And that is a contradiction, because we assumed that P had the least cost of any path
from na to nb.

(Note that optimal paths are not necessarily unique. There might actually be more than one optimal
path from na to nb. We are not assuming that the cost of P is less than any other path—we are
just assuming that no other path has a cost that is less than the cost of P . That’s all we need for
the argument we just made.)

The claim that we just proved is what is called (for this problem) the optimal substructure property.
In other words, if a path P is optimal, then every sub-path of P that ends at the end of P is also
optimal.

1.1 Exercise Prove that in fact any sub-path of P is optimal. That is, is np and nq are two nodes in

P (with nq occurring later than np in the path), and if P is an optimal path from its start to its end

nodes, then the sub-path of P from np to nq is an optimal path from np to nq.

1And there are no cycles in the graph—once you leave a vertex, you can’t get back to it. And further, the graph
itself is very special because it’s a planar graph. That is, it can be drawn on a plane without any edges crossing each
other. That would of course be true for a road map on the surface of the earth (and you might want to convince
yourself that this is really true), but it’s not necessary for our problem, and our algorithm will not depend on it in
any way.



4 1 SHORTEST PATHS IN WEIGHTED DAGS

Because the problem exhibits optimal substructure, we can write a recursive algorithm for solving
it. Here is how we can do this:

First, we can assume we have a function

Weight(node, child)

where node and child are two nodes in the DAG and there is an edge from node to child. This
function simply returns the weight of that edge.

Let us denote by infinity some number that is guaranteed to be larger than any number would
could encounter in the problem. For instance, it could be 1 more than the sum of the weights of the
edges. Then we can write the following procedure which returns the least cost of any path from an
arbitrary node to end:

Cost(node)

if node has no children then

return infinity

foreach child of node do

if child is end then

just compute Weight(node, child)

else

compute Weight(node, child) + Cost(child)

return the minimum of those computed values

1.2 Exercise Prove that Cost(start) does indeed return the least cost of any path from start to end.

Writing this recursive function is the key to our solution.

1.2 Second essential property: overlapping subproblems

There is a problem, however with our recursive procedure: it is far too expensive. And the reason is
that the procedure has to compute a cost for each path leaving start, and there can be an enormous
number of paths. For instance, suppose we have the DAG represented in Figure 2.

1.3 Exercise 1. Show that the number of paths from start to end in the DAG in Figure 2 is 70.

2. Let us number the rows in the DAG starting from 0. So the number of the last row is 8. We
could of course make larger figures in an exactly similar way, containing more rows. In any
case the number of rows would be an even number. (This should be pretty clear, I hope.) Let
us denote the number of rows by 2k.

Find an expression for the number of paths from start to end in such a DAG with 2k rows.

3. Show that the number of such paths is

O

(

1√
k

22k

)

(You will need Stirling’s formula to show this.)



1.2 Second essential property: overlapping subproblems 5

start

n11 n12

n21 n22 n23

n31 n32 n33 n34

n41 n42 n43 n44 n45

n51 n52 n53 n54

n61 n62 n63

n71 n72

end

Figure 2: A bigger DAG.

Thus, the number of paths in such a DAG grows exponentially in the number of rows in the graph.
The recursive algorithm we have so far come up with is therefore not going to be at all practical—it
would be useless even for a moderately sized DAG.

However, we are saved by the second property of this problem, which is called overlapping sub-
problems. In this case, it occurs in this fashion. Consider the node n43 for example. There are
many paths from start to end that pass through this node. And when our procedure reaches this
node, it continues to compute the least cost of all paths from n43 to end. And it does this again and
again, once for each time it reaches n43. But we don’t really have to do this: we can just compute
the least cost of all paths from n43 to end once—the first time we reach n43. And we can put this
result in a lookup table. And so every time after this whenever we reach n43, we can just look up
that cost without recomputing it.

This technique is called memoization2.

Here is our memoized algorithm:

Cost(node)

if node has no children then

return infinity

foreach child of node do

if child is end then

just compute Weight(node, child)

else

2Please be careful about this. The word “memoization” does not have an “r” in it. It is different from the word
“memorization”, which does contain an “r”. They mean different things. Memoization (which is a word used only in
computer science, so far as I know) refers to the process of saving (i.e., making a “memo”) of a intermediate result
so that it can be used again without recomputing it. Of course the words “memoize” and “memorize” are related
etymologically—that is, they are derived from the same root—but they are different words, and you should not mix
them up.



6 2 LONGEST COMMON SUBSEQUENCE

if Cost(child) has not already been computed then

compute Cost(child) and enter it in the lookup table

compute Weight(node, child) + Lookup-Cost(child)

return the minimum of those computed values

1.4 Exercise Show that the cost of the memoized algorithm is O(|V | + |E|), where as usual V is the
set of vertices in the DAG and E is the set of edges.

This is an astonishing improvement. At some point you should actually try this out, writing these
two algorithms in your favorite programming language and testing them on a graph of this form of
moderate size. You will be amazed at the difference in performance.

This is how dynamic programming works: it can be used for problems that

1. have the optimal substructure property, so that we can write a recursive procedure to compute
the result, and

2. have overlapping subproblems, so we can memoize intermediate results to great effect.

2 Longest common subsequence

Definition A subsequence of a sequence A = {a1, a2, . . . , an} is a sequence B = {b1, b2, . . . , bm}
(with m ≤ n) such that

• Each bi is an element of A.

• If bi occurs before bj in B (i.e., if i < j) then it also occurs before bj in A.

Note that in particular, we do not assume that the elements of B are consecutive elements of A. For
instance, here is an example, where each sequence is an ordinary string of letters of the alphabet:

• “axdy” is a subsequence of “baxefdoym”

The “longest common subsequence” problem is simply this:

Given two sequences X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn} (note that the

sequences may have different lengths), find a subsequence common to both whose length
is longest.

For example:

p i o n e e r

s p r i n g t i m e



2.1 Optimal substructure 7

We will use the abbreviation LCS to mean “longest common subsequence”.

This may seem like a pretty artificial problem, but it is part of a class of what are called alignment
problems, which are extremely important in modern biology. Now that we can sequence the entire
genomes of many organisms, we can use this information to deduce quite accurately how closely
related different organisms are, and to infer the real “tree of life”. Trees showing the evolutionary
development of classes of organisms are called “phylogenetic trees”, and they are computed by
looking at the DNA sequences of different organisms and comparing them to see how close they
are and where the differences are. A lot of this kind of comparison amounts to finding common
subsequences, just as we are doing here. This is a tremendously exciting field.

So how do we solve this problem? Suppose we try the obvious approach: list all the subsequences
of X and check each to see if it is a subsequence of Y , and pick the longest one that is.

There are 2m subsequences of X. To check to see if a subsequence of X is also a subsequence of Y
will take time O(n). (Is this obvious?) Picking the longest one is really just an O(1) job, since we
can keep track as we proceed of the longest subsequence that we have found so far that works. So
the cost of this method is O(n2m).

That’s pretty awful. It’s so bad, in fact, that it’s completely useless. The strings that we are
concerned with in biology have hundreds or thousands of elements at least. So we really need a
better algorithm.

Fortunately, dynamic programming comes to our rescue. Let’s see how:

2.1 Optimal substructure

Again, let us say we have two strings, with possibly different lengths:

X = {x1, x2, . . . , xm}
Y = {y1, y2, . . . , yn}

A prefix of a string is an initial segment. So we define for each i less than or equal to the length of
the string the prefix of length i:

Xi = {x1, x2, . . . , xi}
Yi = {y1, y2, . . . , yi}

Now the point of what we are going to prove is that a solution of our problem reflects itself in
solutions of prefixes of X and Y .

2.1 Theorem Let Z = {z1, z2, . . . , zk} be any LCS of X and Y .

1. If xm = yn, then zk = xm = yn, and Zk−1 is an LCS of Xm−1 and Yn−1.

2. If xm 6= yn, then zk 6= xm =⇒ Z is an LCS of Xm−1 and Y .

3. If xm 6= yn, then zk 6= yn =⇒ Z is an LCS of X and Yn−1.

Remark Please be careful about the notation in item 2. What follows the word “then” is an im-
plication. It does not assert that zk 6= xm. What it says is that if zk 6= xm then Z is an LCS of
Xm−1. You might find it somewhat clearer if I wrote it like this:



8 2 LONGEST COMMON SUBSEQUENCE

2. If xm 6= yn, then (zk 6= xm =⇒ Z is an LCS of Xm−1 and Y ).

or equivalently,

2. If xm 6= yn and zk 6= xm, then Z is an LCS of Xm−1 and Y .

However, the way I originally wrote it above is quite standard, and you need to get used to it. The
same comment applies to item 3.

Proof.

1. By assumption xm = yn. If zk does not equal this value, then Z must be a common subse-
quence of Xm−1 and Yn−1, and so the sequence

Z ′ = {z1, z2, . . . , zk, xm}

would be a common subsequence of X and Y . But this is a longer common subsequence than
Z, and this is a contradiction.

2. If zk 6= xm, then Z must be a subsequence of Xm−1, and so it is a common subsequence of
Xm−1 and Y . If there were a longer one, then it would also be a common subsequence of X
and Y , which would be a contradiction.

3. This is really the same as 2.

Note that conclusions 2 and 3 of the Theorem could be summarized as follows:

2.2 Corollary If xm 6= yn, then either

• Z is an LCS of Xm−1 and Y , or

• Z is an LCS of X and Yn−1.

Thus, the LCS problem has what is called the optimal substructure property: a solution contains
within it the solutions to subproblems—in this case, to subproblems constructed from prefixes of
the original data. This is one of the two keys to the success of a dynamic programming solution.

2.1.1 Recursive solution

Let c[i, j] be the length of the LCS of Xi and Yj . Based on Theorem 2.1, we can write the following
recurrence:

c[i, j] =











0 if i = 0 or j = 0

c[i − 1, j − 1] + 1 if i, j > 0 and xi = yj

max
{

c[i − 1, j], c[i, j − 1]
}

if i, j > 0 and xi 6= yj

This is nice—the optimal substructure property allows us to write down an elegant recursive algo-
rithm. The way this algorithm works is shown in a simplified form in the tree below.



2.2 Overlapping subproblems 9

Now one can see that the cost of this algorithm is still far too great—we can see that there are

Ω(2min{m,n}) nodes in the tree, which is still a killer. But at least we have an algorithm.

[4,3]

[3,3] [4,2]

[2,3] [3,2] [3,2] [4,1]

[1,3] [2,2] [2,2] [3,1] [2,2] [3,1] [3,1] [4,0]

[0,3] [1,2] [1,2] [2,1] [1,2] [2,1] [2,1] [3,0] [1,2] [2,1] [2,1] [3,0] [2,1] [3,0]

2.2 Overlapping subproblems

What saves us is that there really aren’t that many distinct nodes in the tree. In fact, there are
only O(mn) distinct nodes. Its just that individual nodes tend to occur lots of times.

2.3 Exercise Write pseudo-code for a memoized version of the recursive algorithm outlined above.
Please note two things:

1. The recursive algorithm outlined above is a recursive mathematical formula. I am asking for
pseudo-code.

2. What you need to write to do this problem is not the pseudo-code presented in the book. That’s
not recursive.

2.4 Exercise Show that the cost of doing all this is O(mn).

3 Optimal Binary Search Trees

Now we’ll look at a third problem for which dynamic programming really serves us well.

Suppose we are making a binary search tree to use as a dictionary—say we are translating English
to French, for example. So the key of each node in the tree will be an English word, and the contents

of each node will be its French equivalent3.

Now it’s easy enough to make a binary search tree that does this—we’ve already seen how. But of
course we want to make it as efficient as possible. In other words, we would like the average cost of
a lookup to be as small as possible.

3to the extent that there is one, of course—in general, there is really no way to translate one natural language to
another this way. We’re just using this as an over-simplified example.



10 3 OPTIMAL BINARY SEARCH TREES

How can this be done? Intuitively, we would want the lookup paths to be as short as possible, so
we might think that the thing to do is create a binary search tree that was as balanced as possible.

In this case, however, we have some additional information that changes the nature of the problem
significantly: Some words are much less likely to be looked up than others.

So in general, we would expect that the words most often looked up should be near the top of the
tree. It turns out that even with this notion, finding the best tree is not trivial.

Let us consider a simple example. Suppose we have a binary search tree containing 5 words. Here
they are (symbolically, anyway), arranged in alphabetical order:

k1 k2 k3 k4 k5

The following table shows the probabilities of searching for these different nodes:

i 1 2 3 4 5

pi 0.25 0.20 0.05 0.20 0.30

where pi is the probability of searching for the node ki.

Of course we must have

n
∑

i=1

pi = 1(1)

Suppose then we have created a binary search tree T holding these nodes, and as usual, let us denote
by depthT (ki) the depth of the node ki in the tree T . Then the cost of looking up the node ki in
the tree is just

depthT (ki) + 1

and so the expected cost of looking up any node is the given in the usual way as the weighted

average, which we will denote4 by E(T ):

E(T ) =
n

∑

i=1

pi

(

depthT (ki) + 1
)

=
n

∑

i=1

pi depthT (ki) +
n

∑

i=1

pi

= 1 +
n

∑

i=1

pi depthT (ki) (since the probabilities sum to 1)

(2)

Figure 3 shows two possible binary search trees for this situation. For each tree T , we have shown
the computation of the expected search cost E(T ).

4Perhaps this notation is a bit sloppy, but this is the way the book does it, and it’s not really so bad.



11

k2

k1 k4

k3 k5

node depth probability contribution

k1 1 0.25 0.50

k2 0 0.20 0.20

k3 2 0.05 0.15

k4 1 0.20 0.40

k5 2 0.30 0.90

Total 2.15

(a)

k2

k1 k5

k4

k3

node depth probability contribution

k1 1 0.25 0.50

k2 0 0.20 0.20

k3 3 0.05 0.20

k4 2 0.20 0.60

k5 1 0.30 0.60

Total 2.10

(b)

Figure 3: Two binary search trees for a set of n = 5 keys.

We can see that the tree on the right, which actually has greater depth, has a smaller expected
search cost. In fact, as we’ll see below, this is the tree with the least expected search cost. And
we also see that the node with greatest probability of being picked is not the root node. So we can
see that putting nodes in the tree so that the nodes of higher probability occur higher up is not
necessarily the best thing to do. So the problem is not a trivial one to solve at all.

We could of course examine each binary search tree on n nodes, compute its cost, and take the
minimum. This is a “brute force” solution—that is, it is a solution based on exhaustive search—and
it is completely impractical for the following reason: the number of binary trees with n nodes is

1

n + 1

(

2n

n

)

=
4n

√
πn3/2

(

1 + O(1/n)
)

which grows exponentially5. So certainly exhaustive search is not a useful way of finding the best
tree in this problem. To do better, we need to rely on some special structural properties of the
problem.

5This formula can be derived very nicely using a generating function.



12 3 OPTIMAL BINARY SEARCH TREES

3.1 Optimal substructure

Well as you might have guessed, the special structural property of this problem is optimal substruc-
ture. What does this mean in this case? Since we are dealing with trees, the substructures are
naturally going to be subtrees.

The optimal substructure property that our problem possesses is this:

3.1 Theorem (Optimal substructure for the optimal binary search tree problem) If T is an

optimal binary search tree and if T ′ is any subtree of T , then T ′ is an optimal binary search tree for
its nodes.

The proof of this is a standard cut-and-paste argument. The idea is this: if T ′ were not an optimal
binary search tree for its nodes, then we could replace it (in T ) by a better one, and that would
drive down the cost of the T itself, which would show that T was not optimal. And that would be
a contradiction.

The idea is quite simple, but it is a little tricky to write out correctly. And in fact, all we really
need (as you will see below) is to consider the case in which T ′ is a subtree rooted at one of the
children of the root of T .

Note in such a case, if ki is in T ′ (and so of course is also in T ), then

depthT (ki) = 1 + depthT ′(ki)

3.2 Exercise Fill out the proof of this theorem in the case that T ′ is an immediate subtree of T—that
is that the root of T ′ is a child of the root of T .

You have to be careful when you do this. Remember that this is a question about a data structure,
not about algorithms. So you can’t say anything like “the algorithm would put this node here”.

The idea is simple enough, but note that you will almost certainly be using the formula (2), and you

will have to deal both with expressions like depthT (ki) and depthT ′(ki) (and possibly other, similar,

ones). I have already showed you how these expressions are related. You have to make this all

explicit. It’s not super-difficult, but you have to do it6.

3.2 A recursive solution

As usual, we can use the optimal substructure property of this problem to construct a recursive
algorithm to solve it. Here’s how:

First, our data structures will be greatly simplified by the following bit of knowledge, which I am
putting here as an exercise with an important hint:

3.3 Exercise Prove that the keys in any subtree form a contiguous7 sequence. For instance, the subtree
of the tree (a) in Figure 3 whose root is k4 consists of the contiguous sequence {k3, k4, k5} of keys.

Here is the hint: You might find some of the ideas in Lecture 7 helpful. In particular, think of least
common ancestors.

6For instance, if I don’t see any references to the expressions depthT (ki) and depthT ′ (ki), then I know without
even looking any farther that what you have written can’t possibly be correct. And in addition, you have to write it
up so I can understand it. I’m not a mind-reader. Please!

7Before you even start this exercise, make sure you know what the term “contiguous” means. It is not the same
as the term “continuous”.



3.2 A recursive solution 13

Let us consider any subtree S of T , where T is assumed to be an optimal binary search tree for all
our nodes. We know by Exercise 3.3 that the keys for the nodes in S are contiguous. Say they are
{ki, . . . , kj}. Simply as a matter of notation, we will then denote this subtree S by Ti,j . Of course

the original tree T is just T1,n.

Now given such a subtree Ti,j , let us define e[i, j] to be the expected cost of searching an optimal

binary search tree containing the keys {ki, . . . , kj}. That is, e[i, j] is just what we have already been

calling E(Ti,j).

Suppose the optimal binary search tree Ti,j for this subproblem has kr as its root. Then we have

essentially divided the cost of the problem into three parts:

• The expected cost of searching the tree Ti,r−1 built from the nodes {i, . . . , r − 1}, adjusted for

the fact that this is a subtree of our original tree Ti,j and so all the depths really should be 1

greater than they are in the subtree.

• The cost of searching for the root kr.

• The expected cost of searching the tree Tr+1,j built from the nodes {kr+1, . . . , kj}, adjusted

for the fact that this is a subtree of the original tree Ti,j , and so all the depths really should

be 1 greater than they are in the subtree.

Note that r can take any of the values {i, . . . , j}. If r = i then the first subtree Ti,r−1 doesn’t

contain any keys.

Similarly, if r = j then the second subtree Tr+1,j doesn’t contain any keys.

Now let us assume for the moment that i ≤ j (since we know that e[i, j] = 0 when j = i − 1).

Let us set

w(i, j) =

j
∑

l=i

pl

This is the sum of the probabilities of all the nodes in the tree Ti,j built from the nodes {ki, . . . , kj}.

We know that w(1, n) = 1, but of course all we can say in general is that 0 ≤ w(i, j) ≤ 1.

Now the first tree Ti,r−1 we mentioned above has cost e[i, r − 1], but as a subtree of Ti,r, its cost

has to be increased by increasing each depth number in equation (2) by 1. This amounts to adding

w(i, r − 1). So the expected cost that the subtree Ti,r−1 contributes to the expected cost of Ti,j is

e[i, r − 1] + w(i, r − 1). A similar argument applies to the other subtree Tr+1,j . And so we get

e[i, j] = E(Ti,j)

=
(

E(Ti,r−1) + w(i, r − 1)
)

+ pr +
(

E(Tr+1,j) + w(r + 1, j)
)

= pr +
(

e[i, r − 1] + w(i, r − 1)
)

+
(

e[r + 1, j] + w(r + 1, j)
)

This can be simplified a little: note that

w(i, j) = w(i, r − 1) + pr + w(r + 1, j)



14 3 OPTIMAL BINARY SEARCH TREES

So we have

e[i, j] = w(i, j) + e[i, r − 1] + e[r + 1, j]

Now all this assumed that we knew which node kr to pick for the root. Of course, we don’t know,
so we have to take the minimum over all possible choices of r. Thus we have

e[i, j] =

{

0 if j = i − 1

w(i, j) + mini≤r≤j{e[i, r − 1] + e[r + 1, j]} if i ≤ j

This can be easily turned into a recursive procedure and will correctly compute e[i, j] for any i and

j. In particular, it will compute e[1, n], so we can find the expected cost of searching an optimal
binary search tree. And in fact, we could extend the algorithm easily enough to return the optimal
binary search tree itself as well.

The only problem is, that this algorithm is still exponential in cost. We haven’t really cut the cost
down any—we have just managed to come up with an algorithm that has more structure to it than
simple exhaustive search, but isn’t really any cheaper.

3.3 Efficient computation of the expected search cost of an optimal bi-

nary search tree

The reason we can do better is that this problem also exhibits the property of overlapping sub-

problems. To be precise, look at what we are computing: There are only O(n2) values e[i, j] with

1 ≤ i ≤ n + 1 and 0 ≤ j ≤ n. (And in fact, we also have j ≥ i − 1, which cuts the total down

by about a factor of 2.) These values would be computed over and over again in a naive recursive

algorithm. So we can memoize them—we just store them in an array e[1 . . n+1, 0 . . n] and that way

we compute each value only once. We can also store the values w(i, j) in a table w[1 . . n + 1, 0 . . n].
We have

w[i, j] =

{

0 if j = i − 1

w[i, j − 1] + pj otherwise

Thus there are O(n2) values of w[i, j] and each one takes a constant time to compute, so the total

cost of computing the w array is O(n2).

Then the cost of computing each value of e[i, j] is O(n) and there are O(n2) such values, so the cost

of computing all the values of e[i, j] is O(n3). So the total cost of computing the w array first and
then the e array is

O(n2) + O(n3) = O(n3)


