
CS624 - Analysis of Algorithms

Sorting

September 30, 2024

Nurit Haspel CS624 - Analysis of Algorithms



A Little More on Sorting

How well can we really do?

Is there a sorting method whose worst case runtime is O(n)?

Obviously we can’t do better than that (why?).

For the class of algorithms we’ve seen so far the answer is no.
The lower bound really is O(n log n).

These sorting algorithms are based on comparisons and can be
modeled as binary decision trees.

Nurit Haspel CS624 - Analysis of Algorithms



A Simple Example

The run of InsertionSort on an array of 3 elements: {a1, a2, a3}:
a1 < a2?

a2 < a3? a1 < a3?

(a1, a2, a3) a1 < a3? (a2, a1, a3) a2 < a3?

(a1, a3, a2) (a3, a1, a2) (a2, a3, a1) (a3, a2, a1)

≤ >

≤ > ≤ >

≤ > ≤ >

Nurit Haspel CS624 - Analysis of Algorithms



Another Simple Example

The run of Quicksort on an array of elements: {a1, a2, a3, a4}, first
partition:

a1 < a4?

a2 < a4? a2 < a4?

a3 < a4? a3 < a4? a3 < a4? a3 < a4?

a1a2a3a4 a1a2a4a3 a1a3a4a2 a1a4a3a2 a2a3a4a1 a3a4a2a1 a3a4a1a2 a4a2a3a1

≤ >

≤ > ≤ >

≤ > ≤ > ≤ > ≤ >

Nurit Haspel CS624 - Analysis of Algorithms



Bound on Sorting Algorithms

Theorem

In a sorting algorithm modeled by a binary decision tree, the
worst-case running time is Ω(n log n).

Proof.

The worst-case running time is bounded below by the depth of the
decision tree. The number of leaves in the decision tree must be
the number of possible permutations, which is n!. The depth of a
binary tree with L leaves is Ω(log L). Therefore the depth of the
decision tree is

Ω(log n!) = Ω(n log n)

Nurit Haspel CS624 - Analysis of Algorithms



Still, Can We Do Better?

When our model is not based on comparisons we can do
better.

Examples: Counting-Sort and BucketSort.

Simple case: We have a set of integers 1..n in some random
order.

How do we sort this?

Nurit Haspel CS624 - Analysis of Algorithms



Counting-Sort

Given n numbers, assume all in the range of 0..k for some k.

It runs in Θ(n + k).

If k = O(n) it runs in linear time.

It first determines, for each number, how many numbers are
smaller or equal to it.

So if for example, 17 elements are smaller or equal to x, then
x is in position 17.

Some modifications have to be made in case of duplicate
values, so they won’t all end up in the same place.

Nurit Haspel CS624 - Analysis of Algorithms



Counting-Sort Pseudo-code

Algorithm 1 Counting-Sort(A,n,k)

1: Allocate B = [1..n] and C = [0..k]
2: for i ← 0 to k do
3: C [i ] = 0
4: end for
5: for j ← 1 to n do
6: C [A[j ]] = C [A[j ]] + 1 // Frequency count
7: end for
8: for i ← 1 to k do
9: C [i ] = C [i ] + C [i − 1] // How many elements ≤ to i

10: end for
11: for j ← n down to 1 do
12: B[C [A[j ]]] = A[j ] // copy A to B in the right order
13: C [A[j ]] = C [A[j ]]− 1 // Handle duplicates
14: end for
15: return B

Nurit Haspel CS624 - Analysis of Algorithms



Counting-Sort Example – 1

2 5 3 0 2 3 0 3A

1 2 3 4 5 6 7 8

2 0 2 3 0 1C

0 1 2 3 4 5

Nurit Haspel CS624 - Analysis of Algorithms



Counting-Sort Example – 2

2 2 4 7 7 8C

0 1 2 3 4 5

Nurit Haspel CS624 - Analysis of Algorithms



Counting-Sort Example – 3

3B

1 2 3 4 5 6 7 8

2 2 4 6 7 8C

0 1 2 3 4 5

Nurit Haspel CS624 - Analysis of Algorithms



Counting-Sort Example – 4

0 3B

1 2 3 4 5 6 7 8

1 2 4 6 7 8C

0 1 2 3 4 5

Nurit Haspel CS624 - Analysis of Algorithms



Bucket Sort Example

Given a set of integers {a1, a2, . . . , an}.
Each integer is in the range of 1...M where M ≥ n.

Create an array A[1..n] where the elements are sets of integers.

Each set is called a bucket.

Each integer in the original sequence will be put in its
appropriate bucket.

Nurit Haspel CS624 - Analysis of Algorithms



Illustration of Bucketsort

⌊
M
n

⌋⌊
2M
n

⌋⌊
3M
n

⌋ ⌊
nM
n

⌋
= M

The largest number bucket A[j ] can hold is
⌊ jM

n

⌋
. Therefore the

index j of the bucket that we want to place the number ak in must
satisfy ⌊(j − 1)M

n

⌋
+ 1 ≤ ak ≤

⌊ jM
n

⌋

Since we always have x − 1 < ⌊x⌋, this yields
(j−1)M

n < ak ≤ jM
n ⇒ j − 1 < akn

M ≤ j ⇒ j =
⌈
akn
M

⌉

Nurit Haspel CS624 - Analysis of Algorithms



Bucketsort analysis

Problem: Elements are not necessarily uniformly distributed in
buckets.

Some buckets are empty, some may contain several elements.

What is the average cost of sorting the buckets?

Suppose we use InsertionSort to sort each bucket (good for
small buckets).

Do not assume that since the average number of elements per
bucket is O(1) it means that the average runtime is O(n).

Nurit Haspel CS624 - Analysis of Algorithms



Bucketsort analysis

If bucket i has ni elements, sorting it takes O(n2i )

We can average over all the buckets.

Since the distribution of elements in buckets is random we can
average on n1 (since it doesn’t matter which bin we pick).

The expected value of n1 is
n∑

j=0
(the probability that j numbers land in bucket 1) · j2

Nurit Haspel CS624 - Analysis of Algorithms



Bucketsort analysis

The probability of j items landing in bucket 1 is the probability
of selecting j items out of n,

(n
j

)
.

The probability of a particular combination is:
(
1
n

)j(
1− 1

n

)n−j
.

The probability of any j elements landing in bucket 1 is:(
1
n

)j(
1− 1

n

)n−j(n
j

)
.

The expected runtime of sorting n1 is then
n∑

j=0

(
1
n

)j(
1− 1

n

)n−j(n
j

)
j2

Nurit Haspel CS624 - Analysis of Algorithms



Bucketsort analysis
This looks like a binomial generating function that has been
differentiated. So let us set:

f (x) =
n∑

j=0

(1
n

)j(
1− 1

n

)n−j
(
n

j

)
x j

Then we have

f ′(x) =
n∑

j=0

(1
n

)j(
1− 1

n

)n−j
(
n

j

)
jx j−1

We can’t just differentiate again, because we would get j(j − 1). So we
multiply by x first:

xf ′(x) =
n∑

j=0

(1
n

)j(
1− 1

n

)n−j
(
n

j

)
jx j

and then we can differentiate:

(
xf ′(x)

)′
=

n∑

j=0

(1
n

)j(
1− 1

n

)n−j
(
n

j

)
j2x j−1

Nurit Haspel CS624 - Analysis of Algorithms



Bucketsort analysis

Let us set g(x) =
(
xf ′(x)

)′
.

Then we see that the expected value of n21 is just g(1).

The closed form of f follows from the binomial theorem:

f (x) =
n∑

j=0

(1
n

)j(
1− 1

n

)n−j
(
n

j

)
x j

=
n∑

j=0

(x
n

)j(
1− 1

n

)n−j
(
n

j

)
=

(
1 +

x − 1

n

)n

Nurit Haspel CS624 - Analysis of Algorithms



Bucketsort analysis

Going back to g:

f ′(x) = n
(
1 +

x − 1

n

)n−1

· 1
n
=

(
1 +

x − 1

n

)n−1

and then

g(x) =
(
xf ′(x)

)′
=

(
x
(
1 +

x − 1

n

)n−1
)′

=
(
1 +

x − 1

n

)n−1

+ (n − 1)x
(
1 +

x − 1

n

)n−2

· 1
n

=
(
1 +

x − 1

n

)n−1

+
(
1− 1

n

)
x
(
1 +

x − 1

n

)n−2

By substituting 1 for x , we get g(1) = 1 +
(
1− 1

n

)
= 2− 1

n
. That is the

expected value of n2
1, and in fact is the expected value of n2

i for any i . In short
– the average time for sorting each bucket in bucketsort is O(1) and the overall
expected runtime is O(n).

Nurit Haspel CS624 - Analysis of Algorithms



So... Why Not Always Bucketsort of Counting Sort?

And what happened to our lower bound?

We are not using a binary decision tree!

This is only because we know something about the input.

Also – we did only average case analysis. What is the worst
case?

Nurit Haspel CS624 - Analysis of Algorithms


