Quicksort CS624 — Analysis of Algorithms

September 25, 2024

Ryan Culpepper [04 Quicksort](#page-33-0) 12 Of Culper 12 Of Culper 12 Of Culper 12 Of Culper 1

We have seen several sorting algorithms so far:

- ▶ Insertion Sort (incremental)
- ▶ Merge Sort (divide and conquer, all work in *combine* step)

▶ Heap Sort

Is there a divide and conquer algorithm for sorting that does all of the work in the *divide* step instead? Is there a divide and conquer algorithm for sorting that does all of the work in the *divide* step instead?

- \blacktriangleright Let's assume there are two sorting sub-problems.
- ▶ If all the work is in *divide*, then *combine* must be trivial, such as iust concatenating sorted sub-arrays.
- ▶ For concatenation to work, one sub-array must be be ordered entirely before the other sub-array.
- ▶ So our *divide* step must be to partition the original array such that every element of the first part is \leq every element of the second part.

Algorithm 1 Quicksort (A, p, r)

Ensure: $A[p \dots r]$ is sorted

- 1: **if** *p* < *r* **then**
- 2: $q \leftarrow \text{Partition}(A, p, r)$
- 3: Quicksort $(A, p, q 1)$
- 4: Quicksort $(A, q + 1, r)$

5: **end if**

The Partition procedure picks an element called the "pivot" and breaks the array into three parts: \leq, \leq, \geq the pivot.

After Partition has been called the following are true:

- 1. $p < q < r$.
- 2. The number $A[q]$, the pivot, is in its final position. It will never be moved again.
- 3. If $i < q$, then $A[i] < A[q]$, and if $i > q$, then $A[i] > A[q]$.

Algorithm 2 Partition(A, p, r)

Ensure: Let $q =$ **result**. $A[p \dots q-1] \leq A[q] < A[q+1 \dots r]$, $p \leq q \leq r$ 1: $x \leftarrow A[r]$ // *x* is the "pivot" 2: $i \leftarrow p-1$ // *i* maintains the "left-right boundary" 3: **for** $j \leftarrow p$ **to** $r-1$ **do** 4: **if** $A[j] \leq x$ **then** 5: $i \leftarrow i + 1$ 6: exchange $A[i] \leftrightarrow A[j]$ 7: **end if** 8: **end for** 9: exchange $A[i+1] \leftrightarrow A[r]$ 10: **return** $i + 1$

Example: Partition

Example: Partition

Example: Partition

Loop Invariant (Partition)

At the beginning of each iteration:

$$
\blacktriangleright A[p\mathinner{..} i]
$$
 are known to be $\leq pivot$.

- ▶ $A[i + 1 : j 1]$ are known to be > *pivot*.
- \blacktriangleright *A*[$j, r 1$] not yet examined.
- \blacktriangleright *A* $[r]$ is the pivot.
- $\blacktriangleright p 1 \leq i < j$

Lemma (Partition correctness)

Let $q =$ Partition(A, p, r). Then afterwards,

$$
\begin{aligned} &\blacktriangleright \ p \leq q \leq r \\ &\blacktriangleright A[p\mathinner{\ldotp\ldotp} q-1] \leq A[q] < A[q+1\mathinner{\ldotp\ldotp} r] \end{aligned}
$$

$$
\text{LI}:A[p\mathinner{..} i]\leq pivot,\,A[i+1\mathinner{..} j-1]>pivot,\,p-1\leq i
$$

Proof.

Initialization:

▶ At the beginning, $i = p - 1$ and $j = p$. Both array ranges simplify to $A[p \dots p-1]$ and $A[p \dots p-1]$, empty, so LI trivially holds.

$$
\text{LI}:A[p\mathinner{..} i]\leq pivot,\,A[i+1\mathinner{..} j-1]>pivot,\,p-1\leq i
$$

Proof.

Maintenance:

- ▶ Assume LI is true at the start of some *j* loop. In particular: *A*[*p* .. *i*] ≤ *pivot* and *A*[*i* + *i* .. *j* − 1] > *pivot*.
- \triangleright We must show that the execution of the loop body makes LI true for the next *j* value, $j + 1$. There are two cases:
	- 1. Case $A[j] \leq pivot$: (next page)
	- 2. Case $A[i] > pivot$: We don't move it. The \leq range stays the same, and $A[i]$ gets absorbed into the $>$ range, and now $A[i + 1 : (j + 1) - 1] > pivot$, so the LI holds for $j + 1$.

$$
\text{LI}:A[p\mathinner{.\,.} i]\leq pivot,\,A[i+1\mathinner{.\,.} j-1]>pivot,\,p-1\leq i
$$

Proof.

Maintenance (continued):

- 1. Case $A[j] \leq pivot$: We increment *i* and exchange $A[i]$ and $A[j]$. I'll write i for the new value and i_0 for the pre-increment value, $i = i_0 + 1$. I'll write $A_0[i]$ and $A_0[j]$ for the pre-exchange array values. $(i_0 < j$ so $i < j + 1$, so that part of LI holds for $j + 1$.)
	- ▶ We have added $A_0[j] \leq pivot$ to the \leq range and extended its size by incrementing *i*, so $A[p : i] \leq pivot$ holds.
	- ▶ We have moved $A_0[i_0 + 1]$. It was either the first element of the > range, or the $>$ range was empty and it was the first unexamined element (and the "exchange" didn't move it).
	- In either case, the $>$ range (empty or not), moves right one step: it $\log A[i_0 + 1] = A[i]$ and it now starts at $A[i + 1]$ and runs to $A[j]$. That is, $A[i + 1 \dots (j + 1) - 1] > pivot$, so the LI holds for $j + 1$.

$$
\text{LI}:A[p\mathinner{.\,.} i]\leq pivot,\,A[i+1\mathinner{.\,.} j-1]>pivot,\,p-1\leq i
$$

Proof.

Termination: After the loop ends, $j = r$ (the loop does not cover r), so the loop invariant gives

$$
\blacktriangleright A[p\mathinner{\ldotp\ldotp} i]\leq pivot
$$

$$
\blacktriangleright \; A[i+1\mathinner{..} r-1] > pivot
$$

$$
\blacktriangleright \; p-1 \leq i < r
$$

The algorithm's final step is to exchange $A[i + 1]$ and $A[r]$.

This shifts the $>$ range (empty or not) right one index (see reasoning from Maintenance case 1). So $A[i + 2 : r] > pivot = A[i + 1]$.

Let $q = i + 1$, the return value. Then we have

$$
\triangleright A[p \ .. i - 1] \leq A[q] < A[q + 1 \ .. \ r]
$$
\n
$$
\triangleright p \leq q \leq r
$$

Running time of Partition is clearly Θ(*n*) in all cases.

Running time of Quick Sort:

- \triangleright Best case is when the array is partitioned into two equal parts.
- \blacktriangleright In this case the recurrence is $T(n) = 2T(n/2) + \Theta(n)$.
- \blacktriangleright We already know this is $\Theta(n \log n)$.
- \triangleright The worst case happens when the pivot partitions the array into two sub-arrays of size n-1 and 0.
- \blacktriangleright This happens when the array is already sorted.
- ▶ Thus we have:

$$
T(n) = T(n-1) + T(0) + \Theta(n)
$$

=
$$
T(n-1) + \Theta(n)
$$

=
$$
\sum_{j=0}^{n} \Theta(j) = \Theta\left(\frac{n(n+1)}{2}\right) = \Theta(n^2)
$$

- \blacktriangleright Claim: the average runtime seems to be $O(n \log n)$.
- \blacktriangleright This means that on average we hit a "good" case.
- \blacktriangleright This is quite atypical, as usually the average case is no better than the worst case.
- ▶ What explains Quick Sort's luck?

Running Time: Average Case

What happens if the pivot divides the array into two sub-arrays of 0.9*n* and 0.1*n*?

Analysis of Unlucky Case $(0.1 - 0.9$ split):

- ▶ There are $1 + \log_{(10/9)} n$ levels and each has $O(n)$ cost.
- \blacktriangleright The total cost is therefore $O(n \log n)$.

So Quick Sort is not *that* sensitive to how good the pivot is.

What about a different kind of bad luck?

- \triangleright What happens if occasionally it is as bad as can be?
- \triangleright Suppose every other iteration the pivot is the largest element.

Suppose every other iteration the pivot is the largest element.

We simply double the number of levels, it is still $O(n \log(n))$.

Ryan Culpepper **1988 Culpepper 1988 Culpepper 1988 Culpedia Culpe** 20 **[Running Time](#page-14-0)** 20 **20**

Probabilistic Analysis

- \blacktriangleright Remember the average runtime analysis of Insertion Sort.
- \triangleright We averaged the running time over a particular distribution of inputs — we used a uniform distribution: all inputs equally likely.
- \triangleright We have to know the distribution of the input $-$ and be able to calculate an average over it!

Randomized Analysis

- ▶ We can *change the algorithm* to introduce randomness. But it still must *definitely* behave according to its specification.
- \blacktriangleright By adding randomness, we can make the input distribution *irrelevant*, making it easier to calculate the average (or expected) case behavior.
- \triangleright We have a random number generator Random(p,r) which produces numbers between p and r, each with equal probability. In practice most random number generators produce pseudo-random numbers.
- \blacktriangleright The selected number is the pivot index.
- \triangleright When analyzing the running time of a randomized algorithm we take the expected run time over all inputs.

Algorithm 3 RandomizedPartition (A, p, r)

Ensure: (same as Partition)

- 1: $i \leftarrow \text{Random}(p, r)$
- 2: exchange $A[i] \leftrightarrow A[r]$
- 3: **return** $Partition(A, p, r)$

Algorithm 4 RandomizedQuicksort (A, p, r)

Ensure: (same as Quicksort)

- 1: **if** *p* < *r* **then**
- 2: $q \leftarrow$ Randomized Partition (A, p, r)
- 3: RandomizedQuicksort $(A, p, q 1)$
- 4: RandomizedQuicksort $(A, q + 1, r)$

5: **end if**

Let $T(n)$ be the worst case running time for quicksort (or randomized quicksort). It is described by

$$
T(n) \leq \max_{0\leq q\leq n-1}(T(q)+T(n-q-1))+an
$$

for some $a > 0$.

That is, the worst case happens when, on each recursive call, we pick the worst pivot, resulting in the worst (maximum) combined run times on the sub-problems.

We guess that $T(n)=O(n^2)$, and now we'll prove it.

Rigorous Worst Case Analysis of Quicksort

$$
T(n)\leq cn^2
$$

Proof by induction.

- ▶ Base case: We must show $T(1) \leq c$. Trivial.
- ▶ Inductive case: We must show $T(n) \le cn^2$.
- ▶ Inductive hypothesis: Assume $T(k) \le ck^2$ for all $1 \le k < n.$
- ▶ Calculate:

$$
T(n) \le \max_{0 \le q \le n-1} (T(q) + T(n - q - 1)) + an
$$

$$
\le c \max_{0 \le q \le n-1} \left(q^2 + (n - q - 1)^2 \right) + an
$$

- ▶ The expression $(q^2 + (n q 1)^2)$ is a convex function, achieving a maximum at the endpoints: 0 and $n-1.$
- **►** In those endpoints the value is $(n-1)^2$.

Rigorous Worst Case Analysis of Quicksort

Proof by induction, Cont.

▶ Therefore:

$$
T(n) \leq \max_{0 \leq q \leq n-1} (T(q) + T(n - q - 1)) + an
$$

\n
$$
\leq c \max_{0 \leq q \leq n-1} (q^{2} + (n - q - 1)^{2}) + an
$$

\n
$$
\leq cn^{2} - c(2n - 1) + an
$$

\n
$$
= cn^{2} - (2c - a)n + c
$$

\n
$$
\leq cn^{2} - (2c - a)n + cn
$$
 because $n \geq 1$
\n
$$
= cn^{2} - (c - a)n
$$

▶ We must pick a large enough *c* so that $c \ge a$.

- \triangleright We just proved an upper bound to the worst case runtime: $T(n) = O(n^2).$
- \blacktriangleright Previously we have seen a case where the run time is quadratic. That is, we knew $T(n) = \Omega(n^2).$
- \blacktriangleright So when $T(n)$ represents the worst-case performance, $T(n) = \Theta(n^2).$

Average Case Analysis: Method 1

The average (ie, expected) run time for Randomized-Quicksort on an array of size *n* is described by the following equation:

$$
T(n) = \frac{1}{n} \sum_{q=0}^{n-1} (T(q) + T(n - q - 1)) + cn + \Theta(1)
$$

=
$$
\frac{2}{n} \sum_{q=0}^{n-1} T(q) + cn + \Theta(1)
$$

- $▶$ We wrote $cn + \Theta(1)$ rather than $\Theta(n)$ since we can assume we do "everything" every time we call Partition.
- \triangleright This is a worst case assumption that allows us to do something really nice mathematically.

Average Case Analysis: Method 1

$$
T(n) = \frac{2}{n} \sum_{q=0}^{n-1} T(q) + cn + \Theta(1)
$$

$$
nT(n) = 2 \sum_{q=0}^{n-1} T(q) + cn^2 + \Theta(n) \quad \text{multiply by } n
$$

$$
(n+1)T(n+1) = 2 \sum_{q=0}^{n} T(q) + c(n+1)^2 + \Theta(n)
$$

multiply by $n + 1$

$$
(n+1)T(n+1) - nT(n) = 2T(n) + \Theta(n)
$$
subtract

$$
(n+1)T(n+1) = (n+2)T(n) + \Theta(n)
$$
 simplify

▶ Starting from: $(n + 1)T(n + 1) = (n + 2)T(n) + \Theta(n)$ ▶ Divide by $(n + 1)(n + 2)$ to get: $\frac{T(n+1)}{n+2} = \frac{T(n)}{n+1} + \Theta\left(\frac{1}{n}\right)$ $\frac{1}{n}$ \blacktriangleright Define $g(n) = \frac{T(n)}{(n+1)}$ ▶ So: $g(n+1) = g(n) + \Theta\left(\frac{1}{n}\right)$ $\frac{1}{n}$ ▶ Then: $g(n) = \Theta \bigg(\sum_{n=1}^{n-1}$ *k*=1 1 *k* \setminus $= \Theta(\log n)$ ▶ Going back: $T(n) = (n+1)g(n) = \Theta(n \log n)$

- \triangleright The total cost is the sum of the costs of all the calls to RandomizedPartition.
- \blacktriangleright The cost of a call to RandomizedPartition is $O(\#$ for loop executions), which is $O(\#$ comparisons).
- ▶ The expected cost of RandomizedQuicksort is O (expected $\#$ comparisons).
- \triangleright Notice that once a key x_k is chosen as pivot, the elements to its left will never be compared to the elements to its right.
- ▶ Consider $\{x_i, x_{i+1}, ..., x_{j-1}, x_j\}$, the set of keys in sorted order.
- ▶ Any two keys here are compared only if one of them is pivot and that is the last time they are all in the same partition.
- \blacktriangleright Each key is equally likely to be chosen as the pivot.
- \triangleright x_i and x_j can be compared only if one of them is pivot and this will only happen if this is the first pivot from the set $\{x_i, x_{i+1}, \ldots, x_{j-1}, x_j\}.$
- ▶ The probability of this is $\frac{2}{(j-i+1)}$.

Average Case Analysis: Method 2

The expected number of comparisons is:

$$
\sum_{i < j} \frac{2}{j - i + 1} = \sum_{i = 1}^{n - 1} \sum_{j = i + 1}^{n} \frac{2}{j - i + 1}
$$
\n
$$
= \sum_{i = 1}^{n - 1} \sum_{k = 1}^{n - i} \frac{2}{k + 1}
$$
\n
$$
\leq \sum_{i = 1}^{n - 1} \sum_{k = 1}^{n} \frac{2}{k}
$$
\n
$$
= 2(n - 1)H_n = O(n \log n)
$$

where H_n is the *n*th Harmonic number (see A.7 in the Appendix)