
Medians and Order Statistics
CS 624 — Analysis of Algorithms

October 2, 2024

Nurit Haspel 06 Medians & Order Statistics 1

Midterm Exam 1

▶ Tentative dates: The midterm exam will take place on
Wednesday, October 16, in class.

▶ Covered material: Induction, runtime analysis, heaps, sorting
(mergesort, insertion sort, quicksort, heapsort, lower bounds).

▶ Medians (current topic) is not covered.
▶ The Oct. 14 will be partly a review class.
▶ Prepare your own questions to ask me!

Nurit Haspel 06 Medians & Order Statistics Midterm Exam 1 2

Midterm Exam 1

▶ Probably 4 questions. Assume every topic will be covered.
▶ No books, no computers, no cellphones/smartphones/tablets,

strictly no friends.
▶ You may bring up to 20 pages of handwritten notes.

(That is, 20 pieces of paper, up to letter size.)
No printouts, no photocopies.

Nurit Haspel 06 Medians & Order Statistics Midterm Exam 1 3

Medians and Order Statistics

Definition (Order Statistic)
The ith order statistic is the ith smallest element of a set of n
elements.

In particular:
▶ minimum = 1st order statistic
▶ maximum = nth order statistic
▶ median: “half-way point” of the set

▶ the lower median is at ⌊(n + 1)/2⌋
▶ the upper median is at ⌈(n + 1)/2⌉
▶ same when n is odd, different when n is even
▶ for simplicity, “median” refers to the lower median

Nurit Haspel 06 Medians & Order Statistics Introduction 4

Selection Problem

Definition (Selection Problem)
The selection problem is defined as follows:
▶ Input: A set A of n distinct numbers and a number k, with

1 ≤ k ≤ n.
▶ Output: the element x ∈ A that is larger than exactly k− 1 other

elements of A (that is, the kth order statistic).

Can be solved in O(n logn) time. How?

There are faster, linear-time algorithms.
▶ For the special cases when k = 1 and k = n.
▶ For the general problem.

Nurit Haspel 06 Medians & Order Statistics Introduction 5

Selection Problem

Definition (Selection Problem)
The selection problem is defined as follows:
▶ Input: A set A of n distinct numbers and a number k, with

1 ≤ k ≤ n.
▶ Output: the element x ∈ A that is larger than exactly k− 1 other

elements of A (that is, the kth order statistic).

Can be solved in O(n logn) time. How?

There are faster, linear-time algorithms.
▶ For the special cases when k = 1 and k = n.
▶ For the general problem.

Nurit Haspel 06 Medians & Order Statistics Introduction 5

Minimum and Maximum

The minimum or maximum can be found in Θ(n) time.
▶ Simply scan all the elements and find the smallest/largest.

Nurit Haspel 06 Medians & Order Statistics Introduction 6

Simultaneous Minimum and Maximum

Some applications need to determine both the minimum and
maximum of a set of elements.
▶ Example: Graphics program trying to fit a set of points onto a

rectangular display.

Calculating the minimum and maximum independently requires
2n− 2 comparisons. Can we reduce this number?

max

min

a
?

?

Nurit Haspel 06 Medians & Order Statistics Introduction 7

Simultaneous Minimum and Maximum

max

min

a b?

The algorithm sketch:
▶ maintain min and max elements seen so far
▶ process elements in pairs, compare to get smaller and larger
▶ compare smaller to min and larger to max, update

There are 3 comparisons per pair, and ⌊n/2⌋ pairs.

Nurit Haspel 06 Medians & Order Statistics Introduction 8

Simultaneous Minimum and Maximum

max

min

a b<

?

?

The algorithm sketch:
▶ maintain min and max elements seen so far
▶ process elements in pairs, compare to get smaller and larger
▶ compare smaller to min and larger to max, update

There are 3 comparisons per pair, and ⌊n/2⌋ pairs.

Nurit Haspel 06 Medians & Order Statistics Introduction 8

Simultaneous Minimum and Maximum

Analysis:
▶ For odd n: initialize min and max to A[1]. Pair the remaining

elements. So, number of pairs = ⌊n/2⌋.
▶ For even n: initialize min to the smaller of the first pair and max

to the larger. So, remaining number of pairs = (n− 2)/2 < ⌊n/2⌋.
▶ Total number of comparisons, C ≤ 3⌊n/2⌋.
▶ For odd n: C = 3⌊n/2⌋.
▶ For even n: C = 3(n− 2)/2 + 1 = 3n/2− 2 < 3⌊n/2⌋.

Nurit Haspel 06 Medians & Order Statistics Introduction 9

Finding kth Smallest Element

Can we use a similar method for any order statistic in linear time?
▶ The cost of finding the kth order statistic using either of these

methods is Θ(kn). If k is fixed, this is Θ(n).
▶ If k is not fixed, this is not so good. For instance, suppose we

want to find the median. Then k is n/2, and the cost is Θ(n2),
worse than sorting the array.

Is there an O(n) time (independent of k) algorithm for selecting the
kth order statistic?

Yes:
▶ a simple algorithm with expected O(n) complexity
▶ a variant with worst-case O(n) complexity

Nurit Haspel 06 Medians & Order Statistics Introduction 10

Finding kth Smallest Element

Can we use a similar method for any order statistic in linear time?
▶ The cost of finding the kth order statistic using either of these

methods is Θ(kn). If k is fixed, this is Θ(n).
▶ If k is not fixed, this is not so good. For instance, suppose we

want to find the median. Then k is n/2, and the cost is Θ(n2),
worse than sorting the array.

Is there an O(n) time (independent of k) algorithm for selecting the
kth order statistic? Yes:
▶ a simple algorithm with expected O(n) complexity
▶ a variant with worst-case O(n) complexity

Nurit Haspel 06 Medians & Order Statistics Introduction 10

General Selection Problem
Given: array A of size n and k such that 1 ≤ k ≤ n
▶ If the array A were sorted, we would simply find the kth order

statistic at A[k]. But we don’t actually care if A is completely
sorted, as long as A[k] contains the right element.

▶ That is one of the properties that Quicksort establishes:
Once Partition chooses a pivot and that call to Partition com-
pletes, that pivot never moves again.

▶ We modify Quicksort to eliminate unnecessary work:
We only recur on the side containing k.

▶ In the average case, the cost of the Partition steps should be

n +
n
2 +

n
4 +

n
8 + · · · = 2n

That is, O(n) average-case complexity.
Nurit Haspel 06 Medians & Order Statistics Average-Case Linear Selection 11

Randomized Select

Algorithm 1 RandomizedSelect(A,p, r,krel)

Require: 1 ≤ krel ≤ r − p + 1
1: if p = r then
2: return A[p]
3: end if
4: q← RandomizedPartition(A,p, r)
5: qrel ← q− p + 1
6: if krel = qrel then
7: return A[q]
8: else if krel < qrel then
9: return RandomizedSelect(A,p,q− 1,krel)

10: else
11: return RandomizedSelect(A,q + 1, r,krel − qrel)
12: end if

Nurit Haspel 06 Medians & Order Statistics Average-Case Linear Selection 12

Randomized Select

1 p
1

q
qrel

r n

Notation used in the algorithm RandomizedSelect:
▶ p, q, and r are indices in the original array A.
▶ qrel is the 1-based index of the pivot A[q] in the subarray

A[p . . . r] — that is, relative to the range [p .. r].

Nurit Haspel 06 Medians & Order Statistics Average-Case Linear Selection 13

Analysis

We see that Randomized-Select is divided into 3 cases:
1. qrel < krel, so we search for the (krel − qrel)

th element in
A[q + 1 .. r]

2. qrel = krel, so we found it, and we return A[q]
3. qrel > krel, so we search for the kth

rel element in A[p .. q− 1]

Nurit Haspel 06 Medians & Order Statistics Average-Case Linear Selection 14

Analysis

Worst-case complexity:
▶ Θ(n2) — (Like Quicksort) We could get unlucky and always recur

on a subarray that is only one element smaller.

Average-case complexity:
▶ Θ(n) — Intuition: Because the pivot is chosen at random, we

expect that we get rid of half of the list each time we choose a
random pivot q.

▶ Why Θ(n) and not Θ(n logn)?

Nurit Haspel 06 Medians & Order Statistics Average-Case Linear Selection 15

Average-Case Analysis

Let C(n, i) denote the average running time of
RandomizedSelect(A,1,n, i).
Let T(n) denote the worst average-case time of computing any ith

element of an array of size n using RandomizedSelect. That is:

T(n) = max {C(n, i) | 1 ≤ i ≤ n}

We will prove that T(n) = O(n).

Nurit Haspel 06 Medians & Order Statistics Average-Case Linear Selection 16

Average-Case Analysis
The cost of Partition is O(n), so we can bound it by an for some a.
Therefore:

C(n, i) ≤ an +
1
n

 i−1∑
q=1

C(n− q, i− q) + 0 +

n∑
q=i+1

C(q− 1, i)


▶ The call to RandomizedSelect has two parts:

▶ the Partition call, whose cost is an, and
▶ the recursive call, whose cost varies depending on the location of

the pivot which we denote q (really should be qrel).
▶ We assume that the pivot is equally likely to wind up in any of the n

positions in the array, and we average over all those n possibilities.
▶ Inside the parentheses is the sum of the n possible pivots q:

▶ the first term is if the pivot falls before i
▶ the second term is if the pivot is exactly i (we just return)
▶ the third term is if the pivot falls after i

Nurit Haspel 06 Medians & Order Statistics Average-Case Linear Selection 17

Average-Case Analysis

C(n, i) ≤ an +
1
n

 i−1∑
q=1

C(n− q, i− q) + 0 +

n∑
q=i+1

C(q− 1, i)


≤ an +

1
n

 i−1∑
q=1

T(n− q) +
n∑

q=i+1
T(q− 1)


≤ max

an +
1
n

 i−1∑
q=1

T(n− q) +
n∑

q=i+1
T(q− 1)

 ∣∣∣∣∣∣ 1 ≤ i ≤ n


= an +max

1
n

 i−1∑
q=1

T(n− q) +
n∑

q=i+1
T(q− 1)

 ∣∣∣∣∣∣ 1 ≤ i ≤ n


Nurit Haspel 06 Medians & Order Statistics Average-Case Linear Selection 18

Average-Case Analysis — Explanation

▶ Note: i is a separate variable, different from the i in the
left-hand side C(n, i). In fact, in the final inequality for C(n, i),
the right-hand side no longer depends on i.

▶ Substituting in the definition of T(n), we get:

T(n) = max {C(n, i) | 1 ≤ i ≤ n}

≤ an +max

1
n

 i−1∑
q=1

T(n− q) +
n∑

q=i+1
T(q− 1)

 ∣∣∣∣∣∣ 1 ≤ i ≤ n


We’ll guess that T(n) = O(n) and prove by induction that
T(n) = Cn satisfies the inequality above.

Nurit Haspel 06 Medians & Order Statistics Average-Case Linear Selection 19

Average-Case Analysis — Proof by Induction

Theorem
Suppose that

T(n) ≤ an +max

1
n

 i−1∑
q=1

T(n− q) +
n∑

q=i+1
T(q− 1)

 ∣∣∣∣∣∣ 1 ≤ i ≤ n


Then T(n) ≤ Cn for some C > 0.

Proof.
Base Case: We can arrange that this is true for n = 2 by making sure
(when we finally figure out an appropriate value for C) that C ≥ a.
Inductive Case: We must show that T(n) ≤ Cn.
IH: Assume that T(k) ≤ Ck for all 1 ≤ k < n.

Nurit Haspel 06 Medians & Order Statistics Average-Case Linear Selection 20

Average-Case Analysis — Proof by Induction

Proof.
We start with the recursive inequality:

T(n) ≤ an +max

1
n

 i−1∑
q=1

T(n − q) +
n∑

q=i+1
T(q − 1)

 ∣∣∣∣∣∣ 1 ≤ i ≤ n


≤ an +max

C
n

 i−1∑
q=1

(n − q) +
n∑

q=i+1
(q − 1)

 ∣∣∣∣∣∣ 1 ≤ i ≤ n

 (by IH)

= an +max

{
C
n

(
(i − 1)n − (i − 1)i

2 +
(n − 1)n

2 − (i − 1)i
2

) ∣∣∣∣ 1 ≤ i ≤ n
}

= an +max

{
C
n

(
(i − 1)n − (i − 1)i + (n − 1)n

2

) ∣∣∣∣ 1 ≤ i ≤ n
}

Nurit Haspel 06 Medians & Order Statistics Average-Case Linear Selection 21

Average-Case Analysis — Proof by Induction

Proof.

▶ We have to find the maximum of (i− 1)n− (i− 1)i
= −i2 + (n + 1)i− n between i = 1 and i = n. This is a concave
function of i; in fact, it’s an “upside-down parabola”, and so its
maximum occurs where the derivative is 0.

▶ The derivative is −2i + (n + 1) and this is 0 when i = n+1
2 .

▶ So the maximum value of the expression (i− 1)n− (i− 1)i,
which is also (i− 1)(n− i), is(n + 1

2 − 1
)(

n− n + 1
2

)
=

n− 1
2

n− 1
2 =

(n− 1)2

4

Nurit Haspel 06 Medians & Order Statistics Average-Case Linear Selection 22

Average-Case Analysis — Proof by Induction

Proof.
So we have

T(n) ≤ an +
C
n

((n− 1)2

4 +
(n− 1)n

2
)

= an +
C
n

(n2 − 2n + 1
4 +

n2 − n
2

)
= an +

C
n

(3n2

4 − n +
1
4
)

= an + C
(3n

4 − 1 +
1

4n

)
≤ an + C3n

4 for n ≥ 1

=

(
a +

3
4C

)
n

Nurit Haspel 06 Medians & Order Statistics Average-Case Linear Selection 23

Average-Case Analysis — Proof by Induction

Proof.
So we can fix C finally so that
▶ C ≥ a, and
▶ a + (3/4)C ≤ C

For instance, C = 4a would work.
Then we get T(n) ≤ Cn and we are done.

Nurit Haspel 06 Medians & Order Statistics Average-Case Linear Selection 24

Selection in Worst-Case Linear-Time

The previous algorithm has expected O(n) running time, but the
worst case is O(n2), like Quicksort.

There is a variant that runs in O(n) time in the worst case:
▶ instead of picking a random pivot, use the median of medians
▶ divide the input range A[p .. r] into ⌊n/5⌋ groups of 5
▶ sort each group to find its median
▶ recursively find the median of the group medians
▶ that is a good enough pivot to guarantee linear complexity

Nurit Haspel 06 Medians & Order Statistics Worst-Case Linear Selection 25

⇒ m

Let m be the median of medians. In each full column to the left or
right of m, 3 of the 5 elements are < or > to m, respectively.

Nurit Haspel 06 Medians & Order Statistics Worst-Case Linear Selection 26

⇒ m

Let m be the median of medians. In each full column to the left or
right of m, 3 of the 5 elements are < or > to m, respectively.

Nurit Haspel 06 Medians & Order Statistics Worst-Case Linear Selection 26

Analysis of Select

Let T(n) be the running time of Select using median of medians:
▶ sort each group of 5 to find its median — O(52)⌊n/5⌋ = Θ(n)
▶ recursively find the median of the group medians — T(⌊n/5⌋)
▶ partition using the median of medians as pivot — Θ(n)
▶ recur on one of the partitions — ≤ T(7n/10) (?!)

To summarize:

T(n) ≤ T(n/5) + T(7n/10) + Θ(n)

We can use guess and prove to show that this is O(n).
We also know T(n) = Ω(n), so we get T(n) = Θ(n).

Nurit Haspel 06 Medians & Order Statistics Worst-Case Linear Selection 27

	Introduction
	Average-Case Linear Selection
	Worst-Case Linear Selection

