Run Time, Generating Functions CS 624 — Analysis of Algorithms

September 13, 2024

Nurit Haspel **1 O2 Run Time 1 CO2 Run Time** 1

Abstractions from concrete performance numbers:

- ▶ Ignore hardware platform, caches, different instructions.
- ▶ Ignore differences in constant numbers of instructions.
- ▶ Ignore constant factors in general.
- ▶ Ignore performance for "small" problem sizes.

What is left?

We focus on the **order of growth** of the time (or space) function. This is also called the **asymptotic efficiency** of the algorithm.

- \blacktriangleright There are several standard "reference functions" that we use to classify orders of growth.
- \blacktriangleright It is important to be familiar with these functions and to be able to compare their growth rates.
- \triangleright There are three main classes of common reference functions: exponentials, powers ("polynomial"), and logarithms.

Order of Growth

Quick Reminder: Logarithms and Exponents

If *a*, *b*, and *x* are all positive, then $\log_b x = \log_a x \cdot \log_b a$

Proof.

$$
\triangleright \text{ Say } \log_b a = P \text{ and } \log_a x = Q.
$$

$$
\blacktriangleright \text{ Then we have } b^P = a \text{ and } a^Q = x
$$

Hence:
$$
b^{PQ} = (b^P)^Q = a^Q = x
$$

► That is,
$$
b^{\log_b a \cdot \log_a x} = x
$$

And so
$$
\log_b a \cdot \log_a x = \log_b x
$$

П

In other words: all logs are equivalent up to a constant.

These computations are quite standard and you should be able to prove, for example, that:

$$
a^{b(\log_a x)} = x^b
$$

Definition $(f < g)$

Let *f* and *g* be functions. Then $f \leq g$ iff $f(x) \leq g(x)$ for all *x*.

Definition ("big-Oh")

Let $f,g:\mathbb{R}^+\rightarrow\mathbb{R}^+.$ Then $f\in O(g)$ iff there are numbers $c>0$ and $x_0 > 0$ such that $f(x) \leq c \cdot g(x)$ for all $x > x_0$.

To prove that $f \in O(g)$, you must come up with the two constants c and x_0 and show that the inequality above actually holds.

 $∀n ≥ N_0, f(n) ≤ g(n)$

Asymptotic Notation

It is customary to write $f = O(g)$ instead of $f \in O(g)$.

This notation generalizes, but the big-Oh should only be on the right side of the equal sign.

Example

Suppose we have a complicated function *f* whose exact formula we don't know exactly. We can still write:

$$
f(n) = n^3 + O(n^2)
$$

That means that there is a function $h(n)$ such that:

$$
f(n) = n^3 + h(n) \qquad \text{where } h(n) = O(n^2)
$$

Note: That is a *more precise* statement than $f(n) = O(n^3).$ (Why?)

Let's show that $2n^2=O(n^3)$.

- ▶ We must find two actual numbers $c > 0$ and $n_0 > 0$ such that $2n^2 \le cn^3$ for all $n \ge n_0$
- \blacktriangleright In this case, $c = 1$ and $n_0 = 2$ works, because when $2\leq n$, then $2n^2\leq n\cdot n^2=n^3=1\cdot n^3.$

This is what I expect your homework/exam answers to look like, when I ask you to prove $f = O(g)$ using the definition.

Some examples (you have to be able to prove them):

 \triangleright $n^2 = O(n^2 - 3)$ \blacktriangleright $n^2 = O(n^2 + 3)$ ▶ $100n^2 = O(n^2)$ \blacktriangleright $n^2 = O(n^2 + 7n + 2)$ \blacktriangleright $n^2 + 7n + 2 = O(n^2)$ \blacktriangleright If $0 < p < q$, then $x^p = O(x^q)$ ▶ For all $a > 0$ and $b > 0$, $\log_a x = O(\log_b x)$

Properties of "big-Oh" Notation

Lemma

$$
If f = O(h) \text{ and } g = O(h) \text{ then } f + g = O(h)
$$

Proof.

- \blacktriangleright $f = O(h)$ and therefore there are constants $c_1 > 0$ and $x_1 > 0$ such that $f(x) \leq c_1 h(x)$ for all $x \geq x_1$.
- \blacktriangleright $g = O(h)$ and therefore there are constants $c_2 > 0$ and $x_2 > 0$ such that $g(x) \leq c_2 h(x)$ for all $x > x_2$.
- \blacktriangleright Notice that these are not the same constants!
- \blacktriangleright We need to find constants that work for $f + g$.

Properties of "big-Oh" Notation

Proof (continued).

- \blacktriangleright We can use $c_1 + c_2$ and $\max(x_1, x_2)$.
- ▶ We must check that for all $x > \max(x_1, x_2)$, $f(x) + g(x) \leq (c_1 + c_2)h(x).$
- ▶ This is because if $x \ge \max(x_1, x_2)$ then $x \ge x_1$, so $f(x) \le c_1 h(x)$.
- ▶ Similarly, if $x \ge \max(x_1, x_2)$ then $x \ge x_2$, so $g(x) \leq c_2 h(x)$.
- ▶ Adding the inequalities, we see that when $x > \max(x_1, x_2)$ then $f(x) + g(x) \le (c_1 + c_2)h(x)$

Definition $(Ω)$

 $f = \Omega(g)$ if there are constants $c > 0$ and $x_0 > 0$ such that $f(x) \geq c \cdot g(x)$ for all $x \geq x_0$.

Fact

$$
f = \Omega(g) \text{ iff } g = O(f).
$$

Example

$$
\sqrt{n} = \Omega(\log(n))
$$

Definition (Θ)

 $f = \Theta(g)$ if there are constants $a, b > 0$ and $x_0 > 0$ such that $ag(x) < f(x) < bg(x)$ for all $x > x_0$.

Example

It should be easy for you to show that: $\frac{1}{2}n^2 + 2n = \Theta(n^2)$.

Recurrences often arise from analyzing divide and conquer algorithms or other recursive functions.

Example

Run time for Merge Sort:

$$
T(n)=\begin{cases} d & \text{if }n=1\\ 2T(\frac{n}{2})+n & \text{otherwise}\end{cases}
$$

We would like to get an explicit formula whenever possible. We will explore multiple techniques for solving recurrences. One approach:

- 1. Guess a formula or bound of the solution.
- 2. Prove it by induction, generally for any necessary constant.

Example

$$
T(n) = 4T\left(\frac{n}{2}\right) + n
$$

where T(1) is a constant.

Note that we should actually write $T(n) = 4T(|\frac{n}{2})$ $\left\lfloor \frac{n}{2} \right\rfloor + n$ unless n is a power of 2, but this is not a major point at the moment.

Guess and Prove

- 1. Guess $T(n)=O(n^3)$, and guess that $n_0=1$ will work.
- 2. Prove this by induction:

Proof.

- ▶ Base case: $T(1) \leq c(1^3)$. Trivial, provided that *c* is big enough.
- ▶ Inductive case: $T(n) \le cn^3$.
- ▶ Inductive hypothesis: Assume that $T(k) \le ck^3$ for $1 \le k < n$.
- \blacktriangleright Now we calculate starting with $T(n)$:

$$
T(n) = 4T\left(\frac{n}{2}\right) + n
$$
 by recurrence
\n
$$
\leq 4c\left(\frac{n}{2}\right)^3 + n
$$
 by H, since $n/2 < n$
\n
$$
= \frac{c}{2}n^3 + n = cn^3 - \left(\frac{c}{2}n^3 - n\right)
$$

and $cn^3-(\frac{c}{2}n^3-n)\leq cn^3$ is true whenever $\frac{c}{2}n^3-n\geq 0,$ and this is certainly true if for instance $c > 2$ and $n > 1$. (Can you prove this?)

 \Box

Guess and Prove

Our initial guess may not be the tight bound. In this case, actually $T(n)=O(n^2).$ Again:

- 1. Guess that $T(n) = O(n^2)$, and that $n_0 = 1$ will work.
- 2. Prove by induction.

Proof.

- ▶ Base case: $T(1) \leq c \cdot 1^2$. Trivial, for a big enough c .
- ▶ Inductive case: $T(n) \leq c \cdot n^2$.
- ▶ Inductive hypothesis: Assume $T(k) \leq c \cdot k^2$ for all $1 \leq k < n$.
- \blacktriangleright Now we calculate starting with $T(n)$:

$$
T(n) = 4T\left(\frac{n}{2}\right) + n
$$
 by recurrence
\n
$$
\leq 4c\left(\frac{n}{2}\right)^2 + n
$$
 by IH
\n
$$
= cn^2 + n
$$

!!! WRONG !!! We cannot show that $cn^2 + n \leq cn^2.$ It's not true for $c > 0,$ $n > 0$!

Guess and Prove

Problem: there's a lower-order term "in the way" Repair: refine the guess to subtract the lower-order term:

$$
T(n)\leq c_1n^2-c_2n=O(n^2)
$$

Proof.

- ▶ Base case: $T(1) \le c_1 \cdot 1^2 c_2 \cdot 1$.
- ▶ Inductive case: $T(n) \le c_1 \cdot n^2 c_2 \cdot n$.
- ▶ Inductive hypothesis: Assume $T(k) \leq c_1 \cdot k^2 c_2 \cdot k$ for all $1 \leq k < n$.
- \blacktriangleright Now we calculate starting with $T(n)$:

$$
T(n) = 4T\left(\frac{n}{2}\right) + n
$$
 by recurrence
\n
$$
\leq 4\left(c_1\left(\frac{n}{2}\right)^2 - c_2\frac{n}{2}\right) + n
$$
 by IH
\n
$$
= c_1n^2 - (2c_2 - 1)n
$$

So we must show $c_1n^2-(2c_2-1)n\leq c_1n^2-c_2n$, which is true if $c_2\geq 1.$ П Another approach (#2):

- ▶ Draw the **recursion tree** of problem sizes.
- \triangleright Draw the corresponding tree of divide and combine costs.
- \triangleright Sum the divide and combine costs per level.
- ▶ Calculate bounds on the *full* and *partial* tree levels.
- \triangleright Run time = sum of divide and combine costs over all levels.

Recursion Tree

A more complicated recurrence: $T(n) = T(\frac{n}{4})$ $(\frac{n}{4})+T(\frac{n}{2})$ $(\frac{n}{2})+n^2.$

T(*n*) is the *sum* of the *divide and combine cost* for each level.

Observations:

- \blacktriangleright The tree is fully filled up until the $log_4(n)$ level.
- \blacktriangleright The tree is partially filled up to the $log_2(n)$ level.

We can bound the runtime from above and below:

$$
T(n) \leq n^2 \sum_{k=0}^{\log_2 n} \left(\frac{5}{16}\right)^k
$$

$$
T(n) \geq n^2 \sum_{k=0}^{\log_4 n} \left(\frac{5}{16}\right)^k
$$

Observations:

- \blacktriangleright The tree is fully filled up until the $log_4(n)$ level.
- \blacktriangleright The tree is partially filled up to the $log_2(n)$ level.

We can bound the runtime from above and below:

$$
T(n) \le n^2 \sum_{k=0}^{\log_2 n} \left(\frac{5}{16}\right)^k \le n^2 \sum_{k=0}^{\infty} \left(\frac{5}{16}\right)^k = n^2 \cdot \frac{1}{1 - \frac{5}{16}}
$$

$$
T(n) \geq n^2 \sum_{k=0}^{\log_4 n} \left(\frac{5}{16} \right)^k \geq n^2 \sum_{k=0}^0 \left(\frac{5}{16} \right)^k = n^2 \cdot 1
$$

That is, $c_1n^2\leq T(n)\leq c_2n^2$, so $T(n)=\Theta(n^2).$

Another tool for solving recurrences (#3):

- ▶ Apply the **master theorem**.
- \blacktriangleright The master theorem applies only to recurrences of the form $T(n) = aT(\frac{n}{b})$ $\binom{n}{b}$ $+f(n)$ where $a\geq 1$, $b>1$ and f is ultimately positive (that is, positive above some $x_0 > 0$). (So it doesn't apply to the previous example, for instance.)

First, consider the recurrence $T(n) = aT(\frac{n}{b})$ $\frac{n}{b}$), where $a\geq 1$, $b>1$.

A recurrence of this form arises from a divide and conquer algorithm that divides a problem into a sub-problems of size $\frac{n}{b}.$

Let's apply the guess and prove method:

- \blacktriangleright Let's assume that $T(n) = n^p$ for some p .
- \blacktriangleright Substituting n^p into the recurrence we get: $n^p = a\left(\frac{n}{b}\right)$ $\left(\frac{a}{b}\right)^p = \frac{a}{b^p}$ $\frac{a}{b^p} n^p$. So $b^p = a$.
- \blacktriangleright Taking \log_b from both sides we get: $p = \log_b a$.
- ▶ Therefore, $T(n) = n^{\log_b a}$ is a solution to the recurrence.

The master theorem is based on this fact.

Unfortunately, divide and conquer recurrences are more complicated in general:

$$
T(n) = aT\left(\frac{n}{b}\right) + f(n)
$$

 \blacktriangleright The $aT(\frac{n}{b})$ $\frac{n}{b})$ term corresponds to conquering the sub-problems.

 \blacktriangleright The $f(n)$ part corresponds to the divide and combine costs.

The master theorem considers three cases $(p = \log_b a)$:

- 1. $f(n)$ is small compared with n^p
- 2. $f(n)$ is comparable to n^p
- 3. $f(n)$ is large compared with n^p

For this theorem (and not necessarily other cases), "*f*(*n*) is small compared with n^{p} " means that there is an $\epsilon>0$ such that

$$
f(n) = O(n^{p-\epsilon}) = O(n^p/n^{\epsilon})
$$

That is, $f(n)$ grows more slowly than n^p by some positive power of n .

Similarly, $\lq f(n)$ is large compared with n^{p} " means that there is an $\epsilon > 0$ such that

$$
f(n) = \Omega(n^{p+\epsilon}) = \Omega(n^p n^{\epsilon})
$$

That is, $f(n)$ grows faster than n^p by some positive power of n .

Moreover, there has to be a constant $0 < c < 1$ and a constant n_0 , so that for every $n > n_0$,

$$
af\Big(\frac{n}{b}\Big)\leq cf(n)
$$

where *a* and *b* are the same as in the recurrence formula. (When does this hold for, say, $f(n)=n^k$?)

Theorem (Master Theorem)

If $a \ge 1$ *and* $b > 1$ *are constants,* $f(n)$ *is a function, and* $T(n)$ *is another function satisfying the recurrence* $T(n) = aT(n/b) + f(n)$ *where we interpret* n/b *to mean either* $|n/b|$ *or* $\lceil n/b \rceil$ *, then* $T(n)$ *can be estimated asymptotically as follows:*

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, ${\rm then} \ T(n) = \Theta\big(n^{\log_b a} \big).$
- 2. If $f(n) = \Theta(n^{\log_b a})$, ${\displaystyle {\rm then~}T(n)=\Theta(n^{\log_b a}\log n)}.$
- Ω . If $f(n) = \Omega(n^{\log_b a + \epsilon})$ and if $af(n/b) \leq cf(n)$ for some constant c *with* $0 < c < 1$ and all sufficiently large *n*, *then* $T(n) = \Theta(f(n)).$

The Cases of the Master Theorem

$$
T(n) = aT\left(\frac{n}{b}\right) + f(n) \qquad a \ge 1 \quad b > 1
$$

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a}).$ When $f(n)$ is small compared with n^p, f essentially has no effect on the growth of T , and $T(n)=\Theta(n^p),$ just as it would if $f\equiv 0.$ Compare with the example for the guess and prove technique.
- 2. If $f(n) = \Theta(n^{\log_b{a}})$, then $T(n) = \Theta(n^{\log_b{a}} \log{n}).$ This case is significant in that it applies to algorithms which are $O(n \log n)$.
- Ω . If $f(n) = \Omega(n^{\log_b{a}+\epsilon})$ and if $af(n/b) \leq cf(n)$ for some constant c with $0 < c < 1$ and all sufficiently large n , then $T(n) = \Theta(f(n)).$ In this case, the function *f* is what really contributes to the growth of *T*, and the recursion is immaterial.

Case 2 is actually split in 2 in the text:

2a. If
$$
f(n) = O(n^{\log_b a})
$$
 then $T(n) = O(n^{\log_b a} \log n)$.

2b. If
$$
f(n) = \Omega(n^{\log_b a})
$$
 then $T(n) = \Omega(n^{\log_b a} \log n)$.

Putting the two together implies case 2, but case 2 doesn't immediately imply either of them.

Equivalently:

\n- 2a'. If
$$
T(n) \leq aT(\frac{n}{b}) + f(n)
$$
 where $f(n) = O(n^{\log_b a})$, then $T(n) = O(n^{\log_b a} \log n)$.
\n- 2b'. If $T(n) \geq aT(\frac{n}{b}) + f(n)$ where $f(n) = \Omega(n^{\log_b a})$, then $T(n) = \Omega(n^{\log_b a} \log n)$.
\n

$$
T(n) = 4T\Big(\frac{n}{2}\Big) + n
$$

Here we have:
$$
a = 4
$$
, $b = 2$, $p = \log_2 4 = 2$, $f(n) = n$, $n^p = n^2$.

$$
T(n) = 4T\Big(\frac{n}{2}\Big) + n
$$

Here we have: $a = 4, b = 2, p = log_2 4 = 2, f(n) = n, n^p = n^2$.

So this is case 1 where $f(n) = O(n^{2-\epsilon})$ for any $0 < \epsilon < 1.$

So $T(n)=\Theta(n^2).$

$$
T(n)=4T\Big(\frac{n}{2}\Big)+n^2
$$

Here we have:
$$
a = 4
$$
, $b = 2$, $p = \log_2 4 = 2$, $f(n) = n^2$, $n^p = n^2$.

$$
T(n)=4T\Big(\frac{n}{2}\Big)+n^2
$$

Here we have: $a = 4, b = 2, p = \log_2 4 = 2, f(n) = n^2, n^p = n^2$.

So this is case 2 where $f(n)=\Theta(n^2).$

So $T(n) = \Theta(n^2 \log(n)).$

Example

$$
T(n) = 4T(\tfrac{n}{2}) + n^3.
$$

Now we have: $a = 4$, $b = 2$, $p = \log_2 4 = 2$, $f(n) = n^3$, $n^p = n^2$.

Example

$$
T(n) = 4T(\tfrac{n}{2}) + n^3.
$$

Now we have: $a = 4$, $b = 2$, $p = \log_2 4 = 2$, $f(n) = n^3$, $n^p = n^2$.

We have $f(n) = \Omega(n^{\log_b{a}+\epsilon})$ for $0 < \epsilon < 1.$ Thus we are in Case 3 provided we can show that the additional condition needed for Case 3 holds.

- ▶ We need to show that there is some constant $0 < c < 1$ and some n_0 such that for all $n > n_0$, $af(\frac{n}{b}) \leq cf(n)$.
- ▶ The condition $4f(n/2) \le cf(n)$ becomes $4(n/2)^3 \le cn^3$, or equivalently, $\frac{1}{2}n^3 \leq cn^3$.
- ▶ This holds for any $c > 1/2$.

Therefore we really are in Case 3, and the conclusion of the master theorem is that $T(n) = \Theta(n^3)$.

$$
T(n)=4T\Big(\frac{n}{2}\Big)+n^2/\log n
$$

Here we have: $a = 4, b = 2, p = \log_2 4 = 2, f(n) = n^2 / \log n, n^p = n^2$.

Nurit Haspel **12 Communist Commu**

$$
T(n)=4T\Big(\frac{n}{2}\Big)+n^2/\log n
$$

Here we have: $a = 4, b = 2, p = \log_2 4 = 2, f(n) = n^2 / \log n, n^p = n^2$. In this case the master theorem does not apply. (Why?)

$$
T(n)=4T\Big(\frac{n}{2}\Big)+n^2/\log n
$$

Here we have: $a = 4, b = 2, p = \log_2 4 = 2, f(n) = n^2 / \log n, n^p = n^2$. In this case the master theorem does not apply. (Why?) More precisely, the standard cases 1–3 don't apply. Case 2a applies, ${\sf since} \, f(n)=n^2/{\log n} = O(n^2)$, so $T(n)=O(n^2\log n).$

$$
T(n)=2T\Big(\frac{n}{2}\Big)+cn
$$

Here we have: $a = 2, b = 2, p = log_2 2 = 1, f(n) = cn, n^p = n$.

$$
T(n)=2T\Big(\frac{n}{2}\Big)+cn
$$

Here we have: $a = 2, b = 2, p = log_2 2 = 1, f(n) = cn, n^p = n$.

So this is case 2 where $f(n) = \Theta(n)$.

So $T(n) = \Theta(n \log(n))$. This is the case of MergeSort, for example.

Puzzle: How can we compute the value of an infinite sum like the following?

$$
\sum_{n=1}^\infty \frac{n}{2^n} = 2
$$

Puzzle: How can we compute the value of an infinite sum like the following?

$$
\sum_{n=1}^\infty \frac{n}{2^n} = 2
$$

Sequences and Generating Functions

Some important functions can be represented as power series:

$$
e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + \frac{x^{4}}{24} + \dots
$$

\n
$$
\sin(x) = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots
$$

\n
$$
\cos(x) = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n}}{(2n)!} = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \dots
$$

\n
$$
\frac{1}{1-x} = \sum_{n=0}^{\infty} x^{n} = 1 + x + x^{2} + x^{3} + x^{4} + \dots
$$
 for $|x| < 1$

Given a sequence $\{a_0, a_1, \ldots, \}$, the generating function of the sequence is defined as:

$$
f(x) = a_0 + a_1 x + a_2 x^2 + \dots = \sum_{n=0}^{\infty} a_n x^n
$$

- \blacktriangleright The set of coefficients (like $a_n = \frac{1}{n}$ $\frac{1}{n!}$ in the case of $f(x) = e^x$) yield the power series for the function.
- ▶ If we *recognize* the power series and know what function it belongs to, we can use the function to gain knowledge about the sequence.

Generating Functions

We can use generating functions to derive the properties of sequences from properties of another sequence.

$$
\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n
$$
 for $|x| < 1$

$$
\frac{1}{(1-x)^2} = \sum_{n=0}^{\infty} nx^{n-1} = \sum_{n=1}^{\infty} nx^{n-1}
$$
 differentiate w.r.t x

$$
\frac{1}{(1-\frac{1}{2})^2} = \sum_{n=1}^{\infty} n \left(\frac{1}{2}\right)^{n-1}
$$
 substitute $x = 1/2$

$$
2 = \sum_{n=1}^{\infty} \frac{n}{2^n}
$$
 simplify

The binomial theorem says that:

$$
(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k
$$

This just tells us that $(1+x)^n$ is the generating function for the finite sequence $\{n \choose k}$ $\binom{n}{k}: 0 \leq k \leq n\}.$ P*n*

Substituting
$$
x = 1
$$
 we get $2^n = \sum_{k=0}^{n} {n \choose k}$

▶ We let ${f_0, f_1, f_2, \ldots}$ denote the Fibonacci numbers: $\{0, 1, 1, 2, 3, 5, 8, \ldots\}.$

For
$$
n \ge 2
$$
, $f_n = f_{n-1} + f_{n-2}$.

- \blacktriangleright We want to get a closed formula for f_n .
- \blacktriangleright We have a formula, but it is not obvious.
- \triangleright We can use a generating function with the recurrence formula to derive it.

Generating Function for Fibonacci

$$
F(x) = f_0 + f_1 x + f_2 x^2 + \dots = \sum_{n=0}^{\infty} f_n x^n
$$

$$
F(x) = f_0 + f_1 x + f_2 x^2 + f_3 x^3 + f_4 x^4 + f_5 x^5 + \dots
$$

\n
$$
xF(x) = f_0 x + f_1 x^2 + f_2 x^3 + f_3 x^4 + f_4 x^5 + \dots
$$

\n
$$
x^2 F(x) = f_0 x^2 + f_1 x^3 + f_2 x^4 + f_3 x^5 + \dots
$$

Remember also that $f_{n+2} = f_{n+1} + f_n$, and $f_0 = 0$, $f_1 = 1$.

Generating Function for Fibonacci

$$
F(x) = f_0 + f_1 x + f_2 x^2 + \dots = \sum_{n=0}^{\infty} f_n x^n
$$

$$
F(x) = f_0 + f_1 x + f_2 x^2 + f_3 x^3 + f_4 x^4 + f_5 x^5 + \dots
$$

\n
$$
xF(x) = f_0 x + f_1 x^2 + f_2 x^3 + f_3 x^4 + f_4 x^5 + \dots
$$

\n
$$
\frac{x^2 F(x)}{(1 - x - x^2)F(x) = f_0 + (f_1 - f_0)x}
$$

\n
$$
x^2 F(x) = f_0 x^2 + f_1 x^3 + f_2 x^4 + f_3 x^5 + \dots
$$

Remember also that $f_{n+2} = f_{n+1} + f_n$, and $f_0 = 0, f_1 = 1$.

Adding the second and third row and subtracting from the first cancels most terms out, leaving:

$$
F(x)(1-x-x^2)=x
$$

and so

$$
F(x) = \frac{x}{(1-x-x^2)}
$$

We need to figure out a formula for the coefficient of the power series representing the right hand term.

We already know that for
$$
|x| < 1
$$
, $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$.

- \triangleright Our formula is not of this type, we have to convert it.
- \blacktriangleright It is a quadratic polynomial, so it can be converted into a formula of the kind:

$$
\blacktriangleright (1 - x - x^2) = (1 - \alpha x)(1 - \beta x).
$$

 \triangleright Multiplying the right side we get: $\alpha\beta = -1$; $\alpha + \beta = 1$.

$$
\blacktriangleright \alpha(1-\alpha) = -1 \; ; \; \alpha^2 - \alpha - 1 = 0.
$$

▶ This is a quadratic equation whose solution is $\alpha = \frac{1 \pm \sqrt{5}}{2}$ $\frac{1}{2}^{\sqrt{5}}$.

Generating Function for Fibonacci

- ▶ The two solutions add up to 1, so let's make: $\alpha = \frac{1+\sqrt{5}}{2}$ o solutions add up to 1, so let's make: $\alpha = \frac{1 + \sqrt{5}}{2}$ and $\beta = \frac{1-\sqrt{5}}{2}$ 2
- ▶ We now know that: $F(x) = \frac{x}{1-x-x^2} = \frac{x}{(1-\alpha x)}$ $(1-\alpha x)(1-\beta x)$
- \triangleright Now we can decompose it into two fractions without a quadratic term.
- \triangleright For this we can find two numbers A and B such that: $\frac{x}{(1-\alpha x)(1-\beta x)}=\frac{A}{1-\alpha x}+\frac{B}{1-\beta x}$

$$
\frac{(1-\alpha x)(1-\beta x)}{1-\alpha x} - \frac{1-\alpha x}{1-\beta x}
$$

▶ Which is true if: $A(1 - \beta x) + B(1 - \alpha x) = x$

- ▶ This gives us two equations: $A + B = 0$; $A\beta + B\alpha = -1$.
- \triangleright We know that $B = -A$ and we know that $\beta = 1 \alpha$.
- \triangleright Substituting, we get:

$$
A(1 - \alpha) - A\alpha = -1
$$

\n
$$
A - A\alpha - A\alpha = -1
$$

\n
$$
A(1 - 2\alpha) = -1
$$

Generating Function for Fibonacci

- ▶ From previous calculation we know that: $1-2\alpha=-\sqrt{2}$ 5.
- ▶ So we have: $A = \frac{1}{\sqrt{2}}$ 5
- ▶ Knowing that $A + B = 0$ we get: $B = -A = -\frac{1}{\sqrt{2}}$ 5

 \blacktriangleright Finally, putting it all together:

$$
F(x) = \frac{A}{1 - \alpha x} + \frac{B}{1 - \beta x}
$$

= $A \sum_{n=0}^{\infty} \alpha^n x^n + B \sum_{n=0}^{\infty} \beta^n x^n$
= $\frac{1}{\sqrt{5}} \sum_{n=0}^{\infty} (\alpha^n - \beta^n) x^n$

Since the coefficients of F are the fibonacci numbers we get for the *n th* coefficient:

$$
f_n = \frac{1}{\sqrt{5}}(\alpha^n - \beta^n) = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right)
$$