
CS624 - Analysis of Algorithms

Introduction

September 4, 2024



Contact Information

Instructor: Nurit Haspel

http://www.cs.umb.edu/~nurith

nurith@cs.umb.edu or nurit.haspel@umb.edu

Phone – 617-287-6414.

Office – M03-201-04

Office hours – Mo We 2:30-3:45 or by appointment.

Course schedule: Mo We 5:30–6:45 at M02-0116.

Nurit Haspel CS624 - Analysis of Algorithms

http://www.cs.umb.edu/~nurith
mailto:nurith@cs.umb.edu
mailto:nurit.haspel@umb.edu


Course Description

Methods for analyzing and developing algorithms.

Runtime analysis and growth rate.

Sorting and searching.

Dynamic programming.

Greedy algorithms.

Amortized analysis.

Graph algorithms and their applications.

P=NP? and approximation algorithms.

More topics if time permits.

Course website: http://www.cs.umb.edu/cs624.

Syllabus.

Nurit Haspel CS624 - Analysis of Algorithms

http://www.cs.umb.edu/cs624
http://www.cs.umb.edu/cs624/Syllabus.pdf


Course Requirements

Prerequisite: CS220 (Discrete Math) or equivalent (formerly
known as CS320).

Consider dropping if you didn’t do well in CS220.

Homework assignments – approximately every 1-2 weeks (20%
total).

The homework due date is strict. No late assignments will be
accepted without a good reason.

The homework should be uploaded to Gradescope – you
should all be added by now.

Please get acquainted with Gradescope if you have not used it
yet. It’s easy but requires some learning.

Nurit Haspel CS624 - Analysis of Algorithms



Course Requirements

There will be no programming assignment (although
programming experience will definitely help!).

You may consult with your friends, but the final work should
be individual or with a small group if applicable.

I strongly prefer typed homework. If handwritten – make it
CLEAR.

The first assignment is already on the course webpage.

The assignments are supposed to be challenging, but if
you find the assignment unbearably hard, consider dropping.

Nurit Haspel CS624 - Analysis of Algorithms



Course Requirements (Cont.)

Two quizzes (20% each), final exam (40%).

Your final grade should be at least C (60%) to pass.

Books:

Required: Introduction to Algorithms, 3rd or 4th Edition by
Cormen, Leiserson, Rivest, and Stein, MIT press 2009. (you
can order on amazon or get an older edition, but be sure to
sync the page numbers).
I will give the page numbers in both editions in the
assignments.
Not required but highly recommended: The Algorithm Design
Manual, 2nd Edition by Steven S. Skiena, Springer Verlag,
2008.

You will be asked to read from the books in preparation for
class.

Nurit Haspel CS624 - Analysis of Algorithms



General Stuff

The course material will be available online and updated
regularly with class notes and assignments.

Attendance is not required (but highly encouraged). You are
responsible for updating yourselves if you miss a class.

Classes are recorded, and the recordings will be available on
Blackboard.

Don’t be afraid to ask questions in or out of class. I won’t
think you are stupid and it won’t lower your grade.

Don’t hesitate to send me e-mails. I expect e-mails. It won’t
lower your grade.

Please use our Piazza space. You can post anonymously, and
your posts may be public or private (for my eyes only).

Nurit Haspel CS624 - Analysis of Algorithms



General Stuff

Read here about my plagiarism and cheating policy.

The homework assignments and tests are strictly individual.

No AI (ChatGPT etc.) is allowed.

I have a second-strike policy.

First strike – you get a 0 in the homework and a warning.

Second strike – you fail the course + a report to the higher
administration.

The no. of strikes applies other courses as well.

It is easier to catch plagiarism than you think

The exams are in-class, so online help won’t save you.

Your grade is not negotiable! The only way I will change your
grade is if you prove to me I made a mistake.

I don’t give bonuses and options for extra credits on an
individual basis. Your grade is based on your coursework only.

Nurit Haspel CS624 - Analysis of Algorithms

http://www.cs.umb.edu/cs624/honesty.pdf


Analysis of Algorithms

This course focuses on methods to analyze how ”good” or
”efficient” an algorithm is.

This is not always a clear-cut question with a clear-cut answer.

How much time and/or space does an algorithm take?

There are some subtle but important variations to this
question.

Nurit Haspel CS624 - Analysis of Algorithms



Example – a Dictionary

Dictionary – a set of < key , value > pairs.

Look up a key, retrieve the value associated with it.

Keys should be unique. Values not necessarily so.

Some dictionaries are built once, no deletion (e.g. – symbol
tables). A hash table is the best implementation.

Some dictionaries should handle insertions and deletions, or
order is important. A binary search tree may be a better data
structure.

Nurit Haspel CS624 - Analysis of Algorithms



The analysis of algorithms

Many problems can be solved in more than one way.

Often there is no absolutely one best algorithm.

We need a way to reason about it, so as to have a
mathematical, rigorous analysis of the performance of the
algorithm and/or its correctness.

This is often better than “it just seemed to work best”
(although in some cases this is a good answer too...).

We will do a lot of proofs in this course – both of correctness
and of performance.

First example – sorting.

Nurit Haspel CS624 - Analysis of Algorithms



Insertion Sort

Algorithm 1 Insertion Sort

1: for j ← 2 to length[A] do
2: key ← A[j ]
3: i ← j − 1
4: // Insert A[j] into sorted sequence A[1..j-1]
5: while i > 0 and A[i ] > key do
6: A[i + 1]← A[i ]
7: i ← i − 1
8: end while
9: A[i + 1]← key

10: end for

Nurit Haspel CS624 - Analysis of Algorithms



Insertion Sort - Example

2 8 7 1 3 5 6 4

The initial unsorted array.

1 2 7 8 3 5 6 4

j

3

key

Beginning of step j. In this case, j = 5. The variable key holds the value
3. All the gray elements (to the left of the thick vertical line) are in order.

1 2 3 7 8 5 6 4

End of step j. Now all the elements to the left of the thick line (which
has been moved 1 element to the right) are in order. The next step will
start with j = 6 and key will hold the value 5.

Nurit Haspel CS624 - Analysis of Algorithms



Insertion Sort

We are interested in two things here:

Proof of correctness – How do we know the algorithm is
correct? How can we prove it always gives the correct answer?

Efficiency – what is its runtime?

Nurit Haspel CS624 - Analysis of Algorithms



Proof of Correctness

Proof by induction on the external for loop.

Lemma

At the start of each iteration of the loop (each iteration being
characterized by a value of j), the numbers in A[1..(j-1)] are in
sorted order.

In fact, they are the numbers that were originally in
A[1..(j-1)], but they are now in sorted order.

Nurit Haspel CS624 - Analysis of Algorithms



Proof of Correctness

Proof.

When j=2 this is trivially true (why?).

Assume this is true for some j-1.

To pass from j-1 to j, we insert the jth element (key) below
the last element in A[1..(j-1)] that is greater than it so it is
smaller than all the elements to its right and larger than all
the elements to its left (why is that?), and now A[1..j] are in
sorted order.

Thus when we are done, the entire array is sorted.

Nurit Haspel CS624 - Analysis of Algorithms



Comments About Proof by Induction

People often get very confused about what the inductive
hypothesis is and how inductive proofs ”work”. One may think of
the inductive hypothesis as a sequence of statements. In this case,
the statements are as follows:

Statement 5 is: ”At the start of iteration 5 of the loop, the
numbers in A[1 . . 4] are in sorted order.”

Statement 6 is: ”At the start of iteration 6 of the loop, the
numbers in A[1 . . 5] are in sorted order.”

...

Nurit Haspel CS624 - Analysis of Algorithms



Comments About Proof by Induction

Obviously, statement 1 is meaningless and statement 2 is
trivially true, so we have a starting point.

The proof then showed that if for some number j, Statement j
was known to be true, then it follows that the next statement
– Statement j+1, must be true.

Since we know that Statement 2 is true, it thus follows that
Statement 3 must be true.

The same reasoning shows us that we can continue in this
manner and conclude that Statement j is true for all values of
j ≥ 2, which is what we needed to show.

Nurit Haspel CS624 - Analysis of Algorithms



Runtime Analysis

The running time is expressed in the length of the array, n.

It is important to specify what n is.

Worst case runtime (guaranteed not to do worse than that...).

Best case runtime (less practical).

Average case runtime – average the runtime over all possible
inputs.

We need to know something about the distribution of possible
inputs.

This is the most difficult to do but often the most practical.

Nurit Haspel CS624 - Analysis of Algorithms



Runtime Analysis

In this course we don’t care about the machine specifications,
which may alter the practical runtime.

In real life we often care about those things.

We care about the number of operations – additions,
multiplications, assignments.

We will assume they are all equally expensive (not necessarily
always true, but good enough for our purposes).

Nurit Haspel CS624 - Analysis of Algorithms



Best Case Runtime Analysis for Insertion Sort

The best-case time occurs when the input array is already
sorted in the correct order.

In this case the while loop is never executed.

The only cost is to test the loop condition.

Therefore, the cost of each j loop is some constant c .

The runtime is therefore

T (n) =
n∑

j=2

c = (n − 1)c

Nurit Haspel CS624 - Analysis of Algorithms



Worst Case Runtime Analysis for Insertion Sort

When the array is sorted in reverse and the inner while loop
runs j − 1 times on the j th iteration of the outer loop.

If a is the overhead for the instructions outside the while loop
(constant) and c is the runtime inside the while loop we have:

T (n) =
n∑

j=2

(a+ (j − 1)c)

which is of the form

An2 + Bn + C

for some constants A, B, C.

Nurit Haspel CS624 - Analysis of Algorithms



A Count of Operations

Insertion-Sort(A) cost times
for j ← 2 to length[A] do c1 n

key ← A[j ] c2 n − 1
// Insert A[j ] into the sorted sequence A[1..j − 1].
i ← j − 1 c4 n − 1

while i > 0 and A[i ] > key do c5
n∑

j=2

tj

A[i + 1]← A[i ] c6
n∑

j=2

(tj − 1)

i ← i − 1 c7
n∑

j=2

(tj − 1)

A[i + 1]← key c8 n − 1

Nurit Haspel CS624 - Analysis of Algorithms



Counting the Operations – Worst Case

Counting the operations as mentioned above gives:

T (n) = (c1+c2+c4+c5+c8)n−(c2+c4+c5+c8)+(c5+c6+c7)
n∑

j=2

(tj−1)

T (n) is as big as possible when tj = j . This happens when A is initially
sorted in reverse order. Since

n∑

j=2

(j − 1) =
n−1∑

j=1

j =
n(n − 1)

2

we see that T (n) is of the form an2 + bn + c – quadratic in n.

Nurit Haspel CS624 - Analysis of Algorithms



Counting the Operations – Best Case

T (n) is as small as possible when tj = 1. This happens when A is
initially sorted in the proper order. In this case we have

n∑

j=2

(1− 1) = 0

and so T (n) is of the form an + b – linear in n.

Nurit Haspel CS624 - Analysis of Algorithms



Average Case Runtime

It seems much more difficult since we have to average over all
possible inputs.

In other words – find the average value of
n∑

j=2
(tj − 1) over all

possible permutations of the input.

Difficult but not impossible!

Nurit Haspel CS624 - Analysis of Algorithms



Permutations and Inversions

We want to average over all the possible permutations of the
input.

With each permutation there is a set of inversions.

Definition: An inversion of a sequence a of numbers (a1..an)
is an ordered pair (ai , aj) such that i < j and ai > aj

In other words – an inversion is a pair whose indices are in
order but values out of order.

For example – how many inversions are there in the sequence
(5, 2, 3, 7, 1)?

Nurit Haspel CS624 - Analysis of Algorithms



Permutations and Inversions in Insertion Sort

Lemma

The number of inversions in the input data is exactly the number
of times the inner while loop is executed.

Proof.

At the top of the while loop we have to decide whether A[i] is
larger than the key (A[j]) or not.

The inner loop starts from j-1 and goes down.

j is the original index.

i may change but its current and original index are smaller
than j.

Therefore i < j .

Nurit Haspel CS624 - Analysis of Algorithms



Permutations and Inversions in Insertion Sort

Proof (Cont.)

We have two options:

1 A[i ] < A[j ]. In this case (A[i],A[j]) is not an inversion in the
current or the original sequence – we break the while loop.

2 A[i ] > A[j ]. In this case (A[i],A[j]) is an inversion in the
current and the original sequence. In this case we execute the
while loop which gets rid of the inversion for us.

Thus on the j th iteration of the for loop the while loop is
executed exactly one per inversion involving A[j] and the
elements to the left of it.

This is true for all j’s, so eventually the while loop is executed
once per inversion.

Nurit Haspel CS624 - Analysis of Algorithms



Permutations and Inversions in Insertion Sort

In other words – the total number of inversions in the original

sequence is
n∑

j=2
(tj − 1).

To average over all the permutations we have to sum the total
number of inversions in all the permutations and divide by n!
(the total number of permutations).

There is a nice trick to solve this problem.

Nurit Haspel CS624 - Analysis of Algorithms



Total Number of Inversions

Given a permutation (a1, a2, .., an) its reverse permutation
(an, an−1, .., a1) consists of the same numbers in reverse order.

Denote the reverse permutation (b1, b2, ..., bn) such that
b1 = an, b2 = an−1 etc.

For example – given the permutation (5, 2, 3, 7, 1), its reverse is
(1, 7, 3, 2, 5). Here we have

a1 = 5 = b5

a2 = 2 = b4

a3 = 3 = b3

a4 = 7 = b2

a5 = 1 = b1

Nurit Haspel CS624 - Analysis of Algorithms



Reverse Permutations

The pair (ai , aj) corresponds to (bn−i+1, bn−j+1) in the
reverse permutation.

If we stick to the right order, the pair (ai , aj) corresponds to
(bn−i+1, bn−j+1).

In the example above – (a1, a2) corresponds to (b4, b5).

Notice that (ai , aj) is an inversion iff (bn−i+1, bn−j+1) is not
an inversion.

Nurit Haspel CS624 - Analysis of Algorithms



Number of Inversions

How many ordered pairs (ai , aj) such that i < j are there in
the original sequence?

Exactly the number of ways to choose 2 elements out of n –(n
2

)
.

Each one of those is either an inversion in the original
sequence or in its reverse.

The number of inversions in both sequences is therefore
(n
2

)
.

Nurit Haspel CS624 - Analysis of Algorithms



Number of Inversions

In the example we used there are
(5
2

)
= 10 inversions.

(a1, a2) (a1, a3) (a1, a4) (a1, a5) (5,2) (5,3) (5,7) (5,1)
(a2, a3) (a2, a4) (a2, a5) (2,3) (2,7) (2,1)

(a3, a4) (a3, a5) (3,7) (3,1)
(a4, a5) (7,1)

Nurit Haspel CS624 - Analysis of Algorithms



Number of Inversions

If we pair every permutation and its reverse, we get exactly(n
2

)
inversions for a pair.

The total number of inversion is therefore n!
2 ∗

(n
2

)
.

The average number of inversions in a permutation is the
above divided by n!, the number of permutations.

The average value of T(n) is then 1
2 ∗

(n
2

)
= n(n−1)

4 , which is
quadratic in n.

Nurit Haspel CS624 - Analysis of Algorithms



Example – Merge Sort

An example of a divide and conquer algorithm:
1 Divide the problem into smaller sub-problems.
2 Solve each one recursively.
3 Combine the solutions to solve the original problem.

For this to work we must:

Have a way to divide the problem in a way that the solutions
of the two sub-parts are related to the overall solution.
The cost of 1 and 3 must be relatively cheap.

Nurit Haspel CS624 - Analysis of Algorithms



Merge Sort

Input: An array A[1..n] of numbers.

The top level call: MergeSort(A,1,n)

In general MergeSort(A,p,r) sorts all the elements in positions
p..r.

Algorithm 2 MergeSort(A,p,r)

1: if p < r then
2: q = (p + r)/2
3: MergeSort(A, p, q)
4: MergeSort(A, q + 1, r)
5: Merge(A, p, q, r)
6: end if

p q r

q − p+ 1 r − q

Nurit Haspel CS624 - Analysis of Algorithms



The Merge Subroutine

Algorithm 3 Merge(A,p,q,r)

n1 ← q − p + 1
n2 ← r − q
// Create arrays L[1...n1 + 1] and R[1...n2 + 1]
for i ← 1 to n1 do

L[i ]← A[p + i − 1]
end for
for j ← 1 to n2 do

R[j]← A[q + j]
end for
L[n1 + 1]←∞
R[n2 + 1]←∞
i ← 1; j ← 1
for k ← p to r do

if L[i ] ≤ R[j] then
A[k]← L[i ]
i ← i + 1

else
A[k]← R[j]
j ← j + 1

end if
end for

Nurit Haspel CS624 - Analysis of Algorithms



Proof of Correctness

Here’s our loop invariant:

Lemma

At the start of each iteration of the for loop on k, the
subarray A[p...k − 1] contains the k − p smallest elements of
L[1...n1 + 1] and R[1...n2 + 1], in sorted order.

Moreover, L[i ] and R[j ] are the smallest elements of their
arrays that have not been copied back into A.

Nurit Haspel CS624 - Analysis of Algorithms



Proof of Correctness

Proof.

When k = p, this is vacuously true. (Why?)

To go from k − 1 to k, there are two possibilities: either
L[i ] ≤ R[j ] or L[i ] > R[j ].

In the first case, L[i ] is the smallest element not yet copied
back into A. (Why is this?) So we copy it into A (at the right
position), and the loop invariant is maintained.

The second case is similar.

And that finishes the proof of correctness, because when we’re
done, k is r + 1.

Nurit Haspel CS624 - Analysis of Algorithms



Divide and Conquer

The overall runtime of MergeSort T (n) is the sum of the following:

1 Divide: Find the middle of the array. Done in constant time c.

2 Conquer: Solve recursively for each half of the array. 2 ∗T (n2 ).

3 Merge: Combine the two sub-arrays. Linear in n. Suppose it
is c ∗ n.

A sufficiently large c can be used for (1) and (3). Base case – one
element in the array. Constant time d.

Nurit Haspel CS624 - Analysis of Algorithms



Recurrence Formula

T (n) =

{
d if n = 1

2T (n/2) + n otherwise

Identities like this come up frequently in algorithmic analysis.

It’s important to have ways of solving them. We’ll see a
couple. One basic way is to form a recursion tree.

Nurit Haspel CS624 - Analysis of Algorithms



Recursion Tree for MergeSort

T (n) cn

T

(
n
2

)
T

(
n
2

)
cn

T

(
n
4

)
T

(
n
4

)
T

(
n
4

)
T

(
n
4

)
cn

cn

.

.

.

dn

If N = 2p then there are p rows with cn on the right, and one last row
with dn on the right. Since p = log(n), this means that the total cost is
cNlogN + dN.
In other words, this is what we call an “O(n log n)” algorithm.

Nurit Haspel CS624 - Analysis of Algorithms


