Quicksort CS624 — Analysis of Algorithms

September 25, 2024

Ryan Culpepper

04 Quicksort

1

We have seen several sorting algorithms so far:

- Insertion Sort (incremental)
- Merge Sort (divide and conquer, all work in combine step)
- Heap Sort

Is there a divide and conquer algorithm for sorting that does all of the work in the *divide* step instead?

Is there a divide and conquer algorithm for sorting that does all of the work in the *divide* step instead?

- Let's assume there are two sorting sub-problems.
- If all the work is in *divide*, then *combine* must be trivial, such as just concatenating sorted sub-arrays.
- For concatenation to work, one sub-array must be be ordered entirely before the other sub-array.
- ➤ So our *divide* step must be to partition the original array such that every element of the first part is ≤ every element of the second part.

Algorithm 1 $\operatorname{Quicksort}(A, p, r)$

Ensure: A[p .. r] is sorted

- 1: if p < r then
- 2: $q \leftarrow \operatorname{Partition}(A, p, r)$
- 3: Quicksort(A, p, q 1)
- 4: Quicksort(A, q + 1, r)

5: end if

The Partition procedure picks an element called the "pivot" and breaks the array into three parts: \leq , =, > the pivot.

After Partition has been called the following are true:

- 1. $p \leq q \leq r$.
- 2. The number A[q], the pivot, is in its final position. It will never be moved again.
- 3. If i < q, then $A[i] \le A[q]$, and if i > q, then A[i] > A[q].

Algorithm 2 Partition(A, p, r) **Ensure:** Let q =**result**. A[p ... q - 1] < A[q] < A[q + 1 ... r], p < q < r1: $x \leftarrow A[r]$ // x is the "pivot" 2: $i \leftarrow p - 1$ // *i* maintains the "left-right boundary" 3: for $i \leftarrow p$ to r - 1 do 4: if A[i] < x then 5: $i \leftarrow i + 1$ 6: exchange $A[i] \leftrightarrow A[j]$ end if 7: 8: end for 9: exchange $A[i+1] \leftrightarrow A[r]$ 10: **return** i + 1

Example: Partition

Example: Partition

Example: Partition

Loop Invariant (Partition)

At the beginning of each iteration:

•
$$A[p ... i]$$
 are known to be $\leq pivot$.

- ▶ A[i+1 ... j-1] are known to be > *pivot*.
- ► A[j, r-1] not yet examined.
- A[r] is the pivot.
- ▶ $p 1 \le i < j$

Lemma (Partition correctness)

Let q = Partition(A, p, r). Then afterwards,

▶
$$p \le q \le r$$

▶ $A[p ... q - 1] \le A[q] \le A[q + 1...r]$

$$\operatorname{LI}: A[p \mathrel{.\,.} i] \leq pivot, \: A[i+1 \mathrel{.\,.} j-1] > pivot, \: p-1 \leq i < j$$

Proof.

Initialization:

At the beginning, i = p - 1 and j = p. Both array ranges simplify to A[p .. p - 1] and A[p .. p - 1], empty, so LI trivially holds.

$$\operatorname{LI}: A[p \mathinner{.\,.} i] \leq pivot, \ A[i+1 \mathinner{.\,.} j-1] > pivot, \ p-1 \leq i < j$$

Proof.

Maintenance:

- Assume LI is true at the start of some j loop. In particular: $A[p ... i] \le pivot$ and A[i + i ... j - 1] > pivot.
- We must show that the execution of the loop body makes LI true for the next j value, j + 1. There are two cases:
 - 1. Case $A[j] \leq pivot$: (next page)
 - 2. Case A[j] > pivot: We don't move it. The \leq range stays the same, and A[j] gets absorbed into the > range, and now A[i + 1 ... (j + 1) 1] > pivot, so the LI holds for j + 1.

$$\operatorname{LI}: A[p \ .. \ i] \leq pivot, \ A[i+1 \ .. \ j-1] > pivot, \ p-1 \leq i < j$$

Proof.

Maintenance (continued):

- 1. Case $A[j] \leq pivot$: We increment i and exchange A[i] and A[j]. I'll write i for the new value and i_0 for the pre-increment value, $i = i_0 + 1$. I'll write $A_0[i]$ and $A_0[j]$ for the pre-exchange array values. ($i_0 < j$ so i < j + 1, so that part of LI holds for j + 1.)
 - We have added A₀[j] ≤ pivot to the ≤ range and extended its size by incrementing i, so A[p .. i] ≤ pivot holds.
 - We have moved $A_0[i_0 + 1]$. It was either the first element of the > range, or the > range was empty and it was the first unexamined element (and the "exchange" didn't move it).
 - In either case, the > range (empty or not), moves right one step: it lost A[i₀ + 1] = A[i] and it now starts at A[i + 1] and runs to A[j]. That is, A[i + 1.. (j + 1) − 1] > pivot, so the LI holds for j + 1.

$$\operatorname{LI}: A[p \mathinner{.\,.} i] \leq pivot, \ A[i+1 \mathinner{.\,.} j-1] > pivot, \ p-1 \leq i < j$$

Proof.

Termination: After the loop ends, j = r (the loop does not cover r), so the loop invariant gives

$$\blacktriangleright A[p ... i] \le pivot$$

$$\blacktriangleright A[i+1 ... r-1] > pivot$$

$$\blacktriangleright \ p-1 \leq i < r$$

The algorithm's final step is to exchange A[i + 1] and A[r].

This shifts the > range (empty or not) right one index (see reasoning from Maintenance case 1). So A[i + 2 ... r] > pivot = A[i + 1].

Let q=i+1, the return value. Then we have

$$\begin{array}{l} \blacktriangleright \ A[p \ .. \ i-1] \leq A[q] < A[q+1 \ .. \ r] \\ \blacktriangleright \ p \leq q \leq r \end{array}$$

Running time of Partition is clearly $\Theta(n)$ in all cases.

Running time of Quick Sort:

- Best case is when the array is partitioned into two equal parts.
- In this case the recurrence is $T(n) = 2T(n/2) + \Theta(n)$.
- We already know this is $\Theta(n \log n)$.

- The worst case happens when the pivot partitions the array into two sub-arrays of size n-1 and o.
- This happens when the array is already sorted.
- Thus we have:

$$egin{aligned} T(n) &= T(n-1) + T(0) + \Theta(n) \ &= T(n-1) + \Theta(n) \ &= \sum_{j=0}^n \Theta(j) = \Thetaigg(rac{n(n+1)}{2}igg) = \Theta(n^2) \end{aligned}$$

- Claim: the average runtime seems to be $O(n \log n)$.
- This means that on average we hit a "good" case.
- This is quite atypical, as usually the average case is no better than the worst case.
- What explains Quick Sort's luck?

Running Time: Average Case

What happens if the pivot divides the array into two sub-arrays of 0.9n and 0.1n?

Analysis of Unlucky Case (0.1 - 0.9 split):

- There are $1 + \log_{(10/9)} n$ levels and each has O(n) cost.
- The total cost is therefore $O(n \log n)$.

So Quick Sort is not *that* sensitive to how good the pivot is.

What about a different kind of bad luck?

- What happens if occasionally it is as bad as can be?
- Suppose every other iteration the pivot is the largest element.

Suppose every other iteration the pivot is the largest element.

We simply double the number of levels, it is still $O(n \log(n))$.

Rvan Culpepper

Probabilistic Analysis

- Remember the average runtime analysis of Insertion Sort.
- We averaged the running time over a particular distribution of inputs — we used a uniform distribution: all inputs equally likely.
- We have to know the distribution of the input and be able to calculate an average over it!

Randomized Analysis

- We can change the algorithm to introduce randomness.
 But it still must definitely behave according to its specification.
- By adding randomness, we can make the input distribution irrelevant, making it easier to calculate the average (or expected) case behavior.

- We have a random number generator Random(p,r) which produces numbers between p and r, each with equal probability. In practice most random number generators produce pseudo-random numbers.
- The selected number is the pivot index.
- When analyzing the running time of a randomized algorithm we take the expected run time over all inputs.

Algorithm 3 RandomizedPartition(A, p, r)

Ensure: (same as Partition**)**

- 1: $i \leftarrow \operatorname{Random}(p, r)$
- 2: exchange $A[i] \leftrightarrow A[r]$
- 3: return $\operatorname{Partition}(A, p, r)$

Algorithm 4 RandomizedQuicksort(A, p, r)

Ensure: (same as Quicksort)

- 1: if p < r then
- 2: $q \leftarrow \text{RandomizedPartition}(A, p, r)$
- 3: RandomizedQuicksort(A, p, q 1)
- 4: RandomizedQuicksort(A, q + 1, r)

5: end if

Let T(n) be the worst case running time for quicksort (or randomized quicksort). It is described by

$$T(n) \leq \max_{0\leq q\leq n-1}(T(q)+T(n-q-1))+an$$

for some a > 0.

That is, the worst case happens when, on each recursive call, we pick the worst pivot, resulting in the worst (maximum) combined run times on the sub-problems.

We guess that $T(n) = O(n^2)$, and now we'll prove it.

Rigorous Worst Case Analysis of Quicksort

$$T(n) \leq cn^2$$

Proof by induction.

- **b** Base case: We must show $T(1) \leq c$. Trivial.
- Inductive case: We must show $T(n) \leq cn^2$.
- Inductive hypothesis: Assume $T(k) \leq ck^2$ for all $1 \leq k < n$.
- Calculate:

$$egin{aligned} T(n) &\leq \max \limits_{0 \leq q \leq n-1} (T(q) + T(n-q-1)) + an \ &\leq c \max \limits_{0 \leq q \leq n-1} \Bigl(q^2 + (n-q-1)^2 \Bigr) + an \end{aligned}$$

- The expression $(q^2 + (n q 1)^2)$ is a convex function, achieving a maximum at the endpoints: 0 and n 1.
- In those endpoints the value is $(n-1)^2$.

Rigorous Worst Case Analysis of Quicksort

Proof by induction, Cont.

► Therefore:

$$egin{aligned} T(n) &\leq \max_{0 \leq q \leq n-1} (T(q) + T(n-q-1)) + an \ &\leq c \max_{0 \leq q \leq n-1} \Big(q^2 + (n-q-1)^2 \Big) + an \ &\leq cn^2 - c(2n-1) + an \ &= cn^2 - (2c-a)n + c \ &\leq cn^2 - (2c-a)n + cn \ &= cn^2 - (2c-a)n + cn \ &= cn^2 - (c-a)n \end{aligned}$$
 because $n \geq 1$

• We must pick a large enough c so that $c \ge a$.

- We just proved an upper bound to the worst case runtime: $T(n) = O(n^2)$.
- Previously we have seen a case where the run time is quadratic. That is, we knew $T(n) = \Omega(n^2)$.
- ▶ So when T(n) represents the worst-case performance, $T(n) = \Theta(n^2)$.

The average (ie, expected) run time for Randomized-Quicksort on an array of size *n* is described by the following equation:

$$egin{aligned} T(n) &= rac{1}{n} \sum_{q=0}^{n-1} (T(q) + T(n-q-1)) + cn + \Theta(1) \ &= rac{2}{n} \sum_{q=0}^{n-1} T(q) + cn + \Theta(1) \end{aligned}$$

- We wrote $cn + \Theta(1)$ rather than $\Theta(n)$ since we can assume we do "everything" every time we call Partition.
- This is a worst case assumption that allows us to do something really nice mathematically.

$$T(n) = rac{2}{n} \sum_{q=0}^{n-1} T(q) + cn + \Theta(1)$$

 $nT(n) = 2 \sum_{q=0}^{n-1} T(q) + cn^2 + \Theta(n)$ multiply by n
 $(n+1)T(n+1) = 2 \sum_{q=0}^{n} T(q) + c(n+1)^2 + \Theta(n)$

multiply by n+1

$$(n+1)T(n+1) - nT(n) = 2T(n) + \Theta(n)$$
 subtract $(n+1)T(n+1) = (n+2)T(n) + \Theta(n)$ simplify

- Starting from: $(n + 1)T(n + 1) = (n + 2)T(n) + \Theta(n)$
- Divide by (n+1)(n+2) to get: $\frac{T(n+1)}{n+2} = \frac{T(n)}{n+1} + \Theta\left(\frac{1}{n}\right)$

• Define
$$g(n) = \frac{T(n)}{(n+1)}$$

• So: $g(n+1) = g(n) + \Theta\left(\frac{1}{n}\right)$
• Then: $g(n) = \Theta\left(\sum_{k=1}^{n-1} \frac{1}{k}\right) = \Theta(\log n)$

$$\operatorname{Hield}_{k=1}^{\mathcal{D}} g(n) = O\left(\sum_{k=1}^{\mathcal{D}} \overline{k} \right) = O(\log n)$$

• Going back: $T(n) = (n + 1)g(n) = \Theta(n \log n)$

- The total cost is the sum of the costs of all the calls to RandomizedPartition.
- The cost of a call to RandomizedPartition is O(#for loop executions), which is O(#comparisons).
- The expected cost of RandomizedQuicksort is O(expected #comparisons).
- Notice that once a key x_k is chosen as pivot, the elements to its left will never be compared to the elements to its right.

- Consider $\{x_i, x_{i+1}, ..., x_{j-1}, x_j\}$, the set of keys in sorted order.
- Any two keys here are compared only if one of them is pivot and that is the last time they are all in the same partition.
- Each key is equally likely to be chosen as the pivot.
- x_i and x_j can be compared only if one of them is pivot and this will only happen if this is the first pivot from the set {x_i, x_{i+1}, ..., x_{j-1}, x_j}.
- The probability of this is $\frac{2}{(j-i+1)}$.

The expected number of comparisons is:

$$\sum_{i < j} rac{2}{j-i+1} = \sum_{i=1}^{n-1} \sum_{j=i+1}^n rac{2}{j-i+1}
onumber \ = \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} rac{2}{k+1}
onumber \ \le \sum_{i=1}^{n-1} \sum_{k=1}^n rac{2}{k}
onumber \ = 2(n-1)H_n = O(n\log n)$$

where H_n is the *n*th Harmonic number (see A.7 in the Appendix)

D	C		
Ryan	I CUI	Deb	ber