
Quicksort
CS624 — Analysis of Algorithms

September 25, 2024

Ryan Culpepper 04 Quicksort 1

Sorting, Revisited

We have seen several sorting algorithms so far:
▶ Insertion Sort (incremental)
▶ Merge Sort (divide and conquer, all work in combine step)
▶ Heap Sort

Is there a divide and conquer algorithm for sorting
that does all of the work in the divide step instead?

Ryan Culpepper 04 Quicksort Quicksort 2

Designing Quicksort

Is there a divide and conquer algorithm for sorting
that does all of the work in the divide step instead?

▶ Let’s assume there are two sorting sub-problems.
▶ If all the work is in divide, then combine must be trivial, such as

just concatenating sorted sub-arrays.
▶ For concatenation to work, one sub-array must be be ordered

entirely before the other sub-array.
▶ So our divide step must be to partition the original array such

that every element of the first part is ≤ every element of the
second part.

Ryan Culpepper 04 Quicksort Quicksort 3

Quicksort

Algorithm 1 Quicksort(A,p, r)
Ensure: A[p .. r] is sorted

1: if p < r then
2: q← Partition(A,p, r)
3: Quicksort(A,p,q− 1)
4: Quicksort(A,q + 1, r)
5: end if

Ryan Culpepper 04 Quicksort Quicksort 4

Quicksort

The Partition procedure picks an element called the “pivot” and
breaks the array into three parts: ≤, =, > the pivot.

After Partition has been called the following are true:
1. p ≤ q ≤ r.
2. The number A[q], the pivot, is in its final position.

It will never be moved again.
3. If i < q, then A[i] ≤ A[q],

and if i > q, then A[i] > A[q].

Ryan Culpepper 04 Quicksort Quicksort 5

Partition

Algorithm 2 Partition(A,p, r)
Ensure: Let q = result. A[p .. q− 1] ≤ A[q] < A[q + 1 .. r], p ≤ q ≤ r

1: x← A[r] // x is the “pivot”
2: i← p− 1 // i maintains the “left-right boundary”
3: for j ← p to r − 1 do
4: if A[j] ≤ x then
5: i← i + 1
6: exchange A[i]↔ A[j]
7: end if
8: end for
9: exchange A[i + 1]↔ A[r]

10: return i + 1

Ryan Culpepper 04 Quicksort Quicksort 6

Example: Partition

(a) 2 8 7 1 3 5 6 4

p r

i j

(b) 2 8 7 1 3 5 6 4

p r

i j

(c) 2 8 7 1 3 5 6 4

p r

i j

Ryan Culpepper 04 Quicksort Quicksort 7

Example: Partition

(d) 2 8 7 1 3 5 6 4

p r

i j

(e) 2 1 7 8 3 5 6 4

p r

i j

(f) 2 1 3 8 7 5 6 4

p r

i j

Ryan Culpepper 04 Quicksort Quicksort 8

Example: Partition

(g) 2 1 3 8 7 5 6 4

p r

i j

(h) 2 1 3 8 7 5 6 4

p r

i j

(i) 2 1 3 4 7 5 6 8

p r

i i + 1

Ryan Culpepper 04 Quicksort Quicksort 9

Partition, Proof of Correctness

2 1 3 8 7 5 6 4

p r

i j

Loop Invariant (Partition)

At the beginning of each iteration:
▶ A[p .. i] are known to be ≤ pivot.
▶ A[i + 1 .. j − 1] are known to be > pivot.
▶ A[j, r − 1] not yet examined.
▶ A[r] is the pivot.
▶ p− 1 ≤ i < j

Ryan Culpepper 04 Quicksort Quicksort 10

Partition, Proof of Correctness

Lemma (Partition correctness)
Let q = Partition(A,p, r). Then afterwards,
▶ p ≤ q ≤ r
▶ A[p .. q− 1] ≤ A[q] < A[q + 1 .. r]

LI : A[p .. i] ≤ pivot, A[i + 1 .. j − 1] > pivot, p− 1 ≤ i < j

Proof.
Initialization:
▶ At the beginning, i = p− 1 and j = p. Both array ranges simplify

to A[p .. p− 1] and A[p .. p− 1], empty, so LI trivially holds.

Ryan Culpepper 04 Quicksort Quicksort 11

Partition, Proof of Correctness

LI : A[p .. i] ≤ pivot, A[i + 1 .. j − 1] > pivot, p− 1 ≤ i < j

Proof.
Maintenance:
▶ Assume LI is true at the start of some j loop.

In particular: A[p .. i] ≤ pivot and A[i + i .. j − 1] > pivot.
▶ We must show that the execution of the loop body makes LI true

for the next j value, j + 1. There are two cases:
1. Case A[j] ≤ pivot: (next page)
2. Case A[j] > pivot: We don’t move it. The ≤ range stays the same,

and A[j] gets absorbed into the > range, and now
A[i + 1 .. (j + 1)− 1] > pivot, so the LI holds for j + 1.

Ryan Culpepper 04 Quicksort Quicksort 12

Partition, Proof of Correctness
LI : A[p .. i] ≤ pivot, A[i + 1 .. j − 1] > pivot, p− 1 ≤ i < j

Proof.
Maintenance (continued):

1. Case A[j] ≤ pivot: We increment i and exchange A[i] and A[j].
I’ll write i for the new value and i0 for the pre-increment value,
i = i0 + 1. I’ll write A0[i] and A0[j] for the pre-exchange array
values. (i0 < j so i < j + 1, so that part of LI holds for j + 1.)
▶ We have added A0[j] ≤ pivot to the ≤ range and extended its size

by incrementing i, so A[p .. i] ≤ pivot holds.
▶ We have moved A0[i0 + 1]. It was either the first element of the >

range, or the > range was empty and it was the first unexamined
element (and the “exchange” didn’t move it).

▶ In either case, the > range (empty or not), moves right one step: it
lost A[i0 + 1] = A[i] and it now starts at A[i + 1] and runs to A[j].
That is, A[i + 1 .. (j + 1)− 1] > pivot, so the LI holds for j + 1.

Ryan Culpepper 04 Quicksort Quicksort 13

Partition, Proof of Correctness
LI : A[p .. i] ≤ pivot, A[i + 1 .. j − 1] > pivot, p− 1 ≤ i < j

Proof.
Termination: After the loop ends, j = r (the loop does not cover r), so
the loop invariant gives
▶ A[p .. i] ≤ pivot
▶ A[i + 1 .. r − 1] > pivot
▶ p− 1 ≤ i < r

The algorithm’s final step is to exchange A[i + 1] and A[r].
This shifts the > range (empty or not) right one index (see reasoning
from Maintenance case 1). So A[i + 2 .. r] > pivot = A[i + 1].
Let q = i + 1, the return value. Then we have
▶ A[p .. i− 1] ≤ A[q] < A[q + 1 .. r]
▶ p ≤ q ≤ r

Ryan Culpepper 04 Quicksort Quicksort 14

Running Time: Best Case

Running time of Partition is clearly Θ(n) in all cases.

Running time of Quick Sort:
▶ Best case is when the array is partitioned into two equal parts.
▶ In this case the recurrence is T(n) = 2T(n/2) + Θ(n).
▶ We already know this is Θ(n logn).

Ryan Culpepper 04 Quicksort Running Time 15

Running Time: Worst Case

▶ The worst case happens when the pivot partitions the array into
two sub-arrays of size n-1 and 0.

▶ This happens when the array is already sorted.
▶ Thus we have:

T(n) = T(n− 1) + T(0) + Θ(n)
= T(n− 1) + Θ(n)

=

n∑
j=0

Θ(j) = Θ

(
n(n + 1)

2

)
= Θ(n2)

Ryan Culpepper 04 Quicksort Running Time 16

Running Time: Average Case

▶ Claim: the average runtime seems to be O(n logn).
▶ This means that on average we hit a “good” case.
▶ This is quite atypical, as usually the average case is no better

than the worst case.
▶ What explains Quick Sort’s luck?

Ryan Culpepper 04 Quicksort Running Time 17

Running Time: Average Case
What happens if the pivot divides the array into two sub-arrays of
0.9n and 0.1n?

Problem Size
n

1
10 n 9

10 n

1
100 n 9

100 n 9
100 n 81

100 n

1

1

level log10 n

level log(10/9) n

D&C Cost
cn

cn

cn
...

cn
...

≤ cn

Ryan Culpepper 04 Quicksort Running Time 18

Running Time: Average Case

Analysis of Unlucky Case (0.1 – 0.9 split):
▶ There are 1 + log(10/9) n levels and each has O(n) cost.
▶ The total cost is therefore O(n logn).

So Quick Sort is not that sensitive to how good the pivot is.

What about a different kind of bad luck?
▶ What happens if occasionally it is as bad as can be?
▶ Suppose every other iteration the pivot is the largest element.

Ryan Culpepper 04 Quicksort Running Time 19

Running Time: Average Case

Suppose every other iteration the pivot is the largest element.

Problem Size
n

0 n− 1

n−1
2 − 1 n−1

2...
...

D&C Cost
cn

cn

cn
...

We simply double the number of levels, it is still O(n log(n)).

Ryan Culpepper 04 Quicksort Running Time 20

Probabilistic vs Randomized Analysis

Probabilistic Analysis
▶ Remember the average runtime analysis of Insertion Sort.
▶ We averaged the running time over a particular distribution of

inputs — we used a uniform distribution: all inputs equally likely.
▶ We have to know the distribution of the input — and be able to

calculate an average over it!
Randomized Analysis
▶ We can change the algorithm to introduce randomness.

But it still must definitely behave according to its specification.
▶ By adding randomness, we can make the input distribution

irrelevant, making it easier to calculate the average (or
expected) case behavior.

Ryan Culpepper 04 Quicksort Randomized Analysis 21

Randomized Quicksort

▶ We have a random number generator Random(p,r) which
produces numbers between p and r, each with equal probability.
In practice most random number generators produce
pseudo-random numbers.

▶ The selected number is the pivot index.
▶ When analyzing the running time of a randomized algorithm we

take the expected run time over all inputs.

Ryan Culpepper 04 Quicksort Randomized Analysis 22

Randomized Quicksort

Algorithm 3 RandomizedPartition(A,p, r)
Ensure: (same as Partition)

1: i← Random(p, r)
2: exchange A[i]↔ A[r]
3: return Partition(A,p, r)

Ryan Culpepper 04 Quicksort Randomized Analysis 23

Randomized Quicksort

Algorithm 4 RandomizedQuicksort(A,p, r)
Ensure: (same as Quicksort)

1: if p < r then
2: q← RandomizedPartition(A,p, r)
3: RandomizedQuicksort(A,p,q− 1)
4: RandomizedQuicksort(A,q + 1, r)
5: end if

Ryan Culpepper 04 Quicksort Randomized Analysis 24

Rigorous Worst Case Analysis of Quicksort

Let T(n) be the worst case running time for quicksort (or randomized
quicksort). It is described by

T(n) ≤ max
0≤q≤n−1

(T(q) + T(n− q− 1)) + an

for some a > 0.

That is, the worst case happens when, on each recursive call, we pick
the worst pivot, resulting in the worst (maximum) combined run
times on the sub-problems.

We guess that T(n) = O(n2), and now we’ll prove it.

Ryan Culpepper 04 Quicksort Randomized Analysis 25

Rigorous Worst Case Analysis of Quicksort

T(n) ≤ cn2

Proof by induction.

▶ Base case: We must show T(1) ≤ c. Trivial.
▶ Inductive case: We must show T(n) ≤ cn2.
▶ Inductive hypothesis: Assume T(k) ≤ ck2 for all 1 ≤ k < n.
▶ Calculate:

T(n) ≤ max
0≤q≤n−1

(T(q) + T(n− q− 1)) + an

≤ c max
0≤q≤n−1

(
q2 + (n− q− 1)2

)
+ an

▶ The expression
(
q2 + (n− q− 1)2) is a convex function,

achieving a maximum at the endpoints: 0 and n− 1.
▶ In those endpoints the value is (n− 1)2.

Ryan Culpepper 04 Quicksort Randomized Analysis 26

Rigorous Worst Case Analysis of Quicksort

Proof by induction, Cont.

▶ Therefore:
T(n) ≤ max

0≤q≤n−1
(T(q) + T(n− q− 1)) + an

≤ c max
0≤q≤n−1

(
q2 + (n− q− 1)2

)
+ an

≤ cn2 − c(2n− 1) + an
= cn2 − (2c− a)n + c
≤ cn2 − (2c− a)n + cn because n ≥ 1
= cn2 − (c− a)n

▶ We must pick a large enough c so that c ≥ a.

Ryan Culpepper 04 Quicksort Randomized Analysis 27

Rigorous Worst Case Analysis of Quicksort

▶ We just proved an upper bound to the worst case runtime:
T(n) = O(n2).

▶ Previously we have seen a case where the run time is quadratic.
That is, we knew T(n) = Ω(n2).

▶ So when T(n) represents the worst-case performance,
T(n) = Θ(n2).

Ryan Culpepper 04 Quicksort Randomized Analysis 28

Average Case Analysis: Method 1

The average (ie, expected) run time for Randomized-Quicksort on an
array of size n is described by the following equation:

T(n) = 1
n

n−1∑
q=0

(T(q) + T(n− q− 1)) + cn +Θ(1)

=
2
n

n−1∑
q=0

T(q) + cn +Θ(1)

▶ We wrote cn +Θ(1) rather than Θ(n) since we can assume we do
“everything” every time we call Partition.

▶ This is a worst case assumption that allows us to do something
really nice mathematically.

Ryan Culpepper 04 Quicksort Randomized Analysis 29

Average Case Analysis: Method 1

T(n) = 2
n

n−1∑
q=0

T(q) + cn +Θ(1)

nT(n) = 2
n−1∑
q=0

T(q) + cn2 +Θ(n) multiply by n

(n + 1)T(n + 1) = 2
n∑

q=0
T(q) + c(n + 1)2 +Θ(n)

multiply by n + 1
(n + 1)T(n + 1)− nT(n) = 2T(n) + Θ(n) subtract

(n + 1)T(n + 1) = (n + 2)T(n) + Θ(n) simplify

Ryan Culpepper 04 Quicksort Randomized Analysis 30

Average Case Analysis: Method 1

▶ Starting from: (n + 1)T(n + 1) = (n + 2)T(n) + Θ(n)
▶ Divide by (n + 1)(n + 2) to get: T(n+1)

n+2 = T(n)
n+1 +Θ

(
1
n

)
▶ Define g(n) = T(n)

(n+1)

▶ So: g(n + 1) = g(n) + Θ
(

1
n

)
▶ Then: g(n) = Θ

(
n−1∑
k=1

1
k

)
= Θ(logn)

▶ Going back: T(n) = (n + 1)g(n) = Θ(n logn)

Ryan Culpepper 04 Quicksort Randomized Analysis 31

Average Case Analysis: Method 2

▶ The total cost is the sum of the costs of all the calls to
RandomizedPartition.

▶ The cost of a call to RandomizedPartition is
O(#for loop executions), which is O(#comparisons).

▶ The expected cost of RandomizedQuicksort is
O(expected #comparisons).

▶ Notice that once a key xk is chosen as pivot, the elements to its
left will never be compared to the elements to its right.

Ryan Culpepper 04 Quicksort Randomized Analysis 32

Average Case Analysis: Method 2

▶ Consider {xi, xi+1, ..., xj−1, xj}, the set of keys in sorted order.
▶ Any two keys here are compared only if one of them is pivot and

that is the last time they are all in the same partition.
▶ Each key is equally likely to be chosen as the pivot.
▶ xi and xj can be compared only if one of them is pivot and this

will only happen if this is the first pivot from the set
{xi, xi+1, ..., xj−1, xj}.

▶ The probability of this is 2
(j−i+1) .

Ryan Culpepper 04 Quicksort Randomized Analysis 33

Average Case Analysis: Method 2

The expected number of comparisons is:

∑
i<j

2
j − i + 1 =

n−1∑
i=1

n∑
j=i+1

2
j − i + 1

=

n−1∑
i=1

n−i∑
k=1

2
k + 1

≤
n−1∑
i=1

n∑
k=1

2
k

= 2(n− 1)Hn = O(n logn)

where Hn is the nth Harmonic number (see A.7 in the Appendix)

Ryan Culpepper 04 Quicksort Randomized Analysis 34

	Quicksort
	Running Time
	Randomized Analysis

