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Lecture 16: NP-Complete Problems

1 The classes P and NP

1.1 Problems and instances

Technically, a problem is a language. We’ll be precise about this later, when we need to. But for
now, we can simply say that a problem is pretty much what you think it is, and it has instances.
For instance, there is the problem of SORTING. The instances of this problem are sets of elements
that can be compared. The result of sorting an instance is the the same set, put in order. There
are various algorithms (and we have seen some good ones) that can solve this problem, and they

all run in time O(n2)—and the good ones run in O(n log n), where n is the size of the instance. In
this case, by the size of the instance, we mean the number of elements in the set to be sorted.

Another very famous and very important problem is the TRAVELING SALESMAN PROBLEM.
Each instance of this problem is a connected weighted undirected graph. The problem is to find

the minimum-weight simple cycle1 that visits each vertex in the graph. This problem has been

extensively studied, but there do not (as of today) appear to be any O(n2) algorithms that solve it.

(Here, n is the size of the description of the graph. We could take n = |V | + |E|, for instance.) In

fact, there are no known O(n3) algorithms for this problem, or even O(nk) algorithms for any fixed
k. So it’s a very difficult problem.

1.2 Polynomial-time algorithms

It’s important to be clear about what we have been calling the size of a problem instance. Since

the beginning of the course, we have talked about problems that are O(n) or O(n2), or O(n log n),
and so on. When we talk like this, n is some measure of the size of the problem. As above, if we
are talking about sorting a set, then n will be the number of elements of the set. If we are talking

1A simple cycle in a graph is a path that ends where it starts and doesn’t include any vertex twice (other than the
start vertex, which is the same as the end vertex; and by convention we say that this vertex also occurs only once).
There is one tiny weakness with this definition: If you have a graph consisting of two points (say a and b, connected
by one edge), then according to this definition, the path a → b → a is a simple cycle. Clearly this is not what is
intended. There are a couple of ways of dealing with this:

1. Add the condition that no edge occurs twice on the path. If the path has more than 2 nodes, then this condition
is automatically satisfied so long as the condition on nodes is satisfied. So the condition really only applies to
one very small graph.

2. Add the condition that the path has at least 3 distinct nodes. That’s what our textbook does.

I really don’t think this question is worth much thought. None of the problems we will deal with have any interest
when applied to the graph with two nodes.

1
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about a graph G = (V, E) as in the TRAVELING SALESMAN PROBLEM, then it is reasonable

to let n be something like |V | + |E|. And so on.

In general, a problem instance a is encoded in some way, and n is just another name for |a|, which
is the length of the encoding.

Some problems involve numbers—see for instance the SUBSET SUM problem below in Section 3.5
(page 20). For such problems, you might think that (just as the size of an instance of a problem

involving graphs is the number of edges and vertices in the graph for that problem instance) the size
of an instance of a problem involving integers is just how many integers there are in that instance.
Alternatively, you might think that the size of an instance is the sum of all the absolute values of
the numbers in that instance. It turns out that neither of these “sizes” is a good measure of the
size of such a problem.

What is more useful is this: the size of the instance is computed by adding up the number of digits of
each number (with maybe a small increase added for some spaces to separate the numbers). This is
a good measure of the space it takes to specify the problem instance. It’s also actually a reasonable
measure of size. For instance, suppose there are two numbers n1 (having d1 digits) and n2 (having

d2 digits. The time it takes to add those two numbers is O
(

max{d1, d2}
)

, and the time it takes to

multiply them is O(d1d2). One could, of course, use n1 and n2 instead of d1 and d2, but then we
would have to introduce logarithms into the bound estimates—and the estimates really wouldn’t
indicate the realistic costs of the computations.

So from now on, we assume that we have a reasonable way of specifying the size of any instance
of a problem. Once we have that, we can meaningfully define some crucially important classes of
problems. Here is the first one:

Definition The class P is the class of problems for which there is a number k and an algorithm

which solves the problem and whose running time is O(nk) where n is the size of the instance of the
problem.

This is called the class of polynomial-time problems. All the problems we have seen in this course
so far are in P, almost always with a very small exponent.

1.3 Polynomial reducibility

We are familiar with the idea of solving a problem by reducing it to another problem. This is what
software engineers do all the time when they write subroutines, of course. We have also seen it in
this course. Remember that we were able to prove that the average-case running time of building a
binary search tree was Θ(n log n) by showing that it was really the same algorithm as Quicksort.

In effect, we reduced the Build-Binary-Search-Tree algorithm to the Quicksort algorithm,
and also reduced the Quicksort algorithm to the Build-Binary-Search-Tree algorithm—that
is, there was a reduction in both directions, and it was so trivial (once you looked at it correctly) that

we could see that the two algorithms really took the same amount of time (well, up to a constant

multiple, say).

Of course this doesn’t happen often. Most algorithms are not simple reinterpretations of other
algorithms. But there are other, more general kinds of reductions, that are weaker, and only go
in one direction, but are still quite useful. In fact, the notion of reduction is central to theoretical
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computer science, and there are many different kinds of reductions. The one we are concerned with
here is called polynomial reduction.

There is a difference, however, between the kind of reductions we are going to consider here and the
reductions we just talked about. Those reductions were reductions from one algorithm to another.
The reductions that are important to us here are from one problem to another. That is, a reduction
will tell us something to the effect that if we can solve problem A efficiently (by some algorithm),
then we can use that solution to solve problem B efficiently.

It turns out that to set this up well, it is best to consider a specific class of problems called decision
problems. A decision problem is simply a problem for which the answer is “yes” or “no”. Some
problems are naturally decision problems. For instance, there is the HAMILTONIAN CYCLE
problem: given an undirected graph G = (V, E), is there a cycle that contains every vertex in V

exactly once? We say that an instance of the Hamiltonian cycle problem is an undirected graph G,
together with the question, “Does G have a Hamiltonian cycle?”

1.1 Exercise For each of the following undirected graphs, either show that there is a Hamiltonian cycle,
or prove that none can exist.

1. The cube. Equivalently, the following graph:

A B

CD

E F

GH

2. The following graph:

A B C

G H I

3. The following graph:
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A B C

D E F

G H I

Hint: it’s a pretty obvious point, but I suggest you prove the following lemma, which we’ll also
be using later:

1.2 Lemma If G is a graph that has a Hamiltonian cycle C, then every vertex of G is an endpoint
of exactly 2 edges in C.

A decision problem thus consists of three parts: the name of the problem, a description of a general
instance of that problem, and an associated question. In the problem we just considered, we can
write this as follows:

Problem name: HAMILTONIAN CYCLE

Instance: A graph G, which may be directed or undirected. (This can really be thought
of as splitting into two distinct problems: DIRECTED HAMILTONIAN CYCLE, and
UNDIRECTED HAMILTONIAN CYCLE.)

Question: Is there a Hamiltonian cycle in G; that is, a cycle visiting each vertex exactly once?

Other problems, such as optimization problems, are not naturally decision problems. But they can
be recast as decision problems. For instance, we say that an independent set in an undirected graph
G = (V, E) is a subset V1 of the vertices V such that no two vertices in V1 are joined by an edge
in E. The “maximal independent set” problem is, given a graph G, to find the largest independent
set in G. This is not a decision problem. However, we could change it into one: “Given a positive
integer k, is there an independent set V1 in the graph of size k? We say that the pair (G, k) is an

instance of the independent set problem. (Implicitly of course, it comes with the question, “Does G

have an independent set of size k?”) That is, we define the problem like this:

Problem name: INDEPENDENT SET

Instance: An undirected graph G and a positive integer k.

Question: Is there an independent set in G of size k? That is, are there k vertices in G no
two of which are joined by an edge?

So now we are ready to define what we mean by a polynomial-time reduction.

Suppose we have two decision problems (like HAMILTONIAN CYCLE and INDEPENDENT SET,

for example). Let us call these decision problems A and B.

Definition If A and B are two decision problems and there is a function f having the following
properties:
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• f : A → B. That is f maps instances of A into instances of B.

• f is implemented by an algorithm that runs in polynomial time. That is, if a is an instance

of the problem A, then the time to compute f(a) is O(|a|k) for some k, where |a| is the size
of the instance a.

• For each a ∈ A, a has the same answer (“yes” or “no”) as f(a).

then we say that A is polynomial-time reducible to B, and we write

A ≤P B

Remarks 1. Note that we are not saying that either A or B are in P—we are not asserting
that either has a polynomial-time algorithm that solves it. We are saying that there is a
polynomial-time reduction from instances of A to instances of B.

2. Also note that it is not necessary that every instance of B “come from “ an instance of A in
this manner. It’s just necessary that every instance of A “maps to” or “corresponds to” an
instance of B in a way that can be computed in time bounded by a polynomial function of the
size of the instance of A.

There are some important properties we can draw from this:

• If A ≤P B, then not only is f(a) computable from a in polynomial time, but in fact |f(a)| is

a polynomially bounded function of |a|. That is |f(a)| = O(|a|k) for some k. This is because

for some k, f only runs for O(|a|k) time and therefore cannot output an encoding for f(a)
that is longer than that.

• If A ≤P B, and if B is a problem in P, then A is also. The reason is that we can take any
instance a of A, transform it in polynomial time by f to a problem f(a) in B whose size is no

more than some fixed power of |a|, and then solve that problem by a polynomially bounded

algorithm (since B is in P).

To be more precise, suppose |f(a)| = O(|a|p), and suppose the algorithm for solving problem

instances of B is O(|b|q). Then the cost of solving f(a) is O
(

(

|a|p
)q

)

= O(|a|pq). And since

f(a) has the same answer (“yes” or “no”) as a does, solving f(a) solves a. Therefore the
polynomially bounded algorithm for B yields a polynomially bounded algorithm for A.

Well, that’s very nice, but it turns out that the really useful way to use polynomial reducibility is
in the other direction: if A ≤P B and A is in some sense hard to solve, then B must be also. For
instance, if we knew that there was no polynomial-time algorithm for A, then we would also know
that there could be no polynomial-time algorithm for B—we have just seen that such an algorithm

for B would immediately yield one for A as well2.

There is one other fact that we should note at this point:

2You have to be careful about the wording of this: If A ≤P B, then

• A is reducible to B, and

• B is “harder” (or “at least as hard”) as A.

The trouble is that the word “reducible” sounds like it ought to mean that B is in some sense “less” than A. But it
really is “more”, in the sense that B is “harder” than A. What we’re really expressing is that A can be “reduced” to
B in the sense that A can be solved by using B (and that getting B from A can be done in polynomial time).
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1.3 Exercise Prove carefully that if

A ≤P B

B ≤P C

then

A ≤P C

(This is not hard, and the proof is quite short. I just want you to be very careful and clear about it.)

1.4 The class NP

There is a very large class of problems for which no polynomial-time algorithm has been found,
but which have a curious property: although they cannot (at least at the present time) be solved
in polynomial time, they can be checked in polynomial time. For instance, no polynomial-time
algorithm is known for the HAMILTONIAN CYCLE problem. Nevertheless, if someone gave you

what they said was a Hamiltonian cycle3 for a graph G, it would be easy for you to check that it
was indeed a Hamiltonian cycle (or wasn’t): you would just check

• that the list included all the vertices once and none twice, and

• that between each two consecutive vertices in the list (and between the first and the last)
there was an edge in the graph.

This can obviously be done in linear time4

The class NP of problems is the the class of problems that can be checked in polynomial time.

Certainly P ⊆ NP5. So at least some problems in NP are quite simple and easy to solve. But, as
we will see, there are many that are not. And in fact, there are some problems that are as hard as
any problems in NP.

Definition A problem A is NP-hard iff for any problem B in NP,

B ≤P A

Definition A problem A is NP-complete iff

• A is in NP, and

3They would give it to you as a list of vertices.
4There is a subtle point here. It’s not actually necessary that the information we give the algorithm is a solution.

If the “checking” algorithm can prove, based on this information, that the instance G has a Hamiltonian cycle, that is
all we really care about. For this reason, the actual technical name for this additional information is not a “solution”,
but a “certificate”, or a “witness”. (The two terms mean the same thing.) Usually a certificate is in fact a solution,
but it doesn’t have to be. This subtlety comes up in footnote 5 below.

5 OK, maybe it’s not so clear. Here’s the reason: Remember that we are really concerned with decision problems.
That is, we are not necessarily trying to produce an actual solution—all we have to do is say whether a solution
exists. Now suppose that A is in P. For any instance a of A, if we are given a proposed solution (actually a certificate,
as explained in the preceding footnote) s, we can “check” s by simply ignoring it and using our polynomial-time
algorithm for A. This will return either “yes” or “no”, which is all we really cared about anyway.
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• A is NP-hard.

1.4 Exercise Prove that all problems that are NP-complete are polynomially equivalent, in the sense
that if A and B are NP-complete, then

A ≤P B

B ≤P A

1.5 Exercise Prove the following:

In order to show that a problem A is NP-complete, it is enough to show that

• A is in NP, and

• for some problem B that is NP-complete,

B ≤P A

(This is very simple: You use the fact that if C is any problem in NP, we must then have

C ≤P B ≤P A

which shows that A is in fact NP-complete.)

Without going further down this path, we are now going to give some examples of problems that
are NP-complete, so you can get a feel for the kind of complexity that is typical of this class of
problems.

2 Our first NP-complete problem

We are going to start with a problem that is known to be NP-complete. In fact, it is historically
the first problem that was proved to be NP-complete. (It would be more accurate to say that it
is one of the first such problems, because several people actually came to this at about the same
time.) We won’t prove that it actually is NP-complete right now—we will do this later. But we do

mention the following: it is (as you will see) clearly in NP, and all the very best algorithms experts
in the world have tried to find a polynomial-time algorithm for it, and they all failed. So at the very
least, it is reasonable to assume that it is NP-complete. And as we will ultimately show, in fact it
is.

The problem is known as SAT. (The text calls it CNF-SAT, which is probably more accurate.)
It is a problem in mathematical logic, which sounds very abstract and far removed from practical
concerns. But in fact it is closely related to problems in chip design, as the book hints at, and many

other problems as well6. Here is the problem:

We have a set of Boolean variables. Let us call them {v1, v2, . . . , vn}. So each variable can take on

either the value True or False. We make expressions (which we call Boolean expressions) using

6It is also general enough that—as we will see—many other problems can be easily expressed in terms of it. (More
technically, and usefully, they can be reduced to it.) And there have been many special classes of instances of this
problem that can be solved reasonably efficiently, and this is actually of great practical importance.
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• these variables,

• and three operators:

∨ this means "or", in the usual programming language sense

∧ this means "and", in the usual programming language sense

v̄ this means "not v", in the usual programming language sense

• and parentheses, which we use in the usual way

It’s not important to know this, but an expression such as a ∨ b is called a disjunction, and an
expression of the form a ∧ b is called a conjunction

We say that a literal is a very simple expression which is either v or v̄ for some variable v.

Definition A Boolean expression e is in conjunctive normal form if it is of the following form:

e = c1 ∧ c2 ∧ · · · ∧ cm

where each ck is a clause, which by the same definition is of the form

ck = (z
(k)
1 ∨ z

(k)
2 ∨ . . . z(k)

nk
)

where each z
(k)
j is a literal.

For instance, the expression

e = (v1 ∨ v̄2 ∨ v̄3 ∨ v4) ∧ (v1 ∨ v2 ∨ v̄5) ∧ (v3 ∨ v4 ∨ v5) ∧ (v2 ∨ v4 ∨ v̄5)

is an expression in conjunctive normal form. We say such an expression is satisfiable iff there is an
assignment of True and False values to each of the variables vj which makes the expression True.

In this example, for instance, if we set v1 = v4 = True, then e will be True, regardless of the values
of the other variables. So e is satisfiable.

Warning: it is usually the case that the different literals in a clause come from different variables.
But this is not guaranteed to be the case. For instance, (v1 ∨ v̄1) is a legal clause.

The problem SAT is, given an expression in conjunctive normal form, to determine if it is satisfiable.
That is, we write

Problem name: SAT

Instance: A Boolean expression e in conjunctive normal form.

Question: Is e satisfiable?
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This is a remarkably difficult problem. In fact, to my knowledge, there is no way to definitively

solve it in general other than by exhaustive search, which certainly is a terrible way to proceed7.
On the other hand, it is clearly in NP—if someone tells you a solution, you can check that solution
in linear time.

We’re not going to prove right now that this problem is actually NP-complete. But we are going to
assume that this is the case, and we will derive some remarkable consequences from that fact. And
eventually, we will actually prove that it is NP-complete.

2.1 Exercise One of the really strange aspects of this field is that seemingly small changes to a problem
can drastically alter its complexity. For instance, suppose we exchange the roles of “and” and “or”:
We say that an expression is in disjunctive normal form if it is of the form

e = c1 ∨ c2 ∨ · · · ∨ cm

where each ck is a clause, which by the same definition is of the form

ck = (z
(k)
1 ∧ z

(k)
2 ∧ . . . z(k)

nk
)

where each z
(k)
j is a literal.

Prove that the problem of satisfiability for expressions in disjunctive normal form is in P. (That is,
prove that there is an algorithm which takes as input an expression e in disjunctive normal form
and determines whether or not that expression is satisfiable in polynomial time. For simplicity, we
can take |e| to be the number of symbols in e.)

3 The basic toolkit of NP-complete problems

Now we are going to look at a number of problems, all of which we will be able to show are NP-
complete. (We will show this based on the assumption which have made, and will later prove, that

SAT is NP-complete.)

3.1 3-SAT

The first problem is 3-SAT. 3-SAT is a restricted form of SAT in which

1. all clauses have exactly 3 literals in them, and

2. those 3 literals are distinct.

For instance, here is an example of a 3-SAT expression:

(v1 ∨ v1 ∨ v2) ∧ (v3 ∨ v2 ∨ v4) ∧ (v1 ∨ v3 ∨ v4)

You might think that this simplifies the problem considerably, but in fact, it doesn’t. We’ll show
that 3-SAT is just as hard as SAT, and is therefore NP-complete.

7As already mentioned, people have recently found algorithms that solve large numbers of instances (i.e., “special
cases”) of this problem reasonably efficiently, and this is significant. But the general problem still eludes us, and as
we’ll see below, this may be inevitable.
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3.1 Theorem 3-SAT is NP-complete.

Proof.

1. 3-SAT is in NP. This is straightforward: We can check an assignment to the variables of a
3-SAT expression by substituting them in each clause and verifying that each clause evaluates
to True. This is certainly an O(n) operation (where n is the number of literals in the whole

expression).

2. 3-SAT is NP-hard. We prove this by showing that SAT ≤P 3-SAT. We start with a SAT
formula. This is just a formula in conjunctive normal form, but with no restriction on the
number of variables in each clause. So it looks like this:

c1 ∧ c2 ∧ · · · ∧ cm

where each ck is a clause of the form

ck = (z
(k)
1 ∨ z

(k)
2 ∨ . . . z(k)

nk
)

where each z
(k)
j is a literal—that is, it is either x or x̄, where x is some variable.

We have to show how to turn this into an equivalent8 3-SAT expression—that is, an equivalent
expression in which all the clauses have exactly 3 distinct literals, and such that the the
algorithm that does this runs in polynomial time (in the size of the original expression). So as
a consequence we also know that the size of the final expression will be polynomially bounded
in terms of the size of the original expression.

Here’s how we do it: We consider each clause separately. We replace each clause c by a set
of clauses {γ1, γ2, . . . , γn} (where n may be different for different original clauses c) in such a
way that

• Each of the new clauses {γk : 1 ≤ k ≤ n} will have exactly 3 distinct literals in it.

• The variables used in the new clauses {γk : 1 ≤ k ≤ n} will be the variables in the original
clause c together with possibly some new variables. But the new variables will occur only
in the new clauses {γk : 1 ≤ k ≤ n} that come from the original clause c, and not in any
other new clauses that come from any other original clause in the expression.

• c will be True iff each clause in {γk : 1 ≤ k ≤ n} is true

– for some values given to the new variables, and

– with the same values given to the variables of ck

(This is a little bit tricky; I myself have been confused by it. The point is this: there must be
at least one set of values given to the new variables that contributes to a satisfying assignment,
and whether there is one set of such values or more than one set of such values, the values
given to the original variables of ck must be the same as those given in the original clause. So
if the original clause ck is satisfiable, then the same values of its variables work for each clause
in {γk : 1 ≤ k ≤ n} with some values for the additional variables; and in the other direction,

if each clause in {γk : 1 ≤ k ≤ n} is satisfiable with some assignment of truth values to all the
variables, then the values of the original variables in that set of clauses must also satisfy the
original clause ck.)

There are four cases to consider:
8By “equivalent”, we mean that the original SAT expression is satisfiable iff the 3-SAT expression is satisfiable.
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|c| = 1. That is, c = z1, where z1 is some literal. We introduce two new variables y1 and y2,
and we set

γ1 = (z1 ∨ y1 ∨ y2)

γ2 = (z1 ∨ y1 ∨ y2)

γ3 = (z1 ∨ y1 ∨ y2)

γ4 = (z1 ∨ y1 ∨ y2)

It should be easy to see that c is True iff (γ1 ∧ γ2 ∧ γ3 ∧ γ4) is True with the same value
of z1 and with any values of y1 and y2.

|c| = 2. That is, c = (z1 ∨ z2). We introduce one new variable y1, and we set

γ1 = (z1 ∨ z2 ∨ y1)

γ2 = (z1 ∨ z2 ∨ y1)

Again, we can see that c is True iff (γ1 ∧ γ2) is true with the same values of z1 and z2

and any value of y1.

|c| = 3. That is, ck = (z1 ∨ z2 ∨ z3). In this case, there is nothing to do: we just set γ1 = c.

|c| ≥ 4. That is, we have

c = z1 ∨ z2 ∨ . . . zn

where n = |c| ≥ 4. We introduce new variables y1, . . . , yn−3 and set

γ1 = (z1 ∨ z2 ∨ y1)

γ2 = (y1 ∨ z3 ∨ y2)

γ3 = (y2 ∨ z4 ∨ y3)

. . .

γn−2 = (yn−3 ∨ zn−1 ∨ zn)

In this case, not every assignment of truth values to the variables {y1, . . . , yn−3} will
work in general, but there will always be at least one assignment that does work.

3.2 Exercise Prove that this reduction does what it is supposed to do; that is, that it really does show
that

SAT ≤P 3-SAT

Note that to do this, you have to show that we have really satisfied all three conditions of the
definition of a polynomial reduction (which is on page 4). The first condition is obvious, I think.
The second is easy, but you do have to justify it. As for the third condition, there are four cases to
consider, just as in the proof. The first three are easy, but you do have to consider them explicitly
anyway.
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3.2 Vertex cover

A vertex cover of an undirected graph G = (V, E) is a subset of vertices V1 ⊆ V such that every

edge e ∈ E is incident on (at least) one element of V1. So for instance, in Figure 1, the black vertices

constitute a vertex cover9.

Figure 1: The black vertices form a vertex cover of the graph, since each edge is incident on at least
one black vertex.

Given an undirected graph, we would like to find the smallest vertex cover. The corresponding
decision problem is thus “Is there a vertex cover of size k?”. That is,

Problem name: VERTEX COVER

Instance: An undirected graph G together with a positive integer k.

Question: Does G have a vertex cover of size k?

We abbreviate vertex cover by VC. An instance of VC is a pair (G, k) where G is a graph, and the
question is “Is there a vertex cover of G of size k?”

3.3 Theorem The vertex cover problem is NP-complete.

Proof.

1. VC is in NP. Clearly, given a set V1 ⊆ V , we can check that the size of V1 is k and that each
edge e ∈ E is incident on a vertex in V1 in linear time. (Well, O(E + V ), say.)

2. VC is NP-hard. We prove this by showing that 3-SAT ≤P VC.

Let us start with a 3-SAT instance with N variables and C clauses. We will construct a graph
with 2N + 3C vertices such that

9The way to remember this is to say that “the vertices cover the edges.”
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• The construction can be done in “polynomial time”.

• The original 3-SAT instance is satisfiable iff the graph we construct has a vertex cover
with N + 2C vertices.

If we can do this, we will be done.

We will use an example to show how the graph is constructed, but our construction will be
described in perfectly general terms, so it applies to any 3-SAT instance.

The graph we will construct consists of three parts. The first part consists of pairs of vertices,
one pair for each variable in the instance. Each pair is labeled with the variable and its
negation, and the pair is connected by an edge, as in Figure 2. This part of the graph consists
of the truth-setting components.

v1 v̄1 v2 v̄2 v3 v̄3 v4 v̄4

Figure 2: Stage 1 of the construction of the graph corresponding to the 3-SAT instance

(v1 ∨ v̄3 ∨ v̄4) ∧ (v̄1 ∨ v2 ∨ v̄4)

The second part of the graph consists of a triangle of nodes for each clause in the 3-SAT
instance. The nodes of the triangle are labeled by the literals in the clause. Figure 3 shows
how this is done in our running example. This second part of the graph consists of the
satisfaction-testing components.

Notice that so far, we really have not used anything very specific about the 3-SAT instance.
Any 3-SAT instance consisting of two clauses with four variables would yield a construction
starting out exactly like this.

Finally, we add edges between the truth-setting components on top and the satisfaction-testing
components on the bottom. These edges encode the literal values in the graph. We attach
every node on the bottom to its node of the same name on the top. Figure 4 shows how this
is done in our running example. We can refer to these edges as cross edges.

Now let us look at what a vertex cover of this graph must be like.

• First, since every one of the truth-setting edges (on the top) must be covered, a vertex
cover must include at least one of every pair of truth-setting vertices on the top. Thus,
the vertex cover must include at least N vertices of this type.

• In addition, any vertex cover must include at least 2 out of the three vertices of each
satisfaction-testing triangle on the bottom, because the edges of those triangles can’t be
covered in any other way. Thus, the vertex cover must include at least 2C vertices of
that type.

So any vertex cover of the graph must include at least N + 2C vertices.
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v1 v̄1 v2 v̄2 v3 v̄3 v4 v̄4

v1

v̄3

v̄4 v̄1

v2

v̄4

Figure 3: Stage 2 of the construction of the graph corresponding to the 3-SAT instance

(v1 ∨ v̄3 ∨ v̄4) ∧ (v̄1 ∨ v2 ∨ v̄4)

v1 v̄1 v2 v̄2 v3 v̄3 v4 v̄4

v1

v̄3

v̄4 v̄1

v2

v̄4

Figure 4: The graph corresponding to the 3-SAT instance (v1 ∨ v̄3 ∨ v̄4) ∧ (v̄1 ∨ v2 ∨ v̄4)
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And if it does include N vertices “on the top” and 2C vertices “on the bottom”, then all the
top edges and all the triangle edges will be covered. The only issue, then, is whether the cross
edges are covered.

So now we are ready to prove that “the solution to a is the same as the solution to f(a)”. We

will do this in two steps: “a =⇒ f(a)” and f(a) =⇒ a”. We’ll write each step as a lemma

(contained entirely in the proof of the main theorem).

3.4 Lemma If the original 3-SAT instance is satisfiable, then the derived graph has a vertex cover
of size N + 2C

Proof. We suppose the original 3-SAT instance is satisfiable. We construct our vertex cover
as follows:

• For each pair of truth-setting vertices, color in the one that is True.

• Since each “triangle” must have at least one vertex corresponding to a literal that is True,
the cross edge coming to that vertex will already be covered by what have just done. So
pick the other two vertices for the vertex cover. That will ensure that not only is the
triangle covered but that all the cross edges to that triangle are covered.

Thus, a satisfying set of truth values for the N variables in the original 3-SAT instance
corresponds to a vertex cover of size N + 2C of the derived graph

And now we go in the other direction:

3.5 Lemma If the derived graph has a vertex cover of size N + 2C, then the original 3-SAT
instance is satisfiable.

Proof. Now we suppose we have a vertex cover of the size N + 2C of the derived graph. We
already know that N of the “top” vertices are part of the cover and 2C of the “bottom” ones
are also—two in every triangle. We let the N vertices of the cover on the top specify the truth
values of each of the N variables.

Now this means that the vertex in each triangle that is not part of the cover must be true.
The reason for this is that it is one endpoint of a cross edge, and since we have a vertex cover,
the other endpoint of that cross edge must be part of the cover, and so that literal is True.

Thus, at least one literal in each clause is True, and so the original 3-SAT instance is satisfi-
able.

Finally, we note that the construction of the derived graph is clearly a polynomial-time con-
struction. And that concludes the proof of the theorem.

3.3 CLIQUE and INDEPENDENT SET

A clique in an undirected graph is a subset of vertices such that each pair of the vertices is joined
by an edge in the graph. (Equivalently, a clique is a complete subgraph.)

Given an undirected graph, we would like to find the largest clique. The corresponding decision
problem is “Given a graph G and a number k, does G contain a clique of size k?”. So an instance
of CLIQUE is again a pair (G, k) where G is a graph, k is a number, and the associated question is
as above.
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Problem name: CLIQUE

Instance: An undirected graph G together with a positive integer k.

Question: Does G have a clique of size k?

An independent set in a graph is a set of vertices such that no two vertices in the set are joined
by an edge. The INDEPENDENT SET problem is, given a graph, to find the largest independent
set. The equivalent decision problem is “Does G contain an independent set of size k?”. Again, an
instance of INDEPENDENT SET is a pair (G, k) where G is an undirected graph, k is a positive
integer, and the associated question is as above.

Problem name: INDEPENDENT SET

Instance: An undirected graph G together with a positive integer k.

Question: Does G have an independent set of size k?

It turns out that these two problems are easily shown to be equivalent to the vertex cover problem.
To see this, we need one further definition:

Definition The complement Gc of an undirected graph G is a graph whose vertices are the same
as the vertices of G, and such that for any pair of vertices u and v, (u, v) is an edge of Gc iff it is
not an edge of G.

3.6 Exercise Prove that the following are equivalent:

1. V1 is a vertex cover of G.

2. V \ V1 is an independent set in G.

and, continuing, prove that the following are equivalent:

1. V2 is an independent set in G.

2. V2 is a clique in Gc.

Thus these three problems are equivalent (and clearly polynomially equivalent), and so since the
vertex cover problem is NP-complete, so are the other two problems.

3.7 Exercise Show that INDEPENDENT SET when restricted to trees is in P. Do this by constructing
a dynamic programming solution and giving a nice bound for the running time.

3.4 Integer linear programming

An instance of the INTEGER LINEAR PROGRAMMING problem consists of a set {v1, v2, . . . , vn}

of integer variables, a set of linear inequalities (with integer coefficients) over these variables, a
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function f(v1, v2, . . . , vn) to maximize, and an integer B. The function f is of the form

f(v1, v2, . . . , vn) =
n

∑

i=1

civi

where each coefficient ci is an integer. Thus, we can write

The yes-or-no question for the instance is, “Does there exist an assignment of integers to the variables
{vi} such that all the inequalities are true and f(v1, v2, . . . , vn) ≥ B?”

Problem name: INTEGER LINEAR PROGRAMMING

Instance: A set {v1, v2, . . . , vn} of integer variables, a set of linear inequalities (with integer

coefficients) over these variables, a function f(v1, v2, . . . , vn) to maximize, and an integer
B. The function f is of the form

f(v1, v2, . . . , vn) =

n
∑

i=1

civi

where each coefficient ci is an integer.

Question: Does there exist an assignment of integers to the variables {vi} such that all the

inequalities are true and f(v1, v2, . . . , vn) ≥ B?

For example, here is an instance:

variables: v1, v2

inequalities:

v1 ≥ 1

v2 ≥ 0

v1 + v2 ≤ 3

function: f(v1, v2) = 2v2

bound: B = 3

A solution to this instance is

v1 = 1

v2 = 2

On the other hand, here is an instance that has no solution:

variables: v1, v2
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inequalities:

v1 ≥ 1

v2 ≥ 0

v1 + v2 ≤ 3

function: f(v1, v2) = 2v2

bound: B = 5

3.8 Theorem Integer linear programming is NP-hard.

Proof. We will show that SAT reduces to it:

SAT ≤P INTEGER LINEAR PROGRAMMING

We start with some instance of SAT. This instance contains variables {v1, v2, . . . , vn} and clauses.
We will create a linear integer programming instance as follows:

There will be two variables for each variable vi. We will name these variables Vi and V̄i. They
will correspond to the literals vi and v̄i. (But be careful—notice that in the integer programming
instance they are separate variables, not one variable and its “negation”. In fact, they are variables
that take on integer values, not Boolean values.)

Next we introduce the inequalities. There are three classes of inequalities:

Class I. In order to make these variables model the original Boolean variables, we will introduce
some inequalities as part of our integer programming instance:

0 ≤ Vi ≤ 1

0 ≤ V̄i ≤ 1

This really amounts to four inequalities, and it means that each Vi and V̄i is either 0 (which

we can think of as False) or 1 (which we can think of as True).

Class II. Further, we introduce two more inequalities:

1 ≤ Vi + V̄i ≤ 1

Of course this is just the equation Vi + V̄i = 1, but we needed to express it in terms of
inequalities to make this be what we have said an integer linear programming instance is.

This equation says exactly one of Vi and V̄i is true.

Class III. Finally, we introduce inequalities that encode the clauses in the SAT problem. For each
clause

z
(k)
1 ∨ z

(k)
2 ∨ · · · ∨ z(k)

nk

we create an inequality

W1 + W2 + · · · + Wnk
≥ 1



3.4 Integer linear programming 19

where

Wj =

{

Vp if z
(k)
j = vp

V̄p if z
(k)
j = v̄p

For instance, if we have a clause

v1 ∨ v̄19 ∨ v̄7 ∨ · · · ∨ v6

then we introduce the inequality

V1 + V̄19 + V̄7 + · · · + V6 ≥ 1

Clearly (given the fact that each variable is constrained to be either 0 or 1), this inequality
is satisfied iff at least one of the variables in it is 1, which corresponds to at least one of the
literals in the clause being True.

As for the function f and the bound B, we don’t need them at all. We can simply set f(V1, V̄1, . . . , V̄n) =
0 and B = 0.

Now having done this, we see immediately that

• The integer linear programming instance that we have constructed from the SAT instance has
a solution iff the SAT instance is satisfiable.

• The construction of the integer programming instance from the SAT instance is a polynomial-
time algorithm.

And that concludes the proof.

There are a few things we need to say about this:

• We have not really shown that INTEGER LINEAR PROGRAMMING is NP-complete. We
have shown that it is NP-hard, but it is not quite obvious that it is in NP, because the integers
in the solution to the instance (not in the instance itself!) might in principle be so large that
they couldn’t even be written out in polynomial time.

• On the other hand, what we actually showed was that SAT could be reduced to a more
restricted problem: 0-1 INTEGER LINEAR PROGRAMMING, in which each variable can
take on only the values 0 and 1, and in which each coefficient is also 0 or 1. This problem is
certainly in NP, and so it is NP-complete.

This shows, in particular, that the reason that INTEGER LINEAR PROGRAMMING is
hard has nothing to do with big coefficients or big ranges on variables—restricting all values
to 0 and 1 still leaves the problem being NP-hard. So not only did this reduction prove that
INTEGER LINEAR PROGRAMMING was NP-hard, it also gave us some insight into where
the difficulty lies (and where it doesn’t lie).

• And actually, although we did not prove this, it has been proved10 that INTEGER LINEAR
PROGRAMMING is in fact in NP, and so is NP-complete.

10See I. Borosh and L. B. Treybig, “Bounds on Positive Integral Solutions of Linear Diophantine Equations”,
Proceedings of the American Mathematical Society, Vol. 55, No. 2, March 1976 (299–304), and Christos H. Pa-
padimitriou, “On the Complexity of Integer Programming”, Journal of the Association for Computing Machinery,
Vol. 28, No. 4, October 1981 (765–768).
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3.5 SUBSET SUM

This problem is also called INTEGER PARTITION. An instance of the problem is a set S of integers
and a “target” integer t. The question is, “Is there a subset of S whose sum is t?”

Problem name: SUBSET SUM

Instance: A set S of integers and a “target” integer t.

Question: Is there a subset of S whose sum is t?

For instance, if

S = {1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344}

and t = 3754, then the answer is “yes”, because

1 + 16 + 64 + 256 + 1040 + 1093 + 1284 = t

3.9 Theorem SUBSET SUM is NP-complete.

Proof.

1. SUBSET SUM is in NP. This is obvious: checking that a particular subset adds up to t

can certainly be done in linear time11.

2. SUBSET SUM is NP-hard. We will prove this by reducing VERTEX COVER to SUBSET
SUM:

VC ≤P SUBSET SUM

Thus we need to start with a graph in which we are trying to find a vertex cover of size N ,
and turn this VC instance into an instance of SUBSET SUM.

We take our graph, and we construct its incidence matrix:

e0 e1 e2 e3 e4 e5

v0 1 1 1 1 0 0

v1 0 0 0 1 0 1

v2 0 0 1 0 1 1

v3 0 1 0 0 1 0

v4 1 0 0 0 0 0

v4

v3

v0

v2

v1

e0

e1 e2

e3

e4

e5

11And remember that by “linear time” in this context, we mean “linear in the number of digits of the numbers in
the problem”.
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Note that in an incidence matrix there are exactly two 1’s in each column. That will be a key
point. We will call this matrix b, and we have for instance b[2, 1] = 0 and b[3, 1] = 1.

Now we are going to think of each row as a base-4 representation of an integer, only with the
low-order digits on the left so that the row for v2 corresponds to

42 + 44 + 45

In other words, the row corresponding to the vertex vi corresponds to the number

|E|−1
∑

j=0

b[i, j] · 4j

Then we are going to extend the matrix by adding a new row for each edge, and we will put
a 1 in the column that corresponds to that edge:

e0 e1 e2 e3 e4 e5

v0 1 1 1 1 0 0

v1 0 0 0 1 0 1

v2 0 0 1 0 1 1

v3 0 1 0 0 1 0

v4 1 0 0 0 0 0

e0 1 0 0 0 0 0

e1 0 1 0 0 0 0

e2 0 0 1 0 0 0

e3 0 0 0 1 0 0

e4 0 0 0 0 1 0

e5 0 0 0 0 0 1

Now each column has three 1’s in it: two from vertex rows and one from an edge row. The
top rows of this matrix are just the original matrix b.

Now corresponding to each vertex row, we construct the number (which is just the number

we talked about above, but with a high-order term added).

Vi = 4|E| +

|E|−1
∑

j=0

b[i, j]4j

We will call these the “vertex numbers”.

And corresponding to each edge row, we construct the number (this time without the high-

order term added)

Ek = 4k

We will call these the “edge numbers”.
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Now the subset sum instance is this: the numbers in our set S are just the numbers Vi and
Ek we just constructed. The target number is

t = N · 4|E| + 2 ·

|E|−1
∑

j=0

4j

We will now show that the graph we started with has a vertex cover of size N iff the subset
sum problem we have just constructed is solvable.

Now let us notice the following facts:

• If we add up any subset of numbers in S (even if we add up all the numbers in S, there
will be no “carries” from one column to the next in the base-4 addition. The reason
for this is that each column can contain at most three 1’s, and it would take four 1’s to
produce a carry.

• It follows from this that for a sum of numbers in S to equal t it must contain exactly
N vertex numbers, since that is how many vertex numbers we will need to get the high

term N · 4|E| in t.

So we are now ready to show that the VC instance is solvable iff the SUBSET SUM instance
is solvable. As before, we will write this as two lemmas, completely contained in the body of
this proof.

3.10 Lemma If the VC instance is solvable, then the derived SUBSET SUM instance is solvable.

Proof. If we have a vertex cover of the graph with N vertices, and if we take the sum of the

corresponding vertex numbers, we will certainly have a high-order term of N · 4|E|. As for the
other terms, since each edge in the graph is “covered”, we will have at least a contribution of

1 · 4j for each edge ej . If we only have 1 · 4j and not 2 · 4j , then we can add the edge number

Ej . In this way we arrive at a solution to the SUBSET SUM problem.

3.11 Lemma If the derived SUBSET SUM instance is solvable, then the VC instance is solvable.

Proof. Take the vertex numbers in the solution of the SUBSET SUM instance. We know
that there are exactly N of them. Further, we know that the rest of the numbers in the
solution (which are the edge numbers) can only contribute at most a 1 in each remaining
column. Therefore the vertex numbers have to contribute either 1 or 2 in each column. This
means that each edge is covered by (i.e., incident on) either 1 or 2 vertices in the subset of
vertices that corresponds to the vertex numbers in the solution to the derived SUBSET SUM
instance. And that means that those vertices constitute a vertex cover of size N .

Finally, as before, it is clear that this transformation of VC into SUBSET SUM is a polynomial-
time algorithm. And that concludes the proof.

3.12 Exercise

1. Show that there is a dynamic programming solution to SUBSET SUM that solves the problem
in time O(nt).

2. Why does this not show that SUBSET SUM is in P?
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3.6 HAMILTONIAN CYCLE

A Hamiltonian cycle in a graph G is a simple cycle that visits each vertex. There are two variants
of this problem, depending on whether we take the graph to be directed or undirected. In either
case, no one has found a polynomial-time solution, but on the other hand, each problem is clearly
checkable in polynomial time. So both problems are in NP. And in fact, as we will see, both problems
are NP-complete.

The construction for this is pretty tricky, I think. And personally, I find the proof in our text really
difficult to read. Part of the reason, I think, is that it is trying to prove too much at once. It is
proving that UNDIRECTED HAMILTONIAN CYCLE is NP-complete. It turns out to be easier
to prove this in two steps:

• Prove that DIRECTED HAMILTONIAN CYCLE is NP-complete by reducing some known
NP-complete problem to it.

• Then prove that UNDIRECTED HAMILTONIAN CYCLE is NP-complete by reducing DI-
RECTED HAMILTONIAN CYCLE to it.

Historically, this seems to be the way this was originally proved, and it seems to me that the
construction given in the text is in some way an amalgamation of the two constructions for those
two separate proofs. And I think it’s just easier to see each one separately. So that’s what I’ll do
here.

3.13 Theorem DIRECTED HAMILTONIAN CYCLE is NP-complete.

Proof.

1. DIRECTED HAMILTONIAN CYCLE is in NP. Clearly it’s polynomial-time checkable.

2. DIRECTED HAMILTONIAN CYCLE is NP-hard. We will prove this by reducing

3-SAT to it12. That is, we will show that

3-SAT ≤P DIRECTED HAMILTONIAN CYCLE

So we start with a 3-SAT instance that has n variables {v1, v2, . . . , vn} and k clauses {c1, c2, . . . , ck},
where each clause is of the form z1 ∨ z2 ∨ z3, each zj being a literal. We will show how to take

this 3-SAT instance and produce from it a graph G = (V, E) such that

• The construction can be performed in polynomial time as a function of n + k.

• G has a Hamiltonian cycle iff the 3-SAT instance is satisfiable.

Here we go.

First, we may assume that each clause in our 3-SAT instance involves 3 distinct variables. For
if a clause is of the form

v1 ∨ v̄1 ∨ v2

12Of course it is just a matter of preference which NP-complete problem we choose to reduce to DIRECTED
HAMILTONIAN CYCLE. The original proof used VERTEX COVER. I’m following Kleinberg and Tardos (Algorithm
Design) and Sipser (Introduction to the Theory of Computation, 2nd edition) here.
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then it is automatically true, and we can just eliminate it from the instance. On the other
hand, a clause such as

v1 ∨ v1 ∨ v2

is really just v1 ∨ v2, and we have already seen how to turn this in to a pair of clauses (with a

new variable), each clause containing 3 literals. So let us assume that this has been done and
that each clause of our 3-SAT instance contains literals corresponding to 3 different variables.
(Of course, as usual, one variable can occur in many different clauses.)

For each variable vi we create a set of vertices in G and hook them together in a “doubly
linked list”, like this:

. . . . . . . . .

The exact number of nodes you can think of as “as many as we need”. It will turn out to be
3(k + 1).

We take the list corresponding to each node and connect it to some auxiliary nodes to form a
oval-like structure, and we then hook up these oval structures vertically, as in Figure 5. We
also add k other nodes, each one corresponding to one of the clauses in the 3-SAT expression.
In Figure 5 we see that to form a Hamiltonian cycle, each row will either be traversed left-to-
right or right-to-left, and the choice for each row is independent of the choice for every other
row. We will say that a traversal of row i left-to-right encodes the value True for the variable
vi, and a traversal of row i right-to-left encodes the value False for the variable vi.

So there are 2n possible Hamiltonian cycles of the graph in Figure 5, and these different cycles
correspond exactly to the 2n different ways of assigning either True or False to the n different
variables {v1, v2, . . . , vn}.

Now what we are going to do is hook up the nodes {c1, c2, . . . , ck} to the rest of the graph in
such a way that the clause information is encoded.

We do this as follows: we divide each row (corresponding to each variable vi as follows:

• An initial node (i.e., the left-most one).

• A “separator node”.

• k sets of 3 nodes each. The jth set corresponds to the clause cj . Actually, the first two

nodes in the set correspond to cj and the third node in each set is another “separator

node”. We will call the first two nodes in each set the “cj group in row i”.

• A final node (i.e., the right-most one).

Now each clause cj contains three literals (cj = z
(j)
1 ∨ z

(j)
2 ∨ z

(j)
3 ). For each of those literals,

we add two edges involving cj , as follows: Take one of the literals z. z corresponds to some

variable vi—that is, z = vi or z = v̄i. The two edges we insert will connect cj with the two

nodes in the cj group in row i, as follows:

• If z = vi, we insert an edge from

the left node in the cj group → cj
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v1: . . . . . . . . .

v2: . . . . . . . . .

v3: . . . . . . . . .

...

vn: . . . . . . . . .

c1

c2

c3

...

ck

Figure 5: Outline of the directed graph produced by a 3-SAT instance. The nodes {c1, c2, . . . , ck}
are connected to the rest of the graph as well; we show that later.

and we insert an edge from

cj → the right node in the cj group

See Figure 6. The reason for doing this is that if vi has the value True, then (since row i

will be traversed left-to-right), we can use these two edges to make a side trip to cj , thus

including cj in the cycle.



26 3 THE BASIC TOOLKIT OF NP-COMPLETE PROBLEMS

• If z = v̄i, we do things "the other way": we insert an edge from

the right node in the cj group → cj

and we insert an edge from

cj → the left node in the cj group

See Figure 7. The reason for doing this is that if vi has the value False (so v̄i is True),

then (since row i will be traversed right-to-left) we can use these two edges to make a
side trip to cj , thus including cj in the cycle.

. . . . . . . . . . . . . . . . . .vi :

cj

separator node

Figure 6: Two edges added when clause cj contains vi.

. . . . . . . . . . . . . . . . . .vi :

cj

separator node

Figure 7: Two edges added when clause cj contains v̄i.

Thus, each clause cj has three pairs of edges that are inserted for it. And notice that these

edges will never “step on each other”: the edges from clause cj will all attach to nodes in what
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you can think of as “column j” of the main part of the graph. So the edges from two different
clauses will never coincide. And further, since we have assumed that no clause contains the
same variable twice, each of the three pairs of edges introduced for each clause goes to a
different row, so they can’t coincide either.

That is the construction of G that we promised. It is clear that if the original 3-SAT expression
is satisfiable, then G has a Hamiltonian cycle: just traverse each edge in the appropriate way
(i.e., left-to-right if vi is True and right-to-left if vi is False). For each clause cj at least one

of the literals in cj will be True. For the row corresponding to the variable vi in that literal,

a side trip can be made to cj since the two edges to and from cj in that row were set up that

way. Thus each cj can be included in the cycle, and so we really do have a Hamiltonian cycle

for G.

It remains to show the opposite implication: Suppose G has a Hamiltonian cycle. We must
show that the original 3-SAT instance is satisfiable. Now this is immediately true if we know
that each cj is reached by a path to and from the same row. For then the variable in that row

corresponds to a True literal in cj , and so each cj is satisfied. So all we have to prove is that

if G has a Hamiltonian cycle, then each cj is reached by a path to and from the same row.

Suppose it were not. Suppose we had something like the situation in Figure 8. Let us suppose
that in Figure 8 that a1 is a node in some row that is reached from the left, and that the edge
from a1 to cj is not followed by an edge (in the path) from cj to a2.

We know that either a2 or a3 must be a separator nodes. Let us consider these two possibilities
separately:

Case I: a2 is a separator node. A separator node must be attached to the nodes on either
side of it. But a2 cannot be attached to a1 by an edge in the Hamiltonian cycle, since a1

already has two Hamiltonian cycle edges attached to it. So this is impossible.

Case II: a3 is a separator node. In this case a1 and a2 must both correspond to the same
clause (in this case, cj). So a2 must be attached either to cj or to a1 by an edge in the

Hamiltonian cycle, and again neither one is possible, since both those nodes already have
two Hamiltonian cycle edges attached to them.

Thus the situation we want to avoid is in fact impossible provided that a1 is approached from
the left. If it were approached from the right, then the “mirror image” of this argument would
show that this case was also impossible.

Therefore we have in fact shown that a Hamiltonian cycle of G corresponds to an assignment
of truth values to the variables {v1, v2, . . . , vn} that satisfies the original 3-SAT instance.

Finally, we note that the construction of G was certainly a polynomial-time construction. And
that concludes the proof.

That was a pretty complex construction. Fortunately, the next one is actually pretty straightforward.

3.14 Theorem UNDIRECTED HAMILTONIAN CYCLE is NP-complete.

Proof.

1. UNDIRECTED HAMILTONIAN CYCLE is in NP. Clearly it’s polynomial-time check-
able.
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vp: a1 a2 a3

...

vq:

cj

Figure 8: This can’t happen.

2. UNDIRECTED HAMILTONIAN CYCLE is NP-hard. We will prove this by reducing
DIRECTED HAMILTONIAN CYCLE to it. That is, we will show that

DIRECTED HAMILTONIAN CYCLE ≤P UNDIRECTED HAMILTONIAN CYCLE

So we start with an instance of DIRECTED HAMILTONIAN CYCLE—this is just a directed
graph G—and we will construct from this an undirected graph H which has a Hamiltonian
cycle iff G does.

Here’s how it works: Each vertex v in G corresponds to three vertices vin, vmid, and vout in

H. They are connected by two (undirected) edges: one between vin and vmid, and the other

between vmid and vout. Those are all the vertices in H, and some of the edges.

The rest of the edges in H mirror the edges in G: If (u, v) is a (directed) edge in G, we create

an edge in H from uout to vin.

And that’s it. Now we have to prove that this works.
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3.15 Lemma If G has a Hamiltonian cycle, then H does.

Proof. This is simple. If u1 → u2 → · · · → un → u1 is a (directed) Hamiltonian cycle in G,
then

uin
1 ↔ umid

1 ↔ uout
1 ↔ uin

2 ↔ umid
2 ↔ uout

2 . . . ↔ uin
n ↔ umid

n ↔ uout
n ↔ uin

1

is an undirected Hamiltonian cycle in H.

3.16 Lemma If H has a Hamiltonian cycle, then G does.

Proof. This is where the cleverness of the construction comes in.

Note that since each “mid” node is connected by one edge to an “in” node and one edge to an
“out” node, the only way that each “mid” node can be in a cycle is for all three (“in”, “mid”,

“out”) nodes to be in that cycle. And from that we can see that a Hamiltonian cycle of H

must be of the form

uin
1 ↔ umid

1 ↔ uout
1 ↔ uin

2 ↔ umid
2 ↔ uout

2 . . . ↔ uin
n ↔ umid

n ↔ uout
n ↔ uin

1

But this corresponds exactly to the Hamiltonian cycle u1 → u2 → · · · → un → u1 in G.

Finally, again it is clear that the construction of H from G is a polynomial-time construction,
and the proof is complete.

3.7 Some more simple reductions

3.7.1 The Traveling Salesman problem

We have a set of cities. Think of these cities as vertices in a graph. A salesman (this problem was

considered before gender-neutral language was understood to be important) needs to visit each city
as cheaply as possible. We will assume that the cost is the total distance of the trip. So we have a
graph and between each two vertices there is an edge with an associated weight. We want to find
the shortest path that visits each node. To make things simple, we may also assume that the path
should be a simple cycle (and in fact, this is the most common way the problem is stated, and is

probably the most useful version).

The associated decision problem is “Does this graph have a Hamiltonian cycle of weight ≤ W?”

We can reduce UNDIRECTED HAMILTONIAN CYCLE to this problem as follows: Let G be any
undirected graph. This will be our instance of UNDIRECTED HAMILTONIAN CYCLE. We will
construct a graph H with edge weights that will be an instance of the traveling salesman problem,
as follows:

• The vertices of H are just the vertices of G.

• Every two vertices of H are connected by an edge. (That is, H is a complete graph.)

• The weight of an edge in H is 0 if that edge is also an edge in G, and is 1 otherwise.

Then the question “Does H have a Hamiltonian cycle of weight ≤ 0?” has a positive answer iff G

has a Hamiltonian cycle. Thus the traveling salesman problem is NP-complete.
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3.7.2 Subgraph isomorphism

The problem is this: given two graphs G and H, is H isomorphic to some subgraph of G? Again, the
problem is clearly in NP. It’s NP-hard because we can reduce CLIQUE to it. To ask the question
“Does G have a clique of size k?” is to ask the question “Does G have a subgraph that is isomorphic
to the complete graph on k vertices?” So CLIQUE ≤P SUBGRAPH ISOMORPHISM, and so
SUBGRAPH ISOMORPHISM is NP-complete.

3.8 Changing the problem a little may change it a lot.

Suppose we consider the GRAPH ISOMORPHISM problem: given two graphs G and H, are they
isomorphic? This seems like it should be pretty close to the SUBGRAPH ISOMORPHISM problem,
but it doesn’t seem to be. In fact, although GRAPH ISOMORPHISM is in NP, it is unknown
whether it is NP-complete.

Here is another problem: Given an undirected graph, is there a path that includes every edge exactly
once? (It may include a vertex more than once.) This seems similar to HAMILTONIAN CYCLE,
but it’s not close to it at all. Such a path—one that includes every edge once—is called an Eulerian
path. The problem was first considered by Euler in 1735 in a famous paper titled “The Seven
Bridges of Königsberg”. Euler gave a very simple algorithm (O(n), in fact) for deciding whether this
problem had a solution. This paper is regarded as the starting point of the study of the topology
of graphs.

4 SAT is NP-complete!

I’m following Aho, Hopcroft, and Ullman (The Design and Analysis of Computer Algorithms) in
this last section of the notes.

4.1 Languages and Turing machines

I assume that you have studied something about Turing machines already. I’m not going to go
into them in great depth. One important thing to realize is that there are a number of different
variants, but they are all equivalent. For instance, a Turing machine can have 1 tape or k tapes.
But any k-tape machine has an equivalent 1-tape machine, and in fact the 1-tape machine is at
worst polynomially larger and polynomially slower than the k-tape machine. And similarly for the
other variants. And in fact the same is true for the relationship between a 1-tape Turing machine
and any realistic machine model or programming language. We’re not going to prove any of this
here, but we will rely on this fact to make our model of computation as simple as possible—that
was, after all, the reason Turing defined Turing machines in the first place.

So here is the definition we will use:

Definition A (1-tape) Turing machine consists of

• A finite set Q of states. Three of these states are special, and have special names:

– There is an initial state, which we will denote by q0.
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– There is an accepting state.

– There is a rejecting state.

• A finite set T = {τ0, τ1, τ2, . . . } of tape symbols. There is a subset I ⊆ T of input symbols.

And there is a special blank symbol in T \ I.

• A move or transition function

δ : Q × T → Q × T × {L, R}

• A tape. This is simply a finite sequence of cells, which can be extended without limit in both
directions. Each cell will contain a tape symbol.

And the machine works like this:

At any point in the computation,

• the machine is in one of the states q ∈ Q,

• the tape has a certain (finite) sequence of tape symbols in its cells, and

• the machine is “pointing to” a particular cell.

These three items of information (the second one of which can be quite large of course, but in

any event can be specified in a finite manner) constitute a configuration, or a snapshot, or an

instantaneous description (ID) of the machine.

While it might be natural to represent the tape as a 1-dimensional array and to represent “where
the machine is currently pointing” as an index into that array, the usual way authors prefer to do
this is as follows: A configuration is represented as uqiv where u and v are (possibly empty) strings
of tape symbols, qi is a state, and the convention is that

• The cells of the tape hold the string uv (i.e., u concatenated with v).

• The machine is pointing to the cell containing the first symbol in v if v is non-empty. If v is
empty, the machine is pointing to the “next cell” after u, which contains the blank symbol.

The initial configuration, or initial ID of the machine is q0w where w is some string formed from
input symbols (i.e., elements of I).

The machine proceeds as follows: If an ID is given by uaqibv, where a and b are tape symbols, then
δ(qi, b) is computed (or, really, looked up, since Q × T is a finite set). It is of the form 〈qj , τ, L〉

or 〈qj , τ, R〉. L means “move to the left” and R means “move to the right”. We consider these two

cases separately:

• δ(qi, b) = 〈qj , τ, R〉. The machine changes b to τ , enters state qj , and moves one cell to the

right. So the new state is uaτqjv.

• δ(qi, b) = 〈qj , τ, L〉. The machine changes b to τ , enters state qj , and moves one cell to the

left. So the new state is uqjaτv.
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This process is then repeated. One of three things can happen:

• Eventually the machine winds up in the accepting state. The machine then stops, and we say
that it has accepted the initial input string w.

• Eventually the machine winds up in the rejecting state. The machine then stops, and we say
that it has rejected the initial input string w.

• The machine goes on forever without ever entering either the accept or reject states.

So that’s what a Turing machine (or at least, the variant of Turing machine that we will use) is.

We need another definition, which you also should be familiar with:

Definition A language (more properly, a formal language) over the set T is simply a set of finite
strings over T .

Of course this definition is pretty empty. Real languages—even real computer languages—are nor-
mally described by a grammar, or at least by some structural property. But this definition is general
enough to allow us to describe the kind of problems we have been considering.

For instance, suppose we are considering UNDIRECTED HAMILTONIAN CYCLE. We can let T

be any set of symbols that we can use to write a description of an undirected graph in. And we
can define UNDIRECTED HAMILTONIAN CYCLE to be the language consisting of those (finite)
strings over T that correspond to undirected graphs having a Hamiltonian cycle.

Thus the problem we have been considering can be rephrased as follows: Given a set T and a
language L over T , find an algorithm that takes as input a string over T and tells whether or not it
is in L. Now by the Church-Turing hypothesis, we can replace “algorithm” with “Turing machine”.
If such a machine exists, we say that L is Turing decidable or simply recursive. Since all the problems
we have been considering can be solved by exhaustive search, it is pretty evident that they are all
decidable. The problem for us is one of efficiency.

Definition A language L over a set T is in the class P iff there is a Turing machine that decides
L in polynomial time.

Here of course “in polynomial time” means with respect to the length of the input string.

Of course, when we encode a problem in this way, it might not be true that every string over T

even corresponds to a problem of the type we are considering. But this is easily solved: just have
the Turing machine walk over the input once and check that it really does represent a graph, or
whatever we are representing. If it doesn’t, then immediately reject it. If it does, then go on and
decide whether it is in L or not.

4.2 Non-deterministic Turing machines and the class NP

Ordinary Turing machines, such as we have described above are deterministic. This simply means
that every configuration determines the next one. So starting from an initial configuration, the
entire sequence of configurations of the machine is completely determined, and there is no choice
involved.

It turns out to be useful to consider a more general notion—one in which there is some choice, and
the machine is therefore non-deterministic.
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Definition A non-deterministic Turing machine is exactly the same thing as a Turing machine with
one exception:

The transition function δ is no longer a function. Instead it returns a set of possible choices. That
is,

δ : Q × T → P
(

Q × T × {L, R}
)

where for any set X, P(X) is the power set of X—that is, the set of all subsets of X. This power

set is also often written as 2X . (You can easily remember this because there are 2n subsets of a set

of size n.)

The way a non-deterministic Turing machine works is that at each step, one of the choices that δ

provides is used to construct the next configuration. You can think of this as follows: at each step
in the computation the machine spawns a number of sub-processes. Each sub-process continues the
computation, using a different one of the possible choices.

Thus in effect we have a tree of computations, rather than a single linear sequence of computations.
If any path through this tree winds up in an accepting state, we say that the initial string is accepted
by this machine.

Of course this model of computation is not practical as stated. It could, however, be thought of in
terms of parallel computations (as above) or also could be implemented in terms of backtracking,
which would in general be stupendously inefficient.

Definition The class NP is the class of languages that are decided in polynomial time by non-
deterministic Turing machines.

Of course a deterministic Turing machine is just a special case of a non-deterministic Turing machine.
So with this definition, we know a priori that P ⊆ NP.

On the other hand, it’s not quite obvious that this definition is equivalent to the one we have been
using up to now, in terms of polynomial-time verifiability. It’s actually not hard to show that these
two definitions are equivalent, but I’m not going to do it here. See Sipser, for instance, for a quick
and short proof of this. In any case, it should be clear that the problems that we have considered
so far are in NP in this new definition.

4.3 The Cook-Levin theorem

4.1 Theorem (Cook-Levin) SAT is NP-complete.

Proof. We first have to show that SAT is in NP. This is clear: a non-deterministic Turing machine
can decide SAT in polynomial time, because each path down the tree can correspond to checking
satisfiability for a different choice of truth values for the variables. If the SAT instance is satisfiable,
then one of the branches of the computation will report this (i.e., will accept the expression), and
this will actually happen in linear time.

So we have to show that SAT is NP-hard. And with our current definition, this means the following:
For each language L in NP (say the language is over the set of symbols T ), and each finite string

w over T , we need to algorithmically create a SAT expression (which, remember, means a Boolean

expression in conjunctive normal form), such that
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• The algorithm taking the string w to the SAT expression is a polynomial-time algorithm. That
is, the time taken by the algorithm is bounded by a constant times some power of |w|.

• w is in L iff the SAT expression is satisfiable.

To do this, of course, we need not only to encode the string w in the SAT expression, but also
some information about the language L. Now the only thing we really know about L is that it is
in NP—that is, that there is a non-deterministic Turing machine M that decides membership in L.
So that is the information we will use.

Thus, we start with a non-deterministic Turing machine M that decides a language L over T ,
described as above, together with its input string w. From M and w we will create a SAT instance
by a polynomially bounded function, such that the SAT instance is satisfiable iff M accepts the
initial string w. In this way we show that every NP problem is polynomially reducible to SAT, and
that will complete the proof.

So let us begin.

We know that M decides L in polynomial time. So we actually have a polynomial p such that M

decides each input string w in time ≤ p(|w|). Of course p depends on M , but it doesn’t depend on
anything else. Certainly it doesn’t depend on w.

In fact, we are going to make a simplifying assumption: let us assume that the machine has been
modified (it is easy to do this, and it doesn’t change the problem in any “non-polynomial” way) so

that every path of computations is exactly of length p(|w|). In other words, if a computation finished

early, it just continues without change until time p(|w|). This simplifies some of the reasoning below.

We are now going to do what we probably should have done originally, and represent the string on
tape at each step of the computation as an array. And since the computation for w takes time at
most p(|w|), we know that M can move a distance of at most p(|w|) cells in either direction from its

start position. Therefore we know that in this case we can index this array from −p(|w|) to p(|w|),
where the machine initially points to position 0.

Also, for notational convenience, let us say that

• α is the index among the states of the accepting state. So qα is the accepting state.

• β is the index among the tape symbols of the blank symbol. So τβ is the blank symbol.

• The tape symbols in the initial string w are w0, w1, . . . , w|w|−1. For convenience, let us write

wi = τt(i)

That is, t(i) is simply the index of the tape symbol wi, where wi is the ith symbol of the initial
string w.

Now to construct our SAT expression, we need to specify what the variables in that expression are
going to be. Each of these variables will say something about the state of our machine M at some
point in the computation. To make things as simple as possible, we name our variables using three
capital letters:

• C stands for cell.
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• S stands for state.

• H stands for head. Most authors, instead of saying that the machine “points to” a certain cell,
say that the machine has a “read/write head” (like that on a tape recorder) that is positioned
at a certain cell. That’s where the term head comes from.

Now here are the variables:

• Ci,j,t is a variable whose value is True iff the ith cell on the tape contains the tape symbol τj

at time t. Note that this is really a whole family of variables: there are 2p(|w|) + 1 possible

values for i, |T | possible values for j, and p(|w|) possible values for t, so we have just defined

(

2p(|w|) + 1
)

|T |p(|w|)

variables.

The particular value of this is completely unimportant. The only significance is that the
number of these variables is bounded by a fixed polynomial in |w|.

• Sk,t is a variable whose value is True iff M is in state qk at time t. Here we have |Q|p(|w|)

variables.

• Hi,t is a variable whose value is True iff at time t the machine is pointing at cell i. Here we

have
(

2p(|w|) + 1
)

p(|w|) variables.

Now we will create our Boolean SAT expression. It will be convenient to use an auxiliary function—
you can think of this as a macro: U(x1, x2, . . . , xr) will be True iff exactly one of its arguments is

True (and the rest are False). To construct an expression for U , note that

x1 ∨ x2 ∨ · · · ∨ xn is True ⇐⇒ at least one of the variables is True
∧

1≤i<j≤n

(x̄i ∨ x̄j) is True ⇐⇒ no two of the variables are True

Therefore, we can write

U(x1, x2, . . . , xn) = (x1 ∨ x2 ∨ · · · ∨ xn) ∧
∧

1≤i<j≤n

(x̄i ∨ x̄j)

Note that this expression is in conjunctive normal form.

We are going to construct a SAT expression as follows: We will create expressions A, B, C, and so
on to encode the following 7 statements:

A: The machine is pointing to exactly one cell at each time. (We will call this the “current cell”.)

B: Each cell contains exactly one tape symbol.

C: The machine is in exactly one state at each time.

D: Exactly one tape cell (the current cell) is modified from one time to the next.
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E: The first configuration is the initial configuration.

F : The state in the last configuration is the accepting state.

G: The change in state, current cell, and cell contents between successive times is allowed by the
transition function of M .

Each of these expressions will be an expression in conjunctive normal form. Therefore the conjunc-
tion of them (i.e., “and”-ing them together) again yields an expression in conjunctive normal form.
And that expression will be True iff the machine M accepts w.

Here are the expressions:

A. This asserts that the machine is pointing to exactly one cell at each time.

Let At assert that at time t the machine is pointing to exactly one cell. Then A = A0 ∧ A1 ∧
· · · ∧ Ap(|w|). And we have

At = U(H−p(|w|),t, . . . , H−1,t, H0,t, H1,t, . . . , Hp(|w|),t)

As we have seen, each At is in conjunctive normal form, so A is as well.

B. This asserts that each cell contains exactly one tape symbol . Let Bi,t assert that the ith cell

contains exactly one symbol at time t. Then B =
∧

i,t Bi,t, and

Bi,t = U(Ci,1,t, Ci,2,t, . . . , Ci,|T |,t)

Again, B is in conjunctive normal form.

C. This asserts that the machine is in exactly one state at each time.

We have

C =
∧

0≤t≤p(|w|)

U(S1,t, S2,t, . . . , S|Q|,t)

C is in conjunctive normal form.

D. This asserts that exactly one tape cell (the current cell) is modified from one time to the next.
We have

D =
∧

0≤t<p(|w|)
−p(|w|)≤i≤p(|w|)

1≤j≤|T |

(Ci,j,t ∨ Hi,t ∨ Ci,j,t+1)

This can be read as follows:

• Either the ith cell does not contain the symbol τj at time t,

• or it does, in which case either

– it also contains it at time t + 1, or

– the machine is pointing at the ith cell at time t.
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D is in conjunctive normal form.

E. This asserts that the first configuration is the initial configuration.

E = S0,0 ∧ H0,0 ∧
−1
∧

i=−p(|w|)

Ci,β,0 ∧

|w|−1
∧

i=0

Ci,t(i),0 ∧

p(n)
∧

i=|w|

Ci,β,0

(Note the use of the subscript t(i) in the specification of the initial string.) E is in conjunctive
normal form.

F . This asserts that the state in the last configuration is the accepting state qα.

F = Sα,p(|w|)

F is in conjunctive normal form.

G. This asserts that the change in state, current cell, and cell contents between successive times is
allowed by the transition function δ of M .

This expression is more complex than the previous ones. Let us pretend to start out with that
our Turing machine is actually deterministic, so that for each state q and tape symbol τ , there
is a unique state q′, tape symbol τ ′ and direction d′ (i.e., either L or R) such that δ(q, τ) is

〈q′, τ ′, d〉.

In such a case, G will be the conjunction (i.e., the “and”) of a number of clause groups. Each
clause group is composed of three clauses, like this:

Hi,t ∨ Sk,t ∨ Ci,j,t ∨ Hi′,t+1

Hi,t ∨ Sk,t ∨ Ci,j,t ∨ Sk′,t+1

Hi,t ∨ Sk,t ∨ Ci,j,t ∨ Ci,j′,t+1

where there is one such clause group for each t from 0 to p(|w|) − 1 and for each set of values

(i, j, k, i′, j′, k′) such that −p(|w|) ≤ i ≤ p(|w|) and such that when we compute δ(qk, τj),

either

• δ(qk, τj) = 〈qk′ , τj′ , R〉, in which case we set i′ = i + 1, or

• δ(qk, τj) = 〈qk′ , τj′ , L〉, in which case we set i′ = i − 1.

The way to understand these clauses is as follows: the only way Hi,t ∨ Sk,t ∨ Ci,j,t can be false

is if at time t,

• the machine is pointing at cell i,

• the machine is in state k,

• and the cell i contains τj .

In that case

• The first clause says that at time t + 1, the machine is pointing to cell i′ (which is either

cell i + 1 or cell i − 1).
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• The second clause says that at time t + 1 the machine is in state k′.

• And the third clause says that at time t + 1 cell i contains τj′ .

Clearly G is in conjunctive normal form. However, in general, our Turing machine is non-
deterministic. This means that for each state q and tape symbol τ , δ(q, τ) is a (finite!) set of
triples of the form

〈q′, τ ′, d′〉

〈q′′, τ ′′, d′′〉

〈q′′′, τ ′′′, d′′′〉

. . .

Suppose that each of these possibilities gives rise to an expression G′, G′′, G′′′, and so on.
Then our real expression G is just

G = G′ ∨ G′′ ∨ G′′′ ∨ . . .

The only problem with this is that G is no longer in conjunctive normal form.

However, this can be easily dealt with. Without going into details, it is clear that just by
using the distributive property over and over again, this expression can be rewritten as an
expression in conjunctive normal form. This is not entirely trivial: the size of the rewritten
expression may be exponentially larger than the size of the original expression.

For our purposes here, that doesn’t matter at all. The reason is that the size of each original
expression G′ ∨G′′ ∨ . . . does not depend on |w|. It only really depends on the properties of the
Turing machine itself. Therefore it doesn’t really matter how big G is, since the size of G does
not vary with |w| either. It’s just some (possibly very large) constant. The number of such

expressions G that we need depends on |w|—there are p(|w|)
(

2p(|w|) + 1
)

such expressions—

and this is a polynomial function of |w|, which will be multiplied by the constant size of G, so

it is still a polynomial function of |w|. And that’s all we need.

Further (and I’m not going to beat this into the dirt, although I’ve done a little of that already),
it is easy to see that everything here in this construction is polynomially bounded. Therefore the
expression

A ∧ B ∧ C ∧ D ∧ E ∧ F ∧ G

is an expression in conjunctive normal form which is derivable in a polynomially bounded way from
M and w, and which is satisfiable iff M accepts w.

And that completes the proof.


