
Heaps
CS 624 — Analysis of Algorithms

September 18, 2024

Nurit Haspel 03 Heaps 1



Binary Trees

Definition (Binary Tree)

A binary tree is either
▶ a node with two children, called left and right, which are also

binary trees, and optionally a data field; or
▶ nil, representing the empty tree

Examples (Binary trees with and without data)

nil
3

7

nil nil

5

nil nil

6

5

9

nil nil

nil

2

4

nil nil

nil
nil nil nil nil

nil nil

nil

nil nil

nil

Nurit Haspel 03 Heaps Binary Trees 2



Binary Trees

Definition (Leaf Node)

A leaf node is a node whose children are both nil.

Examples

3

7

nil nil

5

nil nil

=
3

7 5

nil nil

nil

nil nil

nil
=

nil is often omitted from tree drawings, unless the tree is empty.

Nurit Haspel 03 Heaps Binary Trees 3



Node Height

Definition (Height)

The height of a node in a binary tree is the number of edges on the
longest path from the node to a leaf node.
The height of a binary tree is the height of its root node.

Example

In the tree to the right, each
node is labeled with its height.
The tree has height 4.

4

3

1

0 0

2

1

0

1

0 0

Nurit Haspel 03 Heaps Binary Trees 4



Node Level

Definition (Level)

The level of a node is the number of edges from it to the root node.
In general, if a node has level k, its children both have level k + 1.

Example

In the tree to the right, each
node is labeled with its level.

0

1

2

3 3

2

3

4

1

2 2

There are at most 2k nodes at level k.
If the highest level is completely filled in, that level contains 2H

nodes, and the tree contains 1 + 2 + 4 + · · ·+ 2H = 2H+1 − 1 nodes.
Nurit Haspel 03 Heaps Binary Trees 5



Pre-Heaps

Definition (Pre-heap)

A pre-heap is a binary tree with the following properties:
▶ All leaves are on at most two adjacent levels.
▶ All levels, except maybe the lowest, are completely filled.
▶ The lowest level is filled without gaps, from the left.

A pre-heap can be efficiently, compactly represented using an array.

Nurit Haspel 03 Heaps Pre-Heaps 6



Pre-Heap Representation

Logical view

1

2 3

4 5 6 7

8 9

Efficient representation

1 2 3 4 5 6 7 8 9

Left(k) = 2k
Right(k) = 2k + 1

Parent(k) = ⌊k/2⌋ if k > 1

Levels 0, 1, and 2 are completely filled in and contain 23 − 1 nodes.
Level 3 is partly filled in from the left.

Nurit Haspel 03 Heaps Pre-Heaps 7



Pre-Heap Properties

Observation
Suppose we have a pre-heap with n nodes and height H.
Then 2H ≤ n ≤ 2H+1 − 1 < 2H+1. So H = ⌊log2 n⌋.

Nurit Haspel 03 Heaps Pre-Heaps 8



Pre-Heap Properties

Lemma
In a pre-heap with n elements, there are

⌈n
2
⌉
leaves.

Proof.

▶ Let H be the height. All nodes on level H are leaves.
▶ Some of the rightmost nodes on level H − 1 may be leaves.
▶ The parent of node n is

⌊n
2
⌋
, and that node is the last node of

height 1 on level H − 1, since level H is filled from the left.
▶ That is, all nodes after

⌊n
2
⌋

on level H − 1 are leaves, and all
nodes on level H are leaves.

▶ So there are n−
⌊n

2
⌋
=
⌈n

2
⌉

leaves.

Nurit Haspel 03 Heaps Pre-Heaps 9



Pre-Heap Properties

2H

⌊n/2⌋

n

2H − 1

Level 0

Level 1

...

Level H − 1

Level H

The parent of node n is
⌊n

2
⌋
, and that node is the last node of height 1 on

level H − 1, since level H is filled from the left.

Nurit Haspel 03 Heaps Pre-Heaps 10



Pre-Heap Properties

Corollary

In a pre-heap with height H, there are at most 2H leaves.

Proof.
If n is the number of elements in the pre-heap, we know that

2H ≤ n ≤ 2H+1 − 1 < 2H+1

Then by the Lemma, the number of leaves is⌈n
2
⌉
≤ 2H+1

2 = 2H

Nurit Haspel 03 Heaps Pre-Heaps 11



Pre-Heap Properties

Theorem
In a pre-heap with n elements, there are at most n

2h nodes at height h.

Proof.

▶ We have just seen that there are at most 2H leaves in such a
tree, and the leaves are just the nodes at height 0.

▶ If we take away the leaves, we have a smaller pre-heap with at
most 2H−1 leaves, and these leaves are exactly the nodes at
height 1 in the original tree.

▶ Continuing, we see that there are at most 2H−h nodes at height
h in the original tree, therefore 2H−h = 2H

2h ≤ n
2h

Nurit Haspel 03 Heaps Pre-Heaps 12



Heaps

Definition (Heap)

A heap is a pre-heap where each node contains a key, the keys are
comparable, and each node satisfies the heap properties:

1. The node’s key is greater than or equal to the keys of its children.
2. The node’s left and right subtrees are also heaps.

Specifically, this is called a max-heap; the root has the maximum key.

Another way of phrasing the heap conditions would be:
▶ The key at each node is greater than or equal to the key in any

descendant of that node.

Nurit Haspel 03 Heaps Heaps 13



Example: Two Heaps With the Same Set of Keys

The shape of a heap with n elements is uniquely determined,
since it is a pre-heap, but the arrangement of the elements is not.

16

14

8

2 4

7

1

10

9 3

16

14

4

1 2

10

9

8

3 7

Nurit Haspel 03 Heaps Heaps 14



Building a Heap

How can we (efficiently) build a heap?

Input: A pre-heap represented by an array.

Strategy:

Let’s try divide and conquer:
▶ Sub-problems: Turn the left and right children of the into heaps.
▶ Combine: Given a pre-heap whose left and right children are

heaps, convert the whole thing into one heap.

Nurit Haspel 03 Heaps Building a Heap 15



Building a Heap

How can we (efficiently) build a heap?

Input: A pre-heap represented by an array.

Strategy: Let’s try divide and conquer:
▶ Sub-problems: Turn the left and right children of the into heaps.
▶ Combine: Given a pre-heap whose left and right children are

heaps, convert the whole thing into one heap.

Nurit Haspel 03 Heaps Building a Heap 15



Building a Heap, Recursively
Initial call: BuildHeapRec(A,1), with Heapsize(A)← Length(A).

Algorithm 1 BuildHeapRec(A, i)
Ensure: The subtree rooted at A[i] is a heap.

1: if i > Heapsize(A) then
2: // Then i represents nil
3: return
4: else
5: l← Left(i)
6: r← Right(i)
7: BuildHeapRec(A, l)
8: BuildHeapRec(A, r)
9: Heapify(A, i)

10: end if

Nurit Haspel 03 Heaps Building a Heap 16



The Heapify Procedure

Algorithm 2 Heapify(A, i)
Require: 1 ≤ i ≤ Heapsize(A), and the sub-trees rooted at A[Left(i)]

and A[Right(i)] (if they exist) are heaps.
Ensure: The tree rooted at A[i] is a heap.

1: l← Left(i)
2: r← Right(i)
3: largest← i
4: if l ≤ Heapsize[A] and A[l] > A[i] then
5: largest← l
6: end if
7: if r ≤ Heapsize[A] and A[r] > A[largest] then
8: largest← r
9: end if

10: if largest ̸= i then
11: exchangeA[i]↔ A[largest]
12: Heapify(A, largest)
13: end if

Nurit Haspel 03 Heaps Building a Heap 17



The Heapify Procedure

Comments on Heapify:
▶ largest is the index of node with the largest key, out of i, its left

child (if it exists), and its right child (if it exists).
There are three cases:

1. largest = i. Then A[i] satisfies the heap properties. Done.
2. largest = Left(i). Then A[i] does not satisfy heap property #1.

By exchanging A[i]↔ A[largest], we fix heap property #1, but we
may have broken heap property #2: the left sub-tree may no
longer be a heap. So we repair it by calling Heapify recursively. (?)

3. largest = Right(i). Similar to previous case.
▶ The algorithm works by letting the value A[i] “float down” to its

proper position in the heap.

Nurit Haspel 03 Heaps Building a Heap 18



Example: Heapify

4

14

2 8

7

1

14

4

2 8

7

1

14

8

2 4

7

1

14

8

2 4

7

1

Nurit Haspel 03 Heaps Building a Heap 19



Running Time of Heapify

The time needed to run Heapify on a subtree of size n rooted at a
given node i is (worst case)
▶ time Θ(1) to fix up the relationships among the elements A[i],

A[Left(i)], and A[Right(i)], plus
▶ time to run Heapify on a subtree rooted at one i’s children

That subtree has size at most 2n/3 — the worst case occurs
when the last row of the tree is exactly half full. (?)

So the running time T(n) can be characterized by the recurrence

T(n) ≤ T(2n/3) + Θ(1)

This falls into case 2 of the master theorem, and so we must have
T(n) = O(logn).

Nurit Haspel 03 Heaps Building a Heap 20



Running Time of Heapify

The time needed to run Heapify on a subtree of size n rooted at a
given node i is (worst case)
▶ time Θ(1) to fix up the relationships among the elements A[i],

A[Left(i)], and A[Right(i)], plus
▶ time to run Heapify on a subtree rooted at one i’s children

That subtree has size at most 2n/3 — the worst case occurs
when the last row of the tree is exactly half full. (?)

So the running time T(n) can be characterized by the recurrence

T(n) ≤ T(2n/3) + Θ(1)

This falls into case 2 of the master theorem, and so we must have
T(n) = O(logn).

Nurit Haspel 03 Heaps Building a Heap 20



Running Time of BuildHeapRec

We can express the running time for BuildHeapRec with this
recurrence:

T(n) ≤ 2T(2n/3) + Θ(logn)

By the master theorem (case 1), that gives us Θ(nlog3/2 2) = O(n1.71).
This recurrence is a coarse bound, though; it fails to capture the fact
that the sum of the subproblem sizes is less than n.

We can change the order that we tackle the subproblems.
That leads to an iterative algorithm and a better analysis.

Nurit Haspel 03 Heaps Building a Heap 21



Changing the Order of Subproblems

The real work happens in the combine step: Heapify.
What order is Heapify first called on a node?

Recursive Iterative
10

6

3

1 2

5

4

9

7 8

10

9

7

3 2

6

1

8

5 4

Optimization: There’s no need to call Heapify on a leaf node.

Nurit Haspel 03 Heaps Building a Heap 22



Changing the Order of Subproblems

The real work happens in the combine step: Heapify.
What order is Heapify first called on a node?

Recursive Iterative
10

6

3

1 2

5

4

9

7 8

5

4

2 1

3

Optimization: There’s no need to call Heapify on a leaf node.

Nurit Haspel 03 Heaps Building a Heap 22



Building a Heap
Iterative algorithm: The heap is built from the bottom up, starting at
the first non-leaf node.

Algorithm 3 BuildHeap(A)

Ensure: The tree rooted at A[1] is a heap.
1: Heapsize[A]← Length[A]
2: for i←

⌊
Length[A]/2

⌋
to 1 do

3: Heapify(A, i)
4: end for

To prove that this is correct we use the following loop invariant:

Lemma (Loop Invariant)

Let n = Length(A). At the start of each iteration of the for loop, each
node i + 1, i + 2, . . . ,n is the root of a heap.

Nurit Haspel 03 Heaps Building a Heap 23



Proof of Correctness

Proof.
Initialization: On the first iteration of the loop, i = ⌊n/2⌋. Each node
⌊n/2⌋+ 1, ⌊n/2⌋+ 2, . . . ,n is a leaf and is thus the root of a trivial heap.
Maintenance:
▶ Assume it is true for loop i: each node i + 1, . . . ,n is the root of a heap.
▶ Goal: show that at the end of iteration i, the invariant is true for i− 1.
▶ By the LI, both children of i, namely 2i and 2i + 1 (if they exist) are

heaps. That satisfies the precondition for Heapify.
▶ The call to Heapify(A, i) makes i a heap (postcondition).
▶ Furthermore, all nodes which are not descendants of i are untouched

by the call to Heapify(A, i), and so we can conclude that each node
i, i + 1, . . . ,n is now the root of a heap.

Termination: The loop exits when i = 0, and the loop invariant implies that
node 1 is the root of a heap.

Nurit Haspel 03 Heaps Building a Heap 24



Running Time of BuildHeap

▶ The number of elements of the heap at height h is ≤ n
2h , and the

cost of running Heapify on a node of height h is O(h).
▶ The root of a heap of n elements has height ⌊log2 n⌋.
▶ Therefore the worst-case cost of running BuildHeap on a heap of

n elements is bounded by

⌊log2 n⌋∑
h=0

n
2h O(h) = O

(
n

⌊log2 n⌋∑
h=0

h
2h

)
= O(n)

Since the sum converges, so we don’t care what the upper bound of
the summation is.

Nurit Haspel 03 Heaps Building a Heap 25



Heap Properties

Heaps give us partial information about the order of their elements.
▶ We can tell immediately what the largest element is.
▶ They are really cheap to build.
▶ They are reasonably cheap to update.
▶ They can be stored in a simple array.

This makes them very useful for various applications.

Nurit Haspel 03 Heaps Using Heaps 26



Heapsort

Algorithm 4 Heapsort(A)

Ensure: A is sorted
1: BuildHeap(A)
2: for i← Length[A] to 2 do
3: exchangeA[1]↔ A[i]
4: Heapsize[A]← Heapsize[A]− 1
5: Heapify(A,1)
6: end for

The call to BuildHeap takes time O(n). Each of the n− 1 calls to
Heapify takes time O(logn). Hence the total running time (in the
worst case) is O(n logn).

Nurit Haspel 03 Heaps Using Heaps 27



Priority Queues

Definition
A priority queue is a data structure that maintains a set S of
elements, each with an associated value called a key. (As usual, the
keys must be comparable.)
The priority queue supports the following operations:
▶ Insert(S, x) inserts the element x into the set S.
▶ Maximum(S) returns the element of S with the largest key.
▶ ExtractMax(S) removes and returns the element of S with the

largest key.
▶ IncreaseKey(S, x,k) increases the value of element x’s key to the

new value k, which must be at least as large as x’s current key
value.

A priority queue can be implemented using a heap.
Nurit Haspel 03 Heaps Using Heaps 28



Priority Queue Operations

Algorithm 5 HeapMaximum(A)

Require: Heapsize(A) ≥ 1
1: return A[1]

Obviously, the run time is O(1).

Algorithm 6 HeapExtractMax(A)

Require: Heapsize(A) ≥ 1
1: maxx← A[1]
2: A[1]← A[Heapsize[A]]
3: Heapsize[A]← Heapsize[A]− 1
4: Heapify(A, 1)
5: return maxx

Here the running time is dominated by the call to Heapify, so it is O(logn).
Nurit Haspel 03 Heaps Using Heaps 29



Priority Queue Operations

Algorithm 7 HeapIncreaseKey(A, i,key)
Require: key ≥ A[i]

1: A[i]← key
2: while i > 1 and A[Parent(i)] < A[i] do
3: exchangeA[i]↔ A[Parent(i)]
4: i← Parent(i)
5: end while

We just increase the key of A[i], and then let that node “float up” to
its proper position.

Nurit Haspel 03 Heaps Using Heaps 30



Example: HeapIncreaseKey

16

14

8

2 4

7

1

10

9 3

16

14

8

2 15

7

1

10

9 3

16

14

15

2 8

7

1

10

9 3

16

15

14

2 8

7

1

10

9 3

Nurit Haspel 03 Heaps Using Heaps 31



HeapInsert

Algorithm 8 HeapInsert(A,key)
Require: Heapsize(A) < Length(A), or A can grow

1: Heapsize[A]← Heapsize[A] + 1
2: A[Heapsize[A]]← −∞
3: HeapIncreaseKey(A,Heapsize[A],key)

The running time here is again O(log2 n).

Thus, a heap supports any priority queue operation on a set of size n
in O(logn) time.

Nurit Haspel 03 Heaps Using Heaps 32


	Binary Trees
	Pre-Heaps
	Heaps
	Building a Heap
	Using Heaps

