
Run Time, Generating Functions
CS 624 — Analysis of Algorithms

September 13, 2024

Nurit Haspel 02 Run Time 1

Order of Growth

Abstractions from concrete performance numbers:
▶ Ignore hardware platform, caches, different instructions.
▶ Ignore differences in constant numbers of instructions.
▶ Ignore constant factors in general.
▶ Ignore performance for “small” problem sizes.

What is left?

We focus on the order of growth of the time (or space) function.
This is also called the asymptotic efficiency of the algorithm.

Nurit Haspel 02 Run Time Order of Growth 2

Comparing Orders of Growth

▶ There are several standard “reference functions” that we use to
classify orders of growth.

▶ It is important to be familiar with these functions and to be able
to compare their growth rates.

▶ There are three main classes of common reference functions:
exponentials, powers (“polynomial”), and logarithms.

Nurit Haspel 02 Run Time Order of Growth 3

Order of Growth

10x x4 x3 x2 x log x x

√
x

3√x
4√x
log10 x

Nurit Haspel 02 Run Time Order of Growth 4

Runtime Table

n
f (n)

log n n n lg(n) n2 2n n!

10 0.003µs 0.01µs 0.033µs 0.1µs 1µs 3.63 ms
20 0.004µs 0.02µs 0.086µs 0.4µs 1ms 77.1 y.
30 0.005µs 0.03µs 0.147µs 0.9µs 1 sec 8.4 × 1015 y.
40 0.005µs 0.04µs 0.0213µs 1.6µs 18.3 min
50 0.006µs 0.05µs 0.0282µs 2.5µs 13 d.
100 0.007µs 0.1µs 0.644µs 10µs 4 × 1013 y.
103 0.010µs 1µs 9.966µs 1ms
104 0.013µs 10µs 130µs 100ms
105 0.017µs 100µs 1.67ms 10 sec
106 0.020µs 1ms 19.93ms 16.7 min
107 0.023µs 0.01 sec 0.23 sec 1.16 d.
108 0.027µs 0.1 sec 2.66 sec 115.7 d.
109 0.030µs 1 sec 29.9 sec 31.7 y.

Nurit Haspel 02 Run Time Order of Growth 5

Quick Reminder: Logarithms and Exponents

If a, b, and x are all positive, then logb x = loga x · logb a

Proof.

▶ Say logb a = P and loga x = Q.
▶ Then we have bP = a and aQ = x
▶ Hence: bPQ = (bP)Q = aQ = x
▶ That is, blogb a·loga x = x
▶ And so logb a · loga x = logb x

Nurit Haspel 02 Run Time Order of Growth 6

Quick Reminder: Logarithms and Exponents

In other words: all logs are equivalent up to a constant.

These computations are quite standard and you should be able to
prove, for example, that:

ab(loga x) = xb

Nurit Haspel 02 Run Time Order of Growth 7

Comparing Functions

Definition (f ≤ g)

Let f and g be functions. Then f ≤ g iff f (x) ≤ g(x) for all x.

Definition (“big-Oh”)

Let f , g : R+ → R+. Then f ∈ O(g) iff there are numbers c > 0 and
x0 > 0 such that f (x) ≤ c · g(x) for all x ≥ x0.

To prove that f ∈ O(g), you must come up with the two constants c
and x0 and show that the inequality above actually holds.

Nurit Haspel 02 Run Time Asymptotic Growth 8

Illustration

N0

g(n)

f (n)
∀n ≥ N0, f (n) ≤ g(n)

Nurit Haspel 02 Run Time Asymptotic Growth 9

Asymptotic Notation
It is customary to write f = O(g) instead of f ∈ O(g).

This notation generalizes, but the big-Oh should only be on the right
side of the equal sign.

Example

Suppose we have a complicated function f whose exact formula we
don’t know exactly. We can still write:

f (n) = n3 + O(n2)

That means that there is a function h(n) such that:

f (n) = n3 + h(n) where h(n) = O(n2)

Note: That is a more precise statement than f (n) = O(n3). (Why?)

Nurit Haspel 02 Run Time Asymptotic Growth 10

“big-Oh”: Example

Example

Let’s show that 2n2 = O(n3).
▶ We must find two actual numbers c > 0 and n0 > 0 such that

2n2 ≤ cn3 for all n ≥ n0
▶ In this case, c = 1 and n0 = 2 works, because

when 2 ≤ n, then 2n2 ≤ n · n2 = n3 = 1 · n3.

This is what I expect your homework/exam answers to look like,
when I ask you to prove f = O(g) using the definition.

Nurit Haspel 02 Run Time Asymptotic Growth 11

“big-Oh”: More Examples

Some examples (you have to be able to prove them):
▶ n2 = O(n2 − 3)
▶ n2 = O(n2 + 3)
▶ 100n2 = O(n2)

▶ n2 = O(n2 + 7n + 2)
▶ n2 + 7n + 2 = O(n2)

▶ If 0 < p < q, then xp = O(xq)

▶ For all a > 0 and b > 0, loga x = O(logb x)

Nurit Haspel 02 Run Time Asymptotic Growth 12

Properties of “big-Oh” Notation

Lemma
If f = O(h) and g = O(h) then f + g = O(h)

Proof.

▶ f = O(h) and therefore there are constants c1 > 0 and x1 > 0
such that f (x) ≤ c1h(x) for all x ≥ x1.

▶ g = O(h) and therefore there are constants c2 > 0 and x2 > 0
such that g(x) ≤ c2h(x) for all x ≥ x2.

▶ Notice that these are not the same constants!
▶ We need to find constants that work for f + g.

Nurit Haspel 02 Run Time Asymptotic Growth 13

Properties of “big-Oh” Notation

Proof (continued).

▶ We can use c1 + c2 and max(x1, x2).
▶ We must check that for all x ≥ max(x1, x2),

f (x) + g(x) ≤ (c1 + c2)h(x).
▶ This is because if x ≥ max(x1, x2) then x ≥ x1,

so f (x) ≤ c1h(x).
▶ Similarly, if x ≥ max(x1, x2) then x ≥ x2,

so g(x) ≤ c2h(x).
▶ Adding the inequalities, we see that when x ≥ max(x1, x2)

then f (x) + g(x) ≤ (c1 + c2)h(x)

Nurit Haspel 02 Run Time Asymptotic Growth 14

Lower Bound: Ω Notation

Definition (Ω)
f = Ω(g) if there are constants c > 0 and x0 > 0 such that
f (x) ≥ c · g(x) for all x ≥ x0.

Fact
f = Ω(g) iff g = O(f).

Example
√

n = Ω(log(n))

Nurit Haspel 02 Run Time Asymptotic Growth 15

Tight Bound: Θ Notation

Definition (Θ)
f = Θ(g) if there are constants a,b > 0 and x0 > 0 such that
ag(x) ≤ f (x) ≤ bg(x) for all x ≥ x0.

Example

It should be easy for you to show that: 1
2n2 + 2n = Θ(n2).

Nurit Haspel 02 Run Time Asymptotic Growth 16

Solving Recurrences

Recurrences often arise from analyzing divide and conquer
algorithms or other recursive functions.

Example

Run time for Merge Sort:

T(n) =
{

d if n = 1
2T(n

2) + n otherwise

We would like to get an explicit formula whenever possible.

We will explore multiple techniques for solving recurrences.

Nurit Haspel 02 Run Time Asymptotic Growth 17

Solving Recurrences by Guess and Prove

One approach:
1. Guess a formula or bound of the solution.
2. Prove it by induction, generally for any necessary constant.

Example

T(n) = 4T
(n

2
)
+ n

where T(1) is a constant.

Note that we should actually write T(n) = 4T(⌊n
2⌋) + n unless n is a

power of 2, but this is not a major point at the moment.

Nurit Haspel 02 Run Time Solving Recurrences: Guess and Prove 18

Guess and Prove
1. Guess T(n) = O(n3), and guess that n0 = 1 will work.
2. Prove this by induction:

Proof.
▶ Base case: T(1) ≤ c(13). Trivial, provided that c is big enough.
▶ Inductive case: T(n) ≤ cn3.
▶ Inductive hypothesis: Assume that T(k) ≤ ck3 for 1 ≤ k < n.
▶ Now we calculate starting with T(n):

T(n) = 4T
(n

2

)
+ n by recurrence

≤ 4c
(n

2

)3
+ n by IH, since n/2 < n

=
c
2

n3 + n = cn3 −
(c

2
n3 − n

)
and cn3 − (c

2 n3 − n) ≤ cn3 is true whenever c
2 n3 − n ≥ 0, and this is certainly true if for

instance c ≥ 2 and n ≥ 1. (Can you prove this?)

Nurit Haspel 02 Run Time Solving Recurrences: Guess and Prove 19

Guess and Prove
Our initial guess may not be the tight bound. In this case, actually
T(n) = O(n2). Again:

1. Guess that T(n) = O(n2), and that n0 = 1 will work.
2. Prove by induction.

Proof.
▶ Base case: T(1) ≤ c · 12. Trivial, for a big enough c.
▶ Inductive case: T(n) ≤ c · n2.
▶ Inductive hypothesis: Assume T(k) ≤ c · k2 for all 1 ≤ k < n.
▶ Now we calculate starting with T(n):

T(n) = 4T
(n

2
)
+ n by recurrence

≤ 4c
(n

2
)2

+ n by IH

= cn2 + n

!!! WRONG !!! We cannot show that cn2 + n ≤ cn2. It’s not true for c > 0, n > 0!

Nurit Haspel 02 Run Time Solving Recurrences: Guess and Prove 20

Guess and Prove
Problem: there’s a lower-order term “in the way”
Repair: refine the guess to subtract the lower-order term:

T(n) ≤ c1n2 − c2n = O(n2)

Proof.

▶ Base case: T(1) ≤ c1 · 12 − c2 · 1.
▶ Inductive case: T(n) ≤ c1 · n2 − c2 · n.
▶ Inductive hypothesis: Assume T(k) ≤ c1 · k2 − c2 · k for all 1 ≤ k < n.
▶ Now we calculate starting with T(n):

T(n) = 4T
(n

2
)
+ n by recurrence

≤ 4
(

c1
(n

2
)2

− c2
n
2

)
+ n by IH

= c1n2 − (2c2 − 1)n

So we must show c1n2 − (2c2 − 1)n ≤ c1n2 − c2n, which is true if c2 ≥ 1.

Nurit Haspel 02 Run Time Solving Recurrences: Guess and Prove 21

Solving Recurrences by Recursion Tree

Another approach (#2):
▶ Draw the recursion tree of problem sizes.
▶ Draw the corresponding tree of divide and combine costs.
▶ Sum the divide and combine costs per level.
▶ Calculate bounds on the full and partial tree levels.
▶ Run time = sum of divide and combine costs over all levels.

Nurit Haspel 02 Run Time Solving Recurrences: Recursion Tree 22

Recursion Tree
A more complicated recurrence: T(n) = T(n

4) + T(n
2) + n2.

Problem Size
n

n
4

n
2

n
16

n
8

n
8

n
4

1

1

D&C Cost Tree

n2

(n
4
)2 (n

2
)2

(n
16
)2 (n

8
)2 (n

8
)2 (n

4
)2

...

D&C Cost
n2 =

(5
16
)0n2

5
16 n2 =

(5
16
)1n2

25
256 n2 =

(5
16
)2n2

...(5
16
)log4 nn2

...
≤

(5
16
)log2 nn2

T(n) is the sum of the divide and combine cost for each level.
Nurit Haspel 02 Run Time Solving Recurrences: Recursion Tree 23

Recursion Tree

Observations:
▶ The tree is fully filled up until the log4(n) level.
▶ The tree is partially filled up to the log2(n) level.

We can bound the runtime from above and below:

T(n) ≤ n2
log2 n∑
k=0

(
5
16

)k

≤ n2
∞∑

k=0

(
5
16

)k
= n2 · 1

1 − 5
16

T(n) ≥ n2
log4 n∑
k=0

(
5
16

)k

≥ n2
0∑

k=0

(
5
16

)k
= n2 · 1

That is, c1n2 ≤ T(n) ≤ c2n2, so T(n) = Θ(n2).

Nurit Haspel 02 Run Time Solving Recurrences: Recursion Tree 24

Recursion Tree

Observations:
▶ The tree is fully filled up until the log4(n) level.
▶ The tree is partially filled up to the log2(n) level.

We can bound the runtime from above and below:

T(n) ≤ n2
log2 n∑
k=0

(
5
16

)k
≤ n2

∞∑
k=0

(
5
16

)k
= n2 · 1

1 − 5
16

T(n) ≥ n2
log4 n∑
k=0

(
5
16

)k
≥ n2

0∑
k=0

(
5
16

)k
= n2 · 1

That is, c1n2 ≤ T(n) ≤ c2n2, so T(n) = Θ(n2).

Nurit Haspel 02 Run Time Solving Recurrences: Recursion Tree 24

Solving Recurrences with the Master Method

Another tool for solving recurrences (#3):
▶ Apply the master theorem.
▶ The master theorem applies only to recurrences of the form

T(n) = aT(n
b) + f (n) where a ≥ 1, b > 1 and f is ultimately

positive (that is, positive above some x0 > 0).
(So it doesn’t apply to the previous example, for instance.)

Nurit Haspel 02 Run Time Solving Recurrences: Master Method 25

Towards the Master Method

First, consider the recurrence T(n) = aT(n
b), where a ≥ 1, b > 1.

A recurrence of this form arises from a divide and conquer algorithm
that divides a problem into a sub-problems of size n

b .

Let’s apply the guess and prove method:
▶ Let’s assume that T(n) = np for some p.
▶ Substituting np into the recurrence we get:

np = a
(n

b
)p

= a
bp np. So bp = a.

▶ Taking logb from both sides we get: p = logb a.
▶ Therefore, T(n) = nlogb a is a solution to the recurrence.

The master theorem is based on this fact.

Nurit Haspel 02 Run Time Solving Recurrences: Master Method 26

The Master Method

Unfortunately, divide and conquer recurrences are more complicated
in general:

T(n) = aT
(n

b

)
+ f (n)

▶ The aT(n
b) term corresponds to conquering the sub-problems.

▶ The f (n) part corresponds to the divide and combine costs.

The master theorem considers three cases (p = logb a):
1. f (n) is small compared with np

2. f (n) is comparable to np

3. f (n) is large compared with np

Nurit Haspel 02 Run Time Solving Recurrences: Master Method 27

The Master Method: f is Small

For this theorem (and not necessarily other cases), “f (n) is small
compared with np” means that there is an ϵ > 0 such that

f (n) = O(np−ϵ) = O(np/nϵ)

That is, f (n) grows more slowly than np by some positive power of n.

Nurit Haspel 02 Run Time Solving Recurrences: Master Method 28

The Master Method: f is Large

Similarly, “f (n) is large compared with np” means that there is an
ϵ > 0 such that

f (n) = Ω(np+ϵ) = Ω(npnϵ)

That is, f (n) grows faster than np by some positive power of n.

Moreover, there has to be a constant 0 < c < 1 and a constant n0, so
that for every n > n0,

af
(n

b

)
≤ cf (n)

where a and b are the same as in the recurrence formula.
(When does this hold for, say, f (n) = nk?)

Nurit Haspel 02 Run Time Solving Recurrences: Master Method 29

The Master Theorem

Theorem (Master Theorem)
If a ≥ 1 and b > 1 are constants, f (n) is a function, and T(n) is
another function satisfying the recurrence T(n) = aT(n/b) + f (n)
where we interpret n/b to mean either ⌊n/b⌋ or ⌈n/b⌉, then T(n) can
be estimated asymptotically as follows:

1. If f (n) = O(nlogb a−ϵ) for some constant ϵ > 0,
then T(n) = Θ

(
nlogb a).

2. If f (n) = Θ
(
nlogb a),

then T(n) = Θ
(
nlogb a logn

)
.

3. If f (n) = Ω
(
nlogb a+ϵ

)
and if af (n/b) ≤ cf (n) for some constant c

with 0 < c < 1 and all sufficiently large n,
then T(n) = Θ(f (n)).

Nurit Haspel 02 Run Time Solving Recurrences: Master Method 30

The Cases of the Master Theorem

T(n) = aT
(n

b

)
+ f (n) a ≥ 1 b > 1

1. If f (n) = O(nlogb a−ϵ) for some ϵ > 0, then T(n) = Θ(nlogb a).
When f (n) is small compared with np, f essentially has no effect on the
growth of T, and T(n) = Θ(np), just as it would if f ≡ 0.
Compare with the example for the guess and prove technique.

2. If f (n) = Θ(nlogb a), then T(n) = Θ(nlogb a logn).
This case is significant in that it applies to algorithms which are
O(n logn).

3. If f (n) = Ω(nlogb a+ϵ) and if af (n/b) ≤ cf (n) for some constant c
with 0 < c < 1 and all sufficiently large n, then T(n) = Θ

(
f (n)

)
.

In this case, the function f is what really contributes to the growth of
T, and the recursion is immaterial.

Nurit Haspel 02 Run Time Solving Recurrences: Master Method 31

The Master Theorem, Case 2

Case 2 is actually split in 2 in the text:
2a. If f (n) = O(nlogb a) then T(n) = O(nlogb a logn).
2b. If f (n) = Ω(nlogb a) then T(n) = Ω(nlogb a logn).
Putting the two together implies case 2, but case 2 doesn’t
immediately imply either of them.

Equivalently:
2a′. If T(n) ≤ aT(n

b) + f (n) where f (n) = O(nlogb a), then
T(n) = O(nlogb a logn).

2b′. If T(n) ≥ aT(n
b) + f (n) where f (n) = Ω(nlogb a), then

T(n) = Ω(nlogb a logn).

Nurit Haspel 02 Run Time Solving Recurrences: Master Method 32

Example 1

Example

T(n) = 4T
(n

2
)
+ n

Here we have: a = 4, b = 2, p = log2 4 = 2, f (n) = n, np = n2.

So this is case 1 where f (n) = O(n2−ϵ) for any 0 < ϵ < 1.

So T(n) = Θ(n2).

Nurit Haspel 02 Run Time Solving Recurrences: Master Method 33

Example 1

Example

T(n) = 4T
(n

2
)
+ n

Here we have: a = 4, b = 2, p = log2 4 = 2, f (n) = n, np = n2.

So this is case 1 where f (n) = O(n2−ϵ) for any 0 < ϵ < 1.

So T(n) = Θ(n2).

Nurit Haspel 02 Run Time Solving Recurrences: Master Method 33

Example 2

Example

T(n) = 4T
(n

2
)
+ n2

Here we have: a = 4, b = 2, p = log2 4 = 2, f (n) = n2, np = n2.

So this is case 2 where f (n) = Θ(n2).

So T(n) = Θ(n2 log(n)).

Nurit Haspel 02 Run Time Solving Recurrences: Master Method 34

Example 2

Example

T(n) = 4T
(n

2
)
+ n2

Here we have: a = 4, b = 2, p = log2 4 = 2, f (n) = n2, np = n2.

So this is case 2 where f (n) = Θ(n2).

So T(n) = Θ(n2 log(n)).

Nurit Haspel 02 Run Time Solving Recurrences: Master Method 34

Example 3

Example

T(n) = 4T
(n

2
)
+ n3.

Now we have: a = 4, b = 2, p = log2 4 = 2, f (n) = n3, np = n2.

We have f (n) = Ω(nlogb a+ϵ) for 0 < ϵ < 1. Thus we are in Case 3 provided we
can show that the additional condition needed for Case 3 holds.
▶ We need to show that there is some constant 0 < c < 1 and some n0

such that for all n > n0, af (n
b) ≤ cf (n).

▶ The condition 4f (n/2) ≤ cf (n) becomes 4(n/2)3 ≤ cn3,
or equivalently, 1

2 n3 ≤ cn3.
▶ This holds for any c ≥ 1/2.

Therefore we really are in Case 3, and the conclusion of the master theorem
is that T(n) = Θ(n3).

Nurit Haspel 02 Run Time Solving Recurrences: Master Method 35

Example 3

Example

T(n) = 4T
(n

2
)
+ n3.

Now we have: a = 4, b = 2, p = log2 4 = 2, f (n) = n3, np = n2.
We have f (n) = Ω(nlogb a+ϵ) for 0 < ϵ < 1. Thus we are in Case 3 provided we
can show that the additional condition needed for Case 3 holds.
▶ We need to show that there is some constant 0 < c < 1 and some n0

such that for all n > n0, af (n
b) ≤ cf (n).

▶ The condition 4f (n/2) ≤ cf (n) becomes 4(n/2)3 ≤ cn3,
or equivalently, 1

2 n3 ≤ cn3.
▶ This holds for any c ≥ 1/2.

Therefore we really are in Case 3, and the conclusion of the master theorem
is that T(n) = Θ(n3).

Nurit Haspel 02 Run Time Solving Recurrences: Master Method 35

Example 4

Example

T(n) = 4T
(n

2
)
+ n2/ logn

Here we have: a = 4, b = 2, p = log2 4 = 2, f (n) = n2/ logn, np = n2.

In this case the master theorem does not apply. (Why?)

More precisely, the standard cases 1–3 don’t apply. Case 2a applies,
since f (n) = n2/logn = O(n2), so T(n) = O(n2 logn).

Nurit Haspel 02 Run Time Solving Recurrences: Master Method 36

Example 4

Example

T(n) = 4T
(n

2
)
+ n2/ logn

Here we have: a = 4, b = 2, p = log2 4 = 2, f (n) = n2/ logn, np = n2.

In this case the master theorem does not apply. (Why?)

More precisely, the standard cases 1–3 don’t apply. Case 2a applies,
since f (n) = n2/logn = O(n2), so T(n) = O(n2 logn).

Nurit Haspel 02 Run Time Solving Recurrences: Master Method 36

Example 4

Example

T(n) = 4T
(n

2
)
+ n2/ logn

Here we have: a = 4, b = 2, p = log2 4 = 2, f (n) = n2/ logn, np = n2.

In this case the master theorem does not apply. (Why?)

More precisely, the standard cases 1–3 don’t apply. Case 2a applies,
since f (n) = n2/logn = O(n2), so T(n) = O(n2 logn).

Nurit Haspel 02 Run Time Solving Recurrences: Master Method 36

Example 5

Example

T(n) = 2T
(n

2
)
+ cn

Here we have: a = 2, b = 2, p = log2 2 = 1, f (n) = cn, np = n.

So this is case 2 where f (n) = Θ(n).

So T(n) = Θ(n log(n)). This is the case of MergeSort, for example.

Nurit Haspel 02 Run Time Solving Recurrences: Master Method 37

Example 5

Example

T(n) = 2T
(n

2
)
+ cn

Here we have: a = 2, b = 2, p = log2 2 = 1, f (n) = cn, np = n.

So this is case 2 where f (n) = Θ(n).

So T(n) = Θ(n log(n)). This is the case of MergeSort, for example.

Nurit Haspel 02 Run Time Solving Recurrences: Master Method 37

Generating Functions

Puzzle: How can we compute the value of an infinite sum like the
following?

∞∑
n=1

n
2n = 2

One approach:

series in n

series in x,n known f (x)

value

Nurit Haspel 02 Run Time Generating Functions 38

Generating Functions

Puzzle: How can we compute the value of an infinite sum like the
following?

∞∑
n=1

n
2n = 2

One approach:

series in n

series in x,n known f (x)

value

Nurit Haspel 02 Run Time Generating Functions 38

Sequences and Generating Functions

Some important functions can be represented as power series:

ex =

∞∑
n=0

xn

n! = 1 + x +
x2

2 +
x3

6 +
x4

24 + . . .

sin(x) =
∞∑

n=0
(−1)n x2n+1

(2n + 1)! = x − x3

3! +
x5

5! −
x7

7! + . . .

cos(x) =
∞∑

n=0
(−1)n x2n

(2n)! = 1 − x2

2! +
x4

4! −
x6

6! + . . .

1
1 − x =

∞∑
n=0

xn = 1 + x + x2 + x3 + x4 + . . . for |x| < 1

Nurit Haspel 02 Run Time Generating Functions 39

Generating Functions

Given a sequence {a0,a1, . . . , }, the generating function of the
sequence is defined as:

f (x) = a0 + a1x + a2x2 + · · · =
∞∑

n=0
anxn

▶ The set of coefficients (like an = 1
n! in the case of f (x) = ex) yield

the power series for the function.
▶ If we recognize the power series and know what function it

belongs to, we can use the function to gain knowledge about the
sequence.

Nurit Haspel 02 Run Time Generating Functions 40

Generating Functions
We can use generating functions to derive the properties of
sequences from properties of another sequence.

1
1 − x =

∞∑
n=0

xn for |x| < 1

1
(1 − x)2 =

∞∑
n=0

nxn−1 =

∞∑
n=1

nxn−1 differentiate w.r.t x

1(
1 − 1

2

)2 =

∞∑
n=1

n
(

1
2

)n−1
substitute x = 1/2

2 =

∞∑
n=1

n
2n simplify

Nurit Haspel 02 Run Time Generating Functions 41

Another Example

The binomial theorem says that:

(1 + x)n =

n∑
k=0

(
n
k

)
xk

This just tells us that (1 + x)n is the generating function for the finite
sequence {

(n
k
)
: 0 ≤ k ≤ n}.

Substituting x = 1 we get 2n =
n∑

k=0

(n
k
)

Nurit Haspel 02 Run Time Generating Functions 42

Fibonacci Numbers via Generating Functions

▶ We let {f0, f1, f2, . . . } denote the Fibonacci numbers:
{0,1,1,2,3,5,8, . . . }.

▶ For n ≥ 2, fn = fn−1 + fn−2.
▶ We want to get a closed formula for fn.
▶ We have a formula, but it is not obvious.
▶ We can use a generating function with the recurrence formula to

derive it.

Nurit Haspel 02 Run Time Generating Functions 43

Generating Function for Fibonacci

F(x) = f0 + f1x + f2x2 + · · · =
∞∑

n=0
fnxn

F(x) = f0 + f1x + f2x2 + f3x3 + f4x4 + f5x5 + . . .

xF(x) = f0x + f1x2 + f2x3 + f3x4 + f4x5 + . . .

x2F(x) = f0x2 + f1x3 + f2x4 + f3x5 + . . .

(1 − x − x2)F(x) = f0 + (f1 − f0)x

Remember also that fn+2 = fn+1 + fn, and f0 = 0, f1 = 1.

Nurit Haspel 02 Run Time Generating Functions 44

Generating Function for Fibonacci

F(x) = f0 + f1x + f2x2 + · · · =
∞∑

n=0
fnxn

F(x) = f0 + f1x + f2x2 + f3x3 + f4x4 + f5x5 + . . .

xF(x) = f0x + f1x2 + f2x3 + f3x4 + f4x5 + . . .

x2F(x) = f0x2 + f1x3 + f2x4 + f3x5 + . . .

(1 − x − x2)F(x) = f0 + (f1 − f0)x

Remember also that fn+2 = fn+1 + fn, and f0 = 0, f1 = 1.

Nurit Haspel 02 Run Time Generating Functions 44

Generating Function for Fibonacci

Adding the second and third row and subtracting from the first
cancels most terms out, leaving:

F(x)(1 − x − x2) = x

and so
F(x) = x

(1 − x − x2)

We need to figure out a formula for the coefficient of the power
series representing the right hand term.

We already know that for |x| < 1,
∞∑

n=0
xn = 1

1−x .

Nurit Haspel 02 Run Time Generating Functions 45

Generating Function for Fibonacci

▶ Our formula is not of this type, we have to convert it.
▶ It is a quadratic polynomial, so it can be converted into a

formula of the kind:
▶ (1 − x − x2) = (1 − αx)(1 − βx).
▶ Multiplying the right side we get: αβ = −1; α+ β = 1.
▶ α(1 − α) = −1 ; α2 − α− 1 = 0.
▶ This is a quadratic equation whose solution is α = 1±

√
5

2 .

Nurit Haspel 02 Run Time Generating Functions 46

Generating Function for Fibonacci

▶ The two solutions add up to 1, so let’s make: α = 1+
√

5
2 and

β = 1−
√

5
2

▶ We now know that: F(x) = x
1−x−x2 = x

(1−αx)(1−βx)
▶ Now we can decompose it into two fractions without a quadratic

term.
▶ For this we can find two numbers A and B such that:

x
(1−αx)(1−βx) =

A
1−αx + B

1−βx
▶ Which is true if: A(1 − βx) + B(1 − αx) = x

Nurit Haspel 02 Run Time Generating Functions 47

Generating Function for Fibonacci

▶ This gives us two equations: A + B = 0 ; Aβ + Bα = −1.
▶ We know that B = −A and we know that β = 1 − α.
▶ Substituting, we get:

A(1 − α)− Aα = −1
A − Aα− Aα = −1

A(1 − 2α) = −1

Nurit Haspel 02 Run Time Generating Functions 48

Generating Function for Fibonacci

▶ From previous calculation we know that: 1 − 2α = −
√

5.
▶ So we have: A = 1√

5
▶ Knowing that A + B = 0 we get: B = −A = − 1√

5
▶ Finally, putting it all together:

F(x) = A
1 − αx +

B
1 − βx

= A
∞∑

n=0
αnxn + B

∞∑
n=0

βnxn

=
1√
5

∞∑
n=0

(αn − βn)xn

Nurit Haspel 02 Run Time Generating Functions 49

Generating Function for Fibonacci

Since the coefficients of F are the fibonacci numbers we get for the
nth coefficient:

fn =
1√
5
(αn − βn) =

1√
5

((1 +
√

5
2

)n
−
(1 −

√
5

2
)n

)

Nurit Haspel 02 Run Time Generating Functions 50

	Order of Growth
	Asymptotic Growth
	Solving Recurrences: Guess and Prove
	Solving Recurrences: Recursion Tree
	Solving Recurrences: Master Method
	Generating Functions

