Binary Search Trees CS 624 — Analysis of Algorithms

October 7, 2024

For the next few slides, "graph" means "undirected graph".¹

Definitions (Path, Simple Path)

A <mark>path</mark> in a graph is a sequence v_0,v_1,v_2,\ldots,v_n where each v_j is a vertex in the graph and where each v_i and v_{i+1} are joined by an edge. The **length** of the path $v_0, v_1, v_2, \ldots, v_n$ is *n*. A path can have length 0. A path in a graph is **simple** iff it contains no vertex more than once.

Usually we write $v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_n$ to denote a path.

 1 See also Appendix B.4 (Graphs) and B.5 (Trees) in the textbook.

Definitions (Loop, Simple Loop)

A **loop**² is a path with at least one edge that begins and ends at the same vertex.

- A loop $v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_k$ is **simple** iff
	- 1. $k > 3$ (that is, there are at least 4 vertices on the path), and
	- 2. it contains no vertex more than once, except of course for the first and last vertices, $v_0 = v_k$, and
	- 3. that (first and last) vertex occurs exactly twice

The definition of simple loop excludes trivial loops like $v_0 \rightarrow v_1 \rightarrow v_0$ and $v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow v_1 \rightarrow v_0$.

²The textbook calls this a cycle.

Definition (Tree)

A **tree** is a undirected graph that contains no simple loops.

Definition (Rooted Tree)

A **rooted tree** is a tree with a distinguished vertex called the **root**.

Definitions (Ancestor, Descendant, Parent, Child)

Let *T* be a rooted tree with root *r*, and let *x* and *y* be vertices in *T* (and either or both of them might be *r*).

- If there is a simple path from r through x to y, we say that x is an **ancestor** of *y* and *y* is a **descendant** of *x*.
- \blacktriangleright Furthermore, if the part of the path from x to y consists of exactly one edge, we say that x is the **parent** of y and y is a **child** of x.

Note that a vertex is both an ancestor and a descendant of itself. But a vertex cannot be its own parent.

Binary Trees

Recall from **Lecture 03**:

Definition (Binary Tree)

A **binary tree** is either

- ▶ a **node** with two children, called *left* and *right*, which are also binary trees, and optionally a *data* field; or
- \blacktriangleright NIL, representing the empty tree

Reminder, tree traversal (any binary tree):

▶ **preorder traversal**

- 1. visit the node itself *first*
- 2. traverse the left child
- 3. traverse the right child

▶ **inorder traversal**

- 1. traverse the left child
- 2. visit the node itself
- 3. traverse the right child

▶ **postorder traversal**

- 1. traverse the left child
- 2. traverse the right child
- 3. visit the node itself *last*

Traversal Algorithms

Algorithm 1 Preorder-Tree-Walk(*x*)

- 1: **if** $x \neq \text{NIL}$ **then**
- 2: $\text{visit}(x)$
- 3: Preorder-Tree-Walk(left(*x*))
- 4: Preorder-Tree-Walk(right(*x*))
- 5: **end if**

Algorithm 3 Postorder-Tree-Walk (x)

- 1: **if** $x \neq \text{NIL}$ **then**
- 2: Postorder-Tree-Walk $(\text{left}(x))$
- 3: Postorder-Tree-Walk(right (x))
- 4: $\text{visit}(x)$
- 5: **end if**

Algorithm 2 Inorder-Tree-Walk (x)

- 1: **if** $x \neq \text{NIL}$ **then**
- 2: Inorder-Tree-Walk $(\text{left}(x))$
- 3: $\text{visit}(x)$
- 4: Inorder-Tree-Walk(right(*x*))
- 5: **end if**

Running Times of Traversal Algorithm

Theorem

If x is the root of a binary tree with n nodes, then each of the above traversals takes Θ(*n*) *time.*

Proof.

Let us define:

- \blacktriangleright *c* = time for the test $x \neq nil$
- \blacktriangleright *v* = time for the call to visit x
- \blacktriangleright $T(k)$ = time for the call to traverse a tree with k nodes

Then certainly we have

- 1. $T(0) = c$ and if the tree with *n* nodes has a right child with *k* nodes (so its left child must have $n - k - 1$ nodes), then
- 2. $T(n) = c + T(k) + T(n k 1) + v$

We can show that $T(n) = (2c + v)n + c$.

Г

Definition

A **binary search tree** (**BST**) is a binary tree with data including a comparison key, where every node *x* satisfies the BST properties:

- 1. If y is a node on the left of x, $\text{key}[y] < \text{key}[x]$.
- 2. If y is a node on the right of x, $\text{key}[y] > \text{key}[x]$.

Search

Recursive version

Iterative version

Algorithm 5 TreeSearch (x, k) 1: while $x \neq N/L$ and $k \neq \text{key}[x]$ do 2: **if** $k < \text{key}[x]$ **then** 3: $x \leftarrow \text{left}[x]$ 4: **else** 5: $x \leftarrow \text{right}[x]$ 6: **end if** 7: **end while**

8: **return** *x*

The running time is $O(h)$, where h is the height of the tree.

The running time is $O(h)$, where h is the height of the tree.

Algorithm 8 TreeSuccessor (x)

- 1: **if** right $[x] \neq$ NIL **then**
- 2: **return** TreeMinimum(right[*x*])
- 3: **end if**

```
4: y \leftarrow \text{parent}[x]5: while y \neq N/L and x = \text{right}[y] do
```
- 6: $x \leftarrow y$
- 7: $y \leftarrow \text{parent}[x]$
- 8: **end while**
- 9: **return** *y*
	- \blacktriangleright The running time of TreeSuccessor on a tree of height *h* is again $O(h)$, since the algorithm consists on following a path from a node to its successor, and the maximum path length is *h*.
	- \triangleright What happens when we apply this procedure to the node in the figure above whose key is 20?

TreePredecessor runs in a similar fashion with a similar running time.

Theorem

The dynamic-set operations Search, Minimum, Maximum, Successor, and Predecessor can be made to run in O(*h*) *time on a binary search tree of height h.*

Insert

Algorithm 9 TreeInsert (T, z)

1: $\nu \leftarrow \text{NIL}$ 2: $x \leftarrow \text{Root}[T]$ 3: while $x \neq \text{NIL}$ do 4: $y \leftarrow x$ 5: **if** key[z] \lt key[x] **then**
6: $x \leftarrow \text{left}[x]$ $x \leftarrow \text{left}[x]$ 7: **else** $x \leftarrow \text{right}[x]$ 9: **end if** 10: **end while** 11: $\text{parent}[z] \leftarrow y$ 12: **if** $y == \text{NIL}$ /* only if *T* was empty */ **then** 13: Root $[T] \leftarrow z$ 14: **else if** $\text{key}[z] < \text{key}[y]$ then 15: left[y] \leftarrow *z* 16: **else** 17: $\operatorname{right}[y] \leftarrow z$ 18: **end if**

Lines 1–10:

- \blacktriangleright *x* is the "lead explorer". for where *z* ought to be
- \blacktriangleright *y* lags behind by one step
- \blacktriangleright when *x* becomes NIL, *y* is the last node on the path to *z*'s destination (if non-empty)

Lines 11–18:

 \blacktriangleright insert *z* into the tree at " x "

Insert Example

Obviously, Insert runs in *O*(*h*) time on a tree of height *h*

▶ Deleting a node is more complicated.

If the node is buried within the tree, we will have to move some of the other nodes around.

- ▶ There are three cases to consider when deleting a node *d*:
	- 1. d is a leaf
	- 2. *d* has one child
	- 3. *d* has two children

Delete Examples

- \triangleright Case I *d* is a leaf. This case is trivial. Just delete the node. This amounts to figuring out which child it is of its parent, and making the corresponding child pointer nil.
- \triangleright Case II: *d* has one child. In this case, delete *d* and "splice" its child to its parent – that is, make the parent's child pointer that formerly pointed to *d* now point to *d*'s child, and make that child's parent pointer now point to *d*'s parent.
- \triangleright Case III: *d* has two children. In this case we can't simply move one of the children of *d* into the position of *d*. What we need to do is find *d*'s successor and replace *d* with it. Then delete *d*'s successor. Since the successor has at most one child (why?) then we revert to case I or II.

An algorithm for building a binary search tree from an array *A*[1 .. *n*]:

Algorithm 10 BuildBST(*A*)

- 1: $T \leftarrow$ Create Empty Tree
- 2: **for** $i \leftarrow 1$ **to** n **do**
- 3: TreeInsert $(T, A[i])$

4: **end for**

- \blacktriangleright What is the running time?
- ▶ Worst case: array already sorted, quadratic
- ▶ Best case: looks like $O(n \log n)$
- \blacktriangleright What does it remind us of?

 \blacktriangleright *pivot* \leftarrow *A*[*p*]

- \blacktriangleright Let *L* be the sequence of elements of $A[p+1]$. *q* that are less than the pivot, in the order they appear in *A*
- \blacktriangleright Let *U* be the sequence of elements of $A[p+1..q]$ that are greater than pivot, in the order they appear in *A*
- \blacktriangleright Rearrange the elements in $A[p \ldots q]$ so that they appear like this:

L pivot U

 \triangleright This may require more time than the original partition but not asymptotically more.

- \triangleright Show that the comparisons needed to build a BST from an array *A*[1 .. *n*] are exactly the same comparisons needed to do quicksort on the array, using ModifiedPartition.
- ▶ **Hint:** The comparisons in quicksort are against the pivot elements and the successive pivot elements are the successive elements added to the BST.

Running Time for Constructing a BST

- \blacktriangleright We know that the average time for quicksort is $\Theta(nlogn)$.
- ▶ What is the "average time" for building a BST?
- \blacktriangleright It is the average over all possible permutations of the input array.
- \blacktriangleright This is exactly what we get with randomized quicksort.

Theorem

The average time for constructing a BST is Θ(*nlogn*)*.*

- \blacktriangleright The average search time in a BST is h, the height of a tree.
- \triangleright What is the average height of a BST?
- \triangleright We know the search time is the depth of a node.
- \triangleright Which is the number of comparisons we make when inserting the node into the tree.
- \triangleright We see that the total expected number of comparisons is $O(n \log n)$.
- \triangleright So the average number of comparisons is $O(\log n)$ per node.
- \blacktriangleright The average cost for search in a randomly build BST is therefore $O(\log n)$.
- \triangleright There may be longer paths $-$ in a linear tree the average search time is $O(n)$.
- \blacktriangleright However, the average height of a randomly build BST is $O(\log n)$.

Running Time for Searching a BST

- \blacktriangleright Let X_n be a random variable whose value is the height of a binary search tree on *n* keys
- \blacktriangleright Let P_n be the set of all permutations of those *n* keys. (So the number of elements of P_n is $n!$)
- \blacktriangleright Let π to denote a permutation in P_n . X_n is actually a function on *Pn*.
- $▶$ Its value $X_n(\pi)$ when applied to a permutation $\pi \in P_n$ is the height of the binary search tree built from that permutation π
- \blacktriangleright We want to find $E(X_n)$, the *expectation* of X_n .
- ▶ This is by definition $\sum_{\pi \in P_n} p(\pi) X_n(\pi)$ where $p(\pi)$ denotes the probability of the permutation π .
- ▶ Assuming that all permutations have equal probability, $p(\pi) = \frac{1}{n!}$ for all π , and so $E(X_n) = \frac{1}{n!}\sum_{\pi \in P_n} X_n(\pi)$

Note on Distribution

If *A* and *B* are two random variables on the same space P_n , then

$$
E(A + B) = \sum_{\pi \in P_n} p(\pi) (A(\pi) + B(\pi))
$$

=
$$
\sum_{\pi \in P_n} p(\pi) A(\pi) + \sum_{\pi \in P_n} p(\pi) B(\pi)
$$

=
$$
E(A) + E(B)
$$

Note that $\max\{A, B\}$ is also a random variable on P_n – its value at π is just $\max\{A(\pi),B(\pi)\}$. And we have the useful inequality

$$
E\left(\max\{A,B\}\right) = \sum_{\pi \in P_n} p(\pi) \max\{A(\pi), B(\pi)\}
$$

$$
\leq \sum_{\pi \in P_n} p(\pi) \big(A(\pi) + B(\pi)\big)
$$

$$
= E(A + B) = E(A) + E(B)
$$

- $▶$ Consider a permutation π . The root of the tree will be the first element of π .
- \triangleright Suppose the root has position k in the sorted list of keys.
- ▶ That means that there will be $k-1$ keys less than it and $n-k$ keys greater than it.
- $▶$ So the left subtree will have $k-1$ elements and the right subtree will have $n - k$ elements.
- ▶ Those elements are also chosen randomly from sets of size *k* − 1 and *n* − *k* respectively, so we have

$$
X_n(\pi) = 1 + \max\{X_{k-1}(\pi), X_{n-k}(\pi)\}
$$

 \blacktriangleright This is our fundamental recursion.

 \triangleright Since each value of k is chosen with the same probability (that probability being $\frac{1}{n}$), we have

$$
E(X_n) = \sum_{k=1}^{n} \frac{1}{n} E(1 + \max\{X_{k-1}, X_{n-k}\})
$$

- \blacktriangleright An effective way to estimate it would be to set $Y_n=2^{X_n}.$
- \triangleright So Y_n is itself a random variable defined on the set P whose value on the permutation π is $Y_n(\pi) = 2^{X_n(\pi)}$
- \triangleright At first there is no intuitive significance to the reason for doing this. It's just that we can do better with the mathematics that way.
- \triangleright Compute $E(Y_n)$ and use this to get a bound on $E(X_n)$.
- \blacktriangleright This step is also somewhat tricky if you haven't seen it before, but it is a general technique.

$$
Y_n(\pi) = 2^{X_n(\pi)} = 2^{1 + \max\{X_{k-1}(\pi), X_{n-k}(\pi)\}}
$$

= $2 \cdot 2^{\max\{X_{k-1}(\pi), X_{n-k}(\pi)\}} = 2 \cdot \max\{2^{X_{k-1}(\pi)}, 2^{X_{n-k}(\pi)}\}$
= $2 \cdot \max\{Y_{k-1}(\pi), Y_{n-k}(\pi)\}$

Since each value of k is chosen with probability $\frac{1}{n}$:

$$
E(Y_n) = \sum_{k=1}^n \frac{1}{n} \cdot 2E\left(\max\{Y_{k-1}, Y_{n-k}\}\right) = \frac{2}{n} \sum_{k=1}^n E\left(\max\{Y_{k-1}, Y_{n-k}\}\right) \\ \leq \frac{2}{n} \sum_{k=1}^n \left(E(Y_{k-1}) + E(Y_{n-k})\right)
$$

Each term is counted twice so we can simplify to get this:

$$
E(Y_n) \leq \frac{4}{n} \sum_{k=1}^n E(Y_{k-1}) = \frac{4}{n} \sum_{k=0}^{n-1} E(Y_k)
$$

It is more convenient to use a strict equality, rather than an inequality. It turns out that we can assume this to be the case since we're really only concerned with an upper bound.

Lemma

If f and g are two functions such that

$$
f(0) = g(0)
$$
\n
$$
f(n) \le \frac{4}{n} \sum_{k=0}^{n-1} f(k)
$$
\n
$$
g(n) = \frac{4}{n} \sum_{k=0}^{n-1} g(k)
$$
\n(3)

then $f(k) < g(k)$ for all $k > 1$.

Proof.

We'll prove this by induction. The inductive hypothesis is that $f(k) \le g(k)$ for all $k < n$. We know that this statement is true for $n = 1$ by the equation above. The inductive step is then to show that this statement remains true for $k = n$. To show this, we just compute as follows:

$$
f(n) \leq \frac{4}{n} \sum_{k=0}^{n-1} f(k)
$$

$$
\leq \frac{4}{n} \sum_{k=0}^{n-1} g(k) = g(n)
$$

- ▶ Based on this, we can assume that $E(Y_n) = \frac{4}{n} \sum\limits_{n=0}^{n-1} E(Y_k).$
- \blacktriangleright because any upper bound we obtain for $E(Y_n)$ from this identity will also be an upper bound for the "real" $E(Y_n)$.
- \blacktriangleright This is a similar trick to the one we used in deriving the average case running time of Quicksort.
- \triangleright We can do something very similar here, although it is a little more complicated:

$$
\blacktriangleright \ E(Y_{n+1}) = \tfrac{4}{n+1} \sum_{k=0}^{n} E(Y_k) \text{ and } E(Y_n) = \tfrac{4}{n} \sum_{k=0}^{n-1} E(Y_k)
$$

 \blacktriangleright We get rid of the denominators:

$$
(n+1)E(Y_{n+1}) = 4 \sum_{k=0}^{n} E(Y_k)
$$

$$
nE(Y_n) = 4 \sum_{k=0}^{n-1} E(Y_k)
$$

- ▶ Now let us subtract and get: $(n + 1)E(Y_{n+1}) nE(Y_n) = 4E(Y_n)$ ▶ $(n + 1)E(Y_{n+1}) = (n + 4)E(Y_n)$
- ▶ Divide both sides by $(n + 1)(n + 4)$. We get $\frac{E(Y_{n+1})}{n+4} = \frac{E(Y_n)}{n+1}$ $\frac{c(Y_n)}{n+1}$.
- \blacktriangleright If you look at it closely for a little while, you will see that if we now divide each side by $(n+2)(n+3)$, we will get something nice: $\frac{E(Y_{n+1})}{(n+4)(n+3)(n+2)} = \frac{E(Y_n)}{(n+3)(n+2)}$ $\frac{E(Y_n)}{(n+3)(n+2)(n+1)}$
- And so if we define $g(n) = \frac{E(Y_n)}{(n+3)(n+2)(n+1)}$
- \triangleright Then we have just derived the fact that $g(n+1) = g(n)$
- \blacktriangleright In other words, $g(n)$ is some constant. Call it *c*.
- ▶ Then we have $E(Y_n) = c(n+3)(n+2)(n+1) = O(n^3)$
- \blacktriangleright We are not done yet! We have to find $E(X_n)$
- ▶ We know that there is a constant $C > 0$ and a number $n_0 > 0$ such that for all $n\geq n_0$, $E(Y_n)\leq Cn^3.$ Hence for all $n\geq n_0,$ $2^{E(X_n)}\leq E(2^{X_n})=E(Y_n)\leq Cn^3$
- \blacktriangleright Taking the logarithm of both sides we get $E(X_n) \le \log_2 C + 3 \log_2 n = O(\log n)$
- \blacktriangleright In other words, the expected height of a randomly build binary search tree is $O(\log n)$.