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Sorting, Revisited

We have seen several sorting algorithms so far:
▶ Insertion Sort (incremental)
▶ Merge Sort (divide and conquer, all work in combine step)
▶ Heap Sort

Is there a divide and conquer algorithm for sorting
that does all of the work in the divide step instead?
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Designing Quicksort

Is there a divide and conquer algorithm for sorting
that does all of the work in the divide step instead?

▶ Let’s assume there are two sorting sub-problems.
▶ If all the work is in divide, then combine must be trivial, such as

just concatenating sorted sub-arrays.
▶ For concatenation to work, one sub-array must be be ordered

entirely before the other sub-array.
▶ So our divide step must be to partition the original array such

that every element of the first part is ≤ every element of the
second part.
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Quicksort

Algorithm 1 Quicksort(A,p, r)
Ensure: A[p .. r] is sorted

1: if p < r then
2: q← Partition(A,p, r)
3: Quicksort(A,p,q− 1)
4: Quicksort(A,q + 1, r)
5: end if
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Quicksort

The Partition procedure picks an element called the “pivot” and
breaks the array into three parts: ≤, =, > the pivot.

After Partition has been called the following are true:
1. p ≤ q ≤ r.
2. The number A[q], the pivot, is in its final position.

It will never be moved again.
3. If i < q, then A[i] ≤ A[q],

and if i > q, then A[i] > A[q].
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Partition

Algorithm 2 Partition(A,p, r)
Ensure: Let q = result. A[p .. q− 1] ≤ A[q] < A[q + 1 .. r], p ≤ q ≤ r

1: x← A[r] // x is the “pivot”
2: i← p− 1 // i maintains the “left-right boundary”
3: for j ← p to r − 1 do
4: if A[ j] ≤ x then
5: i← i + 1
6: exchange A[i]↔ A[ j]
7: end if
8: end for
9: exchange A[i + 1]↔ A[r]

10: return i + 1
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Example: Partition

(a) 2 8 7 1 3 5 6 4

p r

i j

(b) 2 8 7 1 3 5 6 4

p r

i j

(c) 2 8 7 1 3 5 6 4

p r

i j
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Example: Partition

(d) 2 8 7 1 3 5 6 4

p r

i j

(e) 2 1 7 8 3 5 6 4

p r

i j

(f) 2 1 3 8 7 5 6 4

p r

i j
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Example: Partition

(g) 2 1 3 8 7 5 6 4

p r

i j

(h) 2 1 3 8 7 5 6 4

p r

i j

(i) 2 1 3 4 7 5 6 8

p r

i i + 1
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Partition, Proof of Correctness

2 1 3 8 7 5 6 4

p r

i j

Loop Invariant (Partition)

At the beginning of each iteration:
▶ A[p .. i] are known to be ≤ pivot.
▶ A[i + 1 .. j − 1] are known to be > pivot.
▶ A[ j, r − 1] not yet examined.
▶ A[r] is the pivot.
▶ p− 1 ≤ i < j
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Partition, Proof of Correctness

Lemma (Partition correctness)
Let q = Partition(A,p, r). Then afterwards,
▶ p ≤ q ≤ r
▶ A[p .. q− 1] ≤ A[q] < A[q + 1 .. r]

LI : A[p .. i] ≤ pivot, A[i + 1 .. j − 1] > pivot, p− 1 ≤ i < j

Proof.
Initialization:
▶ At the beginning, i = p− 1 and j = p. Both array ranges simplify

to A[p .. p− 1] and A[p .. p− 1], empty, so LI trivially holds.
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Partition, Proof of Correctness

LI : A[p .. i] ≤ pivot, A[i + 1 .. j − 1] > pivot, p− 1 ≤ i < j

Proof.
Maintenance:
▶ Assume LI is true at the start of some j loop.

In particular: A[p .. i] ≤ pivot and A[i + i .. j − 1] > pivot.
▶ We must show that the execution of the loop body makes LI true

for the next j value, j + 1. There are two cases:
1. Case A[ j] ≤ pivot: (next page)
2. Case A[ j] > pivot: We don’t move it. The ≤ range stays the same,

and A[ j] gets absorbed into the > range, and now
A[i + 1 .. (j + 1)− 1] > pivot, so the LI holds for j + 1.
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Partition, Proof of Correctness
LI : A[p .. i] ≤ pivot, A[i + 1 .. j − 1] > pivot, p− 1 ≤ i < j

Proof.
Maintenance (continued):

1. Case A[ j] ≤ pivot: We increment i and exchange A[i] and A[ j].
I’ll write i for the new value and i0 for the pre-increment value,
i = i0 + 1. I’ll write A0[i] and A0[ j] for the pre-exchange array
values. (i0 < j so i < j + 1, so that part of LI holds for j + 1.)
▶ We have added A0[ j] ≤ pivot to the ≤ range and extended its size

by incrementing i, so A[p .. i] ≤ pivot holds.
▶ We have moved A0[i0 + 1]. It was either the first element of the >

range, or the > range was empty and it was the first unexamined
element (and the “exchange” didn’t move it).

▶ In either case, the > range (empty or not), moves right one step: it
lost A[i0 + 1] = A[i] and it now starts at A[i + 1] and runs to A[ j].
That is, A[i + 1 .. (j + 1)− 1] > pivot, so the LI holds for j + 1.
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Partition, Proof of Correctness
LI : A[p .. i] ≤ pivot, A[i + 1 .. j − 1] > pivot, p− 1 ≤ i < j

Proof.
Termination: After the loop ends, j = r (the loop does not cover r), so
the loop invariant gives
▶ A[p .. i] ≤ pivot
▶ A[i + 1 .. r − 1] > pivot
▶ p− 1 ≤ i < r

The algorithm’s final step is to exchange A[i + 1] and A[r].
This shifts the > range (empty or not) right one index (see reasoning
from Maintenance case 1). So A[i + 2 .. r] > pivot = A[i + 1].
Let q = i + 1, the return value. Then we have
▶ A[p .. i− 1] ≤ A[q] < A[q + 1 .. r]
▶ p ≤ q ≤ r
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Running Time: Best Case

Running time of Partition is clearly Θ(n) in all cases.

Running time of Quick Sort:
▶ Best case is when the array is partitioned into two equal parts.
▶ In this case the recurrence is T(n) = 2T(n/2) + Θ(n).
▶ We already know this is Θ(n logn).
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Running Time: Worst Case

▶ The worst case happens when the pivot partitions the array into
two sub-arrays of size n-1 and 0.

▶ This happens when the array is already sorted.
▶ Thus we have:

T(n) = T(n− 1) + T(0) + Θ(n)
= T(n− 1) + Θ(n)

=

n∑
j=0

Θ( j) = Θ

(
n(n + 1)

2

)
= Θ(n2)
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Running Time: Average Case

▶ Claim: the average runtime seems to be O(n logn).
▶ This means that on average we hit a “good” case.
▶ This is quite atypical, as usually the average case is no better

than the worst case.
▶ What explains Quick Sort’s luck?
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Running Time: Average Case
What happens if the pivot divides the array into two sub-arrays of
0.9n and 0.1n?

Problem Size
n

1
10 n 9

10 n

1
100 n 9

100 n 9
100 n 81

100 n

1

1

level log10 n

level log(10/9) n

D&C Cost
cn

cn

cn
...

cn
...

≤ cn
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Running Time: Average Case

Analysis of Unlucky Case (0.1 – 0.9 split):
▶ There are 1 + log(10/9) n levels and each has O(n) cost.
▶ The total cost is therefore O(n logn).

So Quick Sort is not that sensitive to how good the pivot is.

What about a different kind of bad luck?
▶ What happens if occasionally it is as bad as can be?
▶ Suppose every other iteration the pivot is the largest element.
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Running Time: Average Case

Suppose every other iteration the pivot is the largest element.

Problem Size
n

0 n− 1

n−1
2 − 1 n−1

2...
...

D&C Cost
cn

cn

cn
...

We simply double the number of levels, it is still O(n log(n)).
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Probabilistic vs Randomized Analysis

Probabilistic Analysis
▶ Remember the average runtime analysis of Insertion Sort.
▶ We averaged the running time over a particular distribution of

inputs — we used a uniform distribution: all inputs equally likely.
▶ We have to know the distribution of the input — and be able to

calculate an average over it!
Randomized Analysis
▶ We can change the algorithm to introduce randomness.

But it still must definitely behave according to its specification.
▶ By adding randomness, we can make the input distribution

irrelevant, making it easier to calculate the average (or
expected) case behavior.
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Randomized Quicksort

▶ We have a random number generator Random(p,r) which
produces numbers between p and r, each with equal probability.
In practice most random number generators produce
pseudo-random numbers.

▶ The selected number is the pivot index.
▶ When analyzing the running time of a randomized algorithm we

take the expected run time over all inputs.
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Randomized Quicksort

Algorithm 3 RandomizedPartition(A,p, r)
Ensure: (same as Partition)

1: i← Random(p, r)
2: exchange A[i]↔ A[r]
3: return Partition(A,p, r)
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Randomized Quicksort

Algorithm 4 RandomizedQuicksort(A,p, r)
Ensure: (same as Quicksort)

1: if p < r then
2: q← RandomizedPartition(A,p, r)
3: RandomizedQuicksort(A,p,q− 1)
4: RandomizedQuicksort(A,q + 1, r)
5: end if
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Rigorous Worst Case Analysis of Quicksort

Let T(n) be the worst case running time for quicksort (or randomized
quicksort). It is described by

T(n) ≤ max
0≤q≤n−1

(T(q) + T(n− q− 1)) + an

for some a > 0.

That is, the worst case happens when, on each recursive call, we pick
the worst pivot, resulting in the worst (maximum) combined run
times on the sub-problems.

We guess that T(n) = O(n2), and now we’ll prove it.
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Rigorous Worst Case Analysis of Quicksort

T(n) ≤ cn2

Proof by induction.

▶ Base case: We must show T(1) ≤ c. Trivial.
▶ Inductive case: We must show T(n) ≤ cn2.
▶ Inductive hypothesis: Assume T(k) ≤ ck2 for all 1 ≤ k < n.
▶ Calculate:

T(n) ≤ max
0≤q≤n−1

(T(q) + T(n− q− 1)) + an

≤ c max
0≤q≤n−1

(
q2 + (n− q− 1)2

)
+ an

▶ The expression
(
q2 + (n− q− 1)2) is a convex function,

achieving a maximum at the endpoints: 0 and n− 1.
▶ In those endpoints the value is (n− 1)2.
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Rigorous Worst Case Analysis of Quicksort

Proof by induction, Cont.

▶ Therefore:
T(n) ≤ max

0≤q≤n−1
(T(q) + T(n− q− 1)) + an

≤ c max
0≤q≤n−1

(
q2 + (n− q− 1)2

)
+ an

≤ cn2 − c(2n− 1) + an
= cn2 − (2c− a)n + c
≤ cn2 − (2c− a)n + cn because n ≥ 1
= cn2 − (c− a)n

▶ We must pick a large enough c so that c ≥ a.
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Rigorous Worst Case Analysis of Quicksort

▶ We just proved an upper bound to the worst case runtime:
T(n) = O(n2).

▶ Previously we have seen a case where the run time is quadratic.
That is, we knew T(n) = Ω(n2).

▶ So when T(n) represents the worst-case performance,
T(n) = Θ(n2).
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Average Case Analysis: Method 1

The average (ie, expected) run time for Randomized-Quicksort on an
array of size n is described by the following equation:

T(n) = 1
n

n−1∑
q=0

(T(q) + T(n− q− 1)) + cn +Θ(1)

=
2
n

n−1∑
q=0

T(q) + cn +Θ(1)

▶ We wrote cn +Θ(1) rather than Θ(n) since we can assume we do
“everything” every time we call Partition.

▶ This is a worst case assumption that allows us to do something
really nice mathematically.
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Average Case Analysis: Method 1

T(n) = 2
n

n−1∑
q=0

T(q) + cn +Θ(1)

nT(n) = 2
n−1∑
q=0

T(q) + cn2 +Θ(n) multiply by n

(n + 1)T(n + 1) = 2
n∑

q=0
T(q) + c(n + 1)2 +Θ(n)

multiply by n + 1
(n + 1)T(n + 1)− nT(n) = 2T(n) + Θ(n) subtract

(n + 1)T(n + 1) = (n + 2)T(n) + Θ(n) simplify
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Average Case Analysis: Method 1

▶ Starting from: (n + 1)T(n + 1) = (n + 2)T(n) + Θ(n)
▶ Divide by (n + 1)(n + 2) to get: T(n+1)

n+2 = T(n)
n+1 +Θ

(
1
n

)
▶ Define g(n) = T(n)

(n+1)

▶ So: g(n + 1) = g(n) + Θ
(

1
n

)
▶ Then: g(n) = Θ

(
n−1∑
k=1

1
k

)
= Θ(logn)

▶ Going back: T(n) = (n + 1)g(n) = Θ(n logn)
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Average Case Analysis: Method 2

▶ The total cost is the sum of the costs of all the calls to
RandomizedPartition.

▶ The cost of a call to RandomizedPartition is
O(#for loop executions), which is O(#comparisons).

▶ The expected cost of RandomizedQuicksort is
O(expected #comparisons).

▶ Notice that once a key xk is chosen as pivot, the elements to its
left will never be compared to the elements to its right.
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Average Case Analysis: Method 2

▶ Consider {xi, xi+1, ..., xj−1, xj}, the set of keys in sorted order.
▶ Any two keys here are compared only if one of them is pivot and

that is the last time they are all in the same partition.
▶ Each key is equally likely to be chosen as the pivot.
▶ xi and xj can be compared only if one of them is pivot and this

will only happen if this is the first pivot from the set
{xi, xi+1, ..., xj−1, xj}.

▶ The probability of this is 2
(j−i+1) .
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Average Case Analysis: Method 2

The expected number of comparisons is:

∑
i<j

2
j − i + 1 =

n−1∑
i=1

n∑
j=i+1

2
j − i + 1

=

n−1∑
i=1

n−i∑
k=1

2
k + 1

≤
n−1∑
i=1

n∑
k=1

2
k

= 2(n− 1)Hn = O(n logn)

where Hn is the nth Harmonic number (see A.7 in the Appendix)
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