Medians and Order Statistics CS 624 — Analysis of Algorithms

October 2, 2024

- ▶ **Tentative dates:** The midterm exam will take place on Wednesday, October 16, in class.
- \triangleright Covered material: Induction, runtime analysis, heaps, sorting (mergesort, insertion sort, quicksort, heapsort, lower bounds).
- \blacktriangleright Medians (current topic) is not covered.
- \blacktriangleright The Oct. 14 will be partly a review class.
- ▶ Prepare your own questions to ask me!
- ▶ Probably 4 questions. Assume every topic will be covered.
- ▶ No books, no computers, no cellphones/smartphones/tablets, strictly no friends.
- ▶ You may bring up to 20 pages of **handwritten notes**. (That is, 20 pieces of paper, up to letter size.) **No printouts, no photocopies.**

Definition (Order Statistic)

The *i th* **order statistic** is the *i th* smallest element of a set of *n* elements.

In particular:

- \blacktriangleright **minimum** = 1^{st} order statistic
- **maximum** = n^{th} order statistic
- ▶ **median**: "half-way point" of the set
	- **►** the **lower median** is at $|(n+1)/2|$
	- \blacktriangleright the **upper median** is at $\lceil (n+1)/2 \rceil$
	- \blacktriangleright same when *n* is odd, different when *n* is even
	- \blacktriangleright for simplicity, "median" refers to the lower median

Definition (Selection Problem)

The **selection problem** is defined as follows:

- \blacktriangleright Input: A set A of *n* **distinct** numbers and a number *k*, with $1 \leq k \leq n$.
- **►** Output: the element $x \in A$ that is larger than exactly $k 1$ other elements of A (that is, the k^{th} order statistic).

Can be solved in $O(n \log n)$ time. How?

Definition (Selection Problem)

The **selection problem** is defined as follows:

- \blacktriangleright Input: A set A of *n* **distinct** numbers and a number *k*, with $1 \leq k \leq n$.
- ▶ Output: the element *x* ∈ *A* that is larger than exactly *k* − 1 other elements of A (that is, the k^{th} order statistic).

Can be solved in $O(n \log n)$ time. How?

There are faster, linear-time algorithms.

- \triangleright For the special cases when $k = 1$ and $k = n$.
- \blacktriangleright For the general problem.

The minimum or maximum can be found in $\Theta(n)$ time.

 \triangleright Simply scan all the elements and find the smallest/largest.

Some applications need to determine both the minimum and maximum of a set of elements.

▶ Example: Graphics program trying to fit a set of points onto a rectangular display.

Calculating the minimum and maximum *independently* requires 2*n* − 2 comparisons. Can we reduce this number?

Simultaneous Minimum and Maximum

The algorithm sketch:

- ▶ maintain *min* and *max* elements seen so far
- ▶ process elements in *pairs*, compare to get smaller and larger
- ▶ compare smaller to *min* and larger to *max*, update

There are 3 comparisons per pair, and $|n/2|$ pairs.

Simultaneous Minimum and Maximum

The algorithm sketch:

- ▶ maintain *min* and *max* elements seen so far
- ▶ process elements in *pairs*, compare to get smaller and larger
- ▶ compare smaller to *min* and larger to *max*, update

There are 3 comparisons per pair, and $|n/2|$ pairs.

Analysis:

- \blacktriangleright For odd *n*: initialize *min* and *max* to A[1]. Pair the remaining elements. So, number of pairs $= |n/2|$.
- ▶ For even *n*: initialize *min* to the smaller of the first pair and *max* to the larger. So, remaining number of pairs $= (n-2)/2 < |n/2|$.
- ▶ Total number of comparisons, *C* ≤ 3⌊*n*/2⌋.
- ▶ For odd *n*: $C = 3/n/2$.
- ▶ For even *n*: $C = 3(n-2)/2 + 1 = 3n/2 2 < 3/n/2$.

Can we use a similar method for any order statistic in linear time?

- \blacktriangleright The cost of finding the k^{th} order statistic using either of these methods is $\Theta(kn)$. If *k* is fixed, this is $\Theta(n)$.
- ▶ If *k* is not fixed, this is not so good. For instance, suppose we want to find the median. Then k is $n/2$, and the cost is $\Theta(n^2)$, worse than sorting the array.

Is there an *O*(*n*) time (independent of *k*) algorithm for selecting the *k th* order statistic?

Can we use a similar method for any order statistic in linear time?

- \blacktriangleright The cost of finding the k^{th} order statistic using either of these methods is $\Theta(kn)$. If *k* is fixed, this is $\Theta(n)$.
- ▶ If *k* is not fixed, this is not so good. For instance, suppose we want to find the median. Then k is $n/2$, and the cost is $\Theta(n^2)$, worse than sorting the array.

Is there an *O*(*n*) time (independent of *k*) algorithm for selecting the *k th* order statistic? Yes:

- \blacktriangleright a simple algorithm with expected $O(n)$ complexity
- \blacktriangleright a variant with worst-case $O(n)$ complexity

General Selection Problem

Given: array A of size *n* and *k* such that $1 \leq k \leq n$

- \blacktriangleright If the array A were sorted, we would simply find the k^{th} order statistic at *A*[*k*]. But we don't actually care if *A* is *completely* sorted, as long as *A*[*k*] contains the right element.
- \blacktriangleright That is one of the properties that Quicksort establishes: *Once Partition chooses a pivot and that call to Partition completes, that pivot never moves again.*
- \triangleright We modify Quicksort to eliminate unnecessary work: We only recur on the side containing *k*.
- \blacktriangleright In the average case, the cost of the Partition steps should be

$$
n+\frac{n}{2}+\frac{n}{4}+\frac{n}{8}+\cdots=2n
$$

That is, *O*(*n*) *average-case* complexity.

Algorithm 1 RandomizedSelect (A, p, r, k_{rel})

Require: $1 \leq k_{rel} \leq r - p + 1$ 1: **if** $p = r$ **then** 2: **return** *A*[*p*] 3: **end if** 4: $q \leftarrow$ Randomized Partition (A, p, r) 5: $q_{\text{rel}} \leftarrow q - p + 1$ 6: **if** $k_{\text{rel}} = q_{\text{rel}}$ then 7: **return** *A*[*q*] 8: **else if** $k_{\text{rel}} < q_{\text{rel}}$ then 9: **return** RandomizedSelect $(A, p, q-1, k_{rel})$ 10: **else** 11: **return** RandomizedSelect $(A, q + 1, r, k_{rel} - q_{rel})$

12: **end if**

Notation used in the algorithm RandomizedSelect:

- ▶ *p*, *q*, and *r* are indices in the original array *A*.
- ρ_{rel} is the 1-based index of the pivot $A[q]$ in the subarray $A[p \dots r]$ — that is, *relative* to the range $[p \dots r]$.

We see that Randomized-Select is divided into 3 cases:

- 1. $\,q_\mathrm{rel} < k_\mathrm{rel}$, so we search for the $(k_\mathrm{rel} q_\mathrm{rel})^{th}$ element in $A[q + 1.. r]$
- 2. $q_{rel} = k_{rel}$, so we found it, and we return $A[q]$
- $3.~q_{\rm rel} > k_{\rm rel}$, so we search for the $k_{\rm rel}^{th}$ element in $A[p\mathinner{..} q-1]$

Worst-case complexity:

 \blacktriangleright $\Theta(n^2)$ — (Like Quicksort) We could get unlucky and always recur on a subarray that is only one element smaller.

Average-case complexity:

- \blacktriangleright $\Theta(n)$ Intuition: Because the pivot is chosen at random, we expect that we get rid of half of the list each time we choose a random pivot *q*.
- \blacktriangleright Why $\Theta(n)$ and not $\Theta(n \log n)$?

Let $C(n, i)$ denote the average running time of RandomizedSelect $(A, 1, n, i)$.

Let $T(n)$ denote the worst average-case time of computing *any* i^{th} element of an array of size *n* using RandomizedSelect. That is:

$$
T(n) = \max \left\{ C(n,i) \mid 1 \leq i \leq n \right\}
$$

We will prove that $T(n) = O(n)$.

Average-Case Analysis

The cost of Partition is *O*(*n*), so we can bound it by *an* for some *a*. Therefore:

$$
C(n,i) \le an + \frac{1}{n} \left(\sum_{q=1}^{i-1} C(n-q,i-q) + 0 + \sum_{q=i+1}^{n} C(q-1,i) \right)
$$

▶ The call to RandomizedSelect has two parts:

- \blacktriangleright the Partition call, whose cost is an , and
- \triangleright the recursive call, whose cost varies depending on the location of the pivot which we denote q (really should be q_{rel}).
- \blacktriangleright We assume that the pivot is equally likely to wind up in any of the n positions in the array, and we average over all those *n* possibilities.
- \blacktriangleright Inside the parentheses is the sum of the *n* possible pivots *q*:
	- \blacktriangleright the first term is if the pivot falls before i
	- \blacktriangleright the second term is if the pivot is exactly *i* (we just return)
	- \blacktriangleright the third term is if the pivot falls after i

Average-Case Analysis

$$
C(n,i) \leq an + \frac{1}{n} \left(\sum_{q=1}^{i-1} C(n-q, i-q) + 0 + \sum_{q=i+1}^{n} C(q-1, i) \right)
$$

$$
\leq an + \frac{1}{n} \left(\sum_{q=1}^{i-1} T(n-q) + \sum_{q=i+1}^{n} T(q-1) \right)
$$

$$
\leq \max \left\{ an + \frac{1}{n} \left(\sum_{q=1}^{i-1} T(n-q) + \sum_{q=i+1}^{n} T(q-1) \right) \middle| 1 \leq i \leq n \right\}
$$

$$
= an + \max \left\{ \frac{1}{n} \left(\sum_{q=1}^{i-1} T(n-q) + \sum_{q=i+1}^{n} T(q-1) \right) \middle| 1 \leq i \leq n \right\}
$$

- \blacktriangleright Note: *i* is a separate variable, different from the *i* in the left-hand side $C(n, i)$. In fact, in the final inequality for $C(n, i)$, the right-hand side no longer depends on *i*.
- \blacktriangleright Substituting in the definition of $T(n)$, we get:

$$
T(n) = \max \left\{ C(n, i) \mid 1 \leq i \leq n \right\}
$$

$$
\leq a n + \max \left\{ \frac{1}{n} \left(\sum_{q=1}^{i-1} T(n-q) + \sum_{q=i+1}^{n} T(q-1) \right) \middle| 1 \leq i \leq n \right\}
$$

We'll guess that $T(n) = O(n)$ and prove by induction that $T(n) = Cn$ satisfies the inequality above.

Average-Case Analysis — Proof by Induction

Theorem

Suppose that

$$
T(n) \leq a n + \max \left\{ \frac{1}{n} \left(\sum_{q=1}^{i-1} T(n-q) + \sum_{q=i+1}^{n} T(q-1) \right) \middle| 1 \leq i \leq n \right\}
$$

Then
$$
T(n) \leq Cn
$$
 for some $C > 0$.

Proof.

Base Case: We can arrange that this is true for $n = 2$ by making sure (when we finally figure out an appropriate value for *C*) that $C > a$. **Inductive Case:** We must show that $T(n) < C_n$. **IH:** Assume that $T(k) < Ck$ for all $1 \leq k \leq n$.

Proof.

We start with the recursive inequality:

$$
T(n) \leq an + \max \left\{ \frac{1}{n} \left(\sum_{q=1}^{i-1} T(n-q) + \sum_{q=i+1}^{n} T(q-1) \right) \middle| 1 \leq i \leq n \right\}
$$

\n
$$
\leq an + \max \left\{ \frac{C}{n} \left(\sum_{q=1}^{i-1} (n-q) + \sum_{q=i+1}^{n} (q-1) \right) \middle| 1 \leq i \leq n \right\}
$$

\n
$$
= an + \max \left\{ \frac{C}{n} \left((i-1)n - \frac{(i-1)i}{2} + \frac{(n-1)n}{2} - \frac{(i-1)i}{2} \right) \middle| 1 \leq i \leq n \right\}
$$

\n
$$
= an + \max \left\{ \frac{C}{n} \left((i-1)n - (i-1)i + \frac{(n-1)n}{2} \right) \middle| 1 \leq i \leq n \right\}
$$

Proof.

- ▶ We have to find the maximum of $(i 1)n (i 1)i$ $\bar{z} = -i^2 + (n+1)i - n$ between $i=1$ and $i=n.$ This is a concave function of *i*; in fact, it's an "upside-down parabola", and so its maximum occurs where the derivative is 0.
- ▶ The derivative is $-2i + (n + 1)$ and this is 0 when $i = \frac{n+1}{2}$ $\frac{+1}{2}$.
- ▶ So the maximum value of the expression $(i 1)n (i 1)i$, which is also $(i - 1)(n - i)$, is

$$
\Big(\frac{n+1}{2}-1\Big)\Big(n-\frac{n+1}{2}\Big)=\frac{n-1}{2}\frac{n-1}{2}=\frac{(n-1)^2}{4}
$$

Average-Case Analysis — Proof by Induction

Proof.

So we have

$$
T(n) \leq an + \frac{C}{n} \left(\frac{(n-1)^2}{4} + \frac{(n-1)n}{2} \right)
$$

= $an + \frac{C}{n} \left(\frac{n^2 - 2n + 1}{4} + \frac{n^2 - n}{2} \right)$
= $an + \frac{C}{n} \left(\frac{3n^2}{4} - n + \frac{1}{4} \right)$
= $an + C \left(\frac{3n}{4} - 1 + \frac{1}{4n} \right)$
 $\leq an + C \frac{3n}{4}$ for $n \geq 1$
= $\left(a + \frac{3}{4}C \right)n$

Proof.

So we can fix *C* finally so that

 \blacktriangleright $C > a$, and

$$
\blacktriangleright a + (3/4)C \leq C
$$

For instance, $C = 4a$ would work. Then we get $T(n) \leq Cn$ and we are done. The previous algorithm has *expected O*(*n*) running time, but the worst case is $O(n^2)$, like Quicksort.

There is a variant that runs in $O(n)$ time in the worst case:

- ▶ instead of picking a random pivot, use the **median of medians**
- ▶ divide the input range $A[p \dots r]$ into $|n/5|$ groups of 5
- \triangleright sort each group to find its median
- \triangleright recursively find the median of the group medians
- \triangleright that is a good enough pivot to guarantee linear complexity

Let *m* be the median of medians. In each *full* column to the left or right of m , 3 of the 5 elements are $<$ or $>$ to m , respectively.

Let *T*(*n*) be the running time of Select using median of medians:

- ▶ sort each group of 5 to find its median $-O(5^2) \lfloor n/5 \rfloor = \Theta(n)$
- ▶ recursively find the median of the group medians $-T(|n/5|)$
- \blacktriangleright partition using the median of medians as pivot $-\Theta(n)$
- ▶ recur on one of the partitions $-$ < $T(Tn/10)$ (?!)

To summarize:

$$
T(n) \leq T(n/5) + T(7n/10) + \Theta(n)
$$

We can use guess and prove to show that this is *O*(*n*). We also know $T(n) = \Omega(n)$, so we get $T(n) = \Theta(n)$.