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Paths

For the next few slides, “graph” means “undirected graph”.1

Definitions (Path, Simple Path)

A path in a graph is a sequence v0, v1, v2, . . . , vn where each vj is a
vertex in the graph and where each vi and vi+1 are joined by an edge.
The length of the path v0, v1, v2, . . . , vn is n. A path can have length 0.
A path in a graph is simple iff it contains no vertex more than once.

Usually we write v0 → v1 → v2 → ...→ vn to denote a path.

1See also Appendix B.4 (Graphs) and B.5 (Trees) in the textbook.
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Loops

Definitions (Loop, Simple Loop)

A loop2 is a path with at least one edge that begins and ends at the
same vertex.

A loop v0 → v1 → v2 → ...→ vk is simple iff
1. k ≥ 3 (that is, there are at least 4 vertices on the path), and
2. it contains no vertex more than once, except of course for the

first and last vertices, v0 = vk, and
3. that (first and last) vertex occurs exactly twice

The definition of simple loop excludes trivial loops like v0 → v1 → v0
and v0 → v1 → v2 → v1 → v0.

2The textbook calls this a cycle.
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Trees (as Graphs)

Definition (Tree)

A tree is a undirected graph that contains no simple loops.

Definition (Rooted Tree)

A rooted tree is a tree with a distinguished vertex called the root.
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Ancestors and Descendants

Definitions (Ancestor, Descendant, Parent, Child)

Let T be a rooted tree with root r, and let x and y be vertices in T
(and either or both of them might be r).
▶ If there is a simple path from r through x to y, we say that x is an
ancestor of y and y is a descendant of x.

▶ Furthermore, if the part of the path from x to y consists of exactly
one edge, we say that x is the parent of y and y is a child of x.

Note that a vertex is both an ancestor and a descendant of itself.
But a vertex cannot be its own parent.
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Binary Trees

Recall from Lecture 03:

Definition (Binary Tree)

A binary tree is either
▶ a node with two children, called left and right, which are also

binary trees, and optionally a data field; or
▶ nil, representing the empty tree

Examples (Binary trees with and without data)
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Traversals

Reminder, tree traversal (any binary tree):
▶ preorder traversal

1. visit the node itself first
2. traverse the left child
3. traverse the right child

▶ inorder traversal
1. traverse the left child
2. visit the node itself
3. traverse the right child

▶ postorder traversal
1. traverse the left child
2. traverse the right child
3. visit the node itself last
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Traversal Algorithms

Algorithm 1 Preorder-Tree-Walk(x)
1: if x ̸= nil then
2: visit(x)
3: Preorder-Tree-Walk(left(x))
4: Preorder-Tree-Walk(right(x))
5: end if

Algorithm 2 Inorder-Tree-Walk(x)
1: if x ̸= nil then
2: Inorder-Tree-Walk(left(x))
3: visit(x)
4: Inorder-Tree-Walk(right(x))
5: end if

Algorithm 3 Postorder-Tree-Walk(x)
1: if x ̸= nil then
2: Postorder-Tree-Walk(left(x))
3: Postorder-Tree-Walk(right(x))
4: visit(x)
5: end if
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Running Times of Traversal Algorithm

Theorem
If x is the root of a binary tree with n nodes, then each of the above
traversals takes Θ(n) time.

Proof.
Let us define:
▶ c = time for the test x ̸= nil
▶ v = time for the call to visit x
▶ T(k) = time for the call to traverse a tree with k nodes

Then certainly we have
1. T(0) = c and if the tree with n nodes has a right child with k nodes (so

its left child must have n− k− 1 nodes), then
2. T(n) = c + T(k) + T(n− k− 1) + v

We can show that T(n) = (2c + v)n + c.
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Binary Search Trees (BSTs)

Definition
A binary search tree (BST) is a binary tree with data including a
comparison key, where every node x satisfies the BST properties:

1. If y is a node on the left of x, key[y] ≤ key[x].
2. If y is a node on the right of x, key[y] ≥ key[x].
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Example: BST
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Search

Recursive version

Algorithm 4 TreeSearch(x,k)
1: if x = nil or k = key[x] then
2: return x
3: end if
4: if k < key[x] then
5: return TreeSearch(left[x], k)
6: else
7: return TreeSearch(right[x], k)
8: end if

Iterative version

Algorithm 5 TreeSearch(x,k)
1: while x ̸= nil and k ̸= key[x] do
2: if k < key[x] then
3: x← left[x]
4: else
5: x← right[x]
6: end if
7: end while
8: return x

The running time is O(h), where h is the height of the tree.
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Minimum and Maximum

Algorithm 6 TreeMinimum(x)
1: while left[x] ̸= nil do
2: x← left[x]
3: end while
4: return x

Algorithm 7 TreeMaximum(x)
1: while right[x] ̸= nil do
2: x← right[x]
3: end while
4: return x

The running time is O(h), where h is the height of the tree.
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Successor and Predecessor

Algorithm 8 TreeSuccessor(x)
1: if right[x] ̸= nil then
2: return TreeMinimum(right[x])
3: end if
4: y← parent[x]
5: while y ̸= nil and x = right[y] do
6: x← y
7: y← parent[x]
8: end while
9: return y

▶ The running time of TreeSuccessor on a tree of height h is again O(h),
since the algorithm consists on following a path from a node to its
successor, and the maximum path length is h.

▶ What happens when we apply this procedure to the node in the figure
above whose key is 20?
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Running Time of Tree Procedures

TreePredecessor runs in a similar fashion with a similar running time.

Theorem
The dynamic-set operations Search, Minimum, Maximum, Successor,
and Predecessor can be made to run in O(h) time on a binary search
tree of height h.
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Insert

Algorithm 9 TreeInsert(T, z)
1: y← nil
2: x← Root[T]
3: while x ̸= nil do
4: y← x
5: if key[z] < key[x] then
6: x← left[x]
7: else
8: x← right[x]
9: end if

10: end while
11: parent[z]← y
12: if y == nil /* only if T was empty */ then
13: Root[T]← z
14: else if key[z] < key[y] then
15: left[y]← z
16: else
17: right[y]← z
18: end if

Lines 1–10:
▶ x is the “lead explorer”,

for where z ought to be
▶ y lags behind by one step
▶ when x becomes nil, y is the

last node on the path to z’s
destination (if non-empty)

Lines 11–18:
▶ insert z into the tree at “x”
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Insert Example
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Obviously, Insert runs in O(h) time on a tree of height h
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Delete

▶ Deleting a node is more complicated.
If the node is buried within the tree, we will have to move some
of the other nodes around.

▶ There are three cases to consider when deleting a node d:
1. d is a leaf
2. d has one child
3. d has two children
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Delete Examples
▶ Case I: 0 children 15
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▶ Case II: 1 child 15
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▶ Case III: 2 children
15

6

3

2 4

10

7

8

13

18

17 20 =⇒

15

7

3

2 4

10

8

13

18

17 20 =⇒

15

7

3

2 4

10

8 13

18

17 20

Nurit Haspel 07 Binary Search Trees Operations on BSTs 19



Delete: Case by Case

▶ Case I - d is a leaf. This case is trivial. Just delete the node. This
amounts to figuring out which child it is of its parent, and
making the corresponding child pointer nil.

▶ Case II: d has one child. In this case, delete d and “splice” its
child to its parent – that is, make the parent’s child pointer that
formerly pointed to d now point to d’s child, and make that
child’s parent pointer now point to d’s parent.

▶ Case III: d has two children. In this case we can’t simply move
one of the children of d into the position of d. What we need to
do is find d’s successor and replace d with it. Then delete d’s
successor. Since the successor has at most one child (why?) then
we revert to case I or II.
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Building a BST

An algorithm for building a binary search tree from an array A[1 .. n]:

Algorithm 10 BuildBST(A)

1: T ← Create Empty Tree
2: for i← 1 to n do
3: TreeInsert(T,A[i])
4: end for

▶ What is the running time?
▶ Worst case: array already sorted, quadratic
▶ Best case: looks like O(n logn)
▶ What does it remind us of?
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Modified Version of Partition

▶ pivot← A[p]
▶ Let L be the sequence of elements of A[p + 1 .. q] that are less

than the pivot, in the order they appear in A
▶ Let U be the sequence of elements of A[p + 1 .. q] that are

greater than pivot, in the order they appear in A
▶ Rearrange the elements in A[p .. q] so that they appear like this:

L pivot U

▶ This may require more time than the original partition but not
asymptotically more.
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Exercise

▶ Show that the comparisons needed to build a BST from an array
A[1 .. n] are exactly the same comparisons needed to do
quicksort on the array, using ModifiedPartition.

▶ Hint: The comparisons in quicksort are against the pivot
elements and the successive pivot elements are the successive
elements added to the BST.
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Running Time for Constructing a BST

▶ We know that the average time for quicksort is Θ(nlogn).
▶ What is the “average time” for building a BST?
▶ It is the average over all possible permutations of the input

array.
▶ This is exactly what we get with randomized quicksort.

Theorem
The average time for constructing a BST is Θ(nlogn).
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Running Time for Searching a BST

▶ The average search time in a BST is h, the height of a tree.
▶ What is the average height of a BST?
▶ We know the search time is the depth of a node.
▶ Which is the number of comparisons we make when inserting

the node into the tree.
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Running Time for Searching a BST

▶ We see that the total expected number of comparisons is
O(n logn).

▶ So the average number of comparisons is O(logn) per node.
▶ The average cost for search in a randomly build BST is therefore

O(logn).
▶ There may be longer paths — in a linear tree the average search

time is O(n).
▶ However, the average height of a randomly build BST is O(logn).
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Running Time for Searching a BST

▶ Let Xn be a random variable whose value is the height of a
binary search tree on n keys

▶ Let Pn be the set of all permutations of those n keys. (So the
number of elements of Pn is n!)

▶ Let π to denote a permutation in Pn. Xn is actually a function on
Pn.

▶ Its value Xn(π) when applied to a permutation π ∈ Pn is the
height of the binary search tree built from that permutation π

▶ We want to find E(Xn), the expectation of Xn.
▶ This is by definition

∑
π∈Pn p(π)Xn(π) where p(π) denotes the

probability of the permutation π.
▶ Assuming that all permutations have equal probability, p(π) = 1

n!
for all π, and so E(Xn) =

1
n!
∑

π∈Pn Xn(π)
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Note on Distribution
If A and B are two random variables on the same space Pn, then

E(A + B) =
∑
π∈Pn

p(π)
(
A(π) + B(π)

)
=

∑
π∈Pn

p(π)A(π) +
∑
π∈Pn

p(π)B(π)

= E(A) + E(B)

Note that max{A,B} is also a random variable on Pn – its value at π
is just max

{
A(π),B(π)

}
. And we have the useful inequality

E
(
max{A,B}

)
=

∑
π∈Pn

p(π)max
{

A(π),B(π)
}

≤
∑
π∈Pn

p(π)
(
A(π) + B(π)

)
= E(A + B) = E(A) + E(B)
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Expected Height of a BST

▶ Consider a permutation π. The root of the tree will be the first
element of π.

▶ Suppose the root has position k in the sorted list of keys.
▶ That means that there will be k− 1 keys less than it and n− k

keys greater than it.
▶ So the left subtree will have k− 1 elements and the right

subtree will have n− k elements.
▶ Those elements are also chosen randomly from sets of size k− 1

and n− k respectively, so we have

Xn(π) = 1 +max{Xk−1(π),Xn−k(π)}

▶ This is our fundamental recursion.
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Expected Height of a BST

▶ Since each value of k is chosen with the same probability (that
probability being 1

n ), we have

E(Xn) =
n∑

k=1

1
nE

(
1 +max{Xk−1,Xn−k}

)
▶ An effective way to estimate it would be to set Yn = 2Xn .
▶ So Yn is itself a random variable defined on the set P whose

value on the permutation π is Yn(π) = 2Xn(π)

▶ At first there is no intuitive significance to the reason for doing
this. It’s just that we can do better with the mathematics that
way.

▶ Compute E(Yn) and use this to get a bound on E(Xn).
▶ This step is also somewhat tricky if you haven’t seen it before,

but it is a general technique.
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Expected Height of a BST

Yn(π) = 2Xn(π) = 21+max{Xk−1(π),Xn−k(π)}

= 2 · 2max{Xk−1(π),Xn−k(π)} = 2 ·max{2Xk−1(π), 2Xn−k(π)}
= 2 ·max{Yk−1(π),Yn−k(π)}

Since each value of k is chosen with probability 1
n :

E(Yn) =
n∑

k=1

1
n · 2E

(
max{Yk−1,Yn−k}

)
=

2
n

n∑
k=1

E
(
max{Yk−1,Yn−k}

)
≤ 2

n

n∑
k=1

(
E(Yk−1) + E(Yn−k)

)
Each term is counted twice so we can simplify to get this:

E(Yn) ≤
4
n

n∑
k=1

E(Yk−1) =
4
n

n−1∑
k=0

E(Yk)
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Expected Height of a BST
It is more convenient to use a strict equality, rather than an
inequality. It turns out that we can assume this to be the case since
we’re really only concerned with an upper bound.

Lemma
If f and g are two functions such that

f (0) = g(0) (1)

f (n) ≤ 4
n

n−1∑
k=0

f (k) (2)

g(n) = 4
n

n−1∑
k=0

g(k) (3)

then f (k) ≤ g(k) for all k ≥ 1.
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Expected Height of a BST

Proof.
We’ll prove this by induction. The inductive hypothesis is that
f (k) ≤ g(k) for all k < n. We know that this statement is true for
n = 1 by the equation above. The inductive step is then to show that
this statement remains true for k = n. To show this, we just compute
as follows:

f (n) ≤ 4
n

n−1∑
k=0

f (k)

≤ 4
n

n−1∑
k=0

g(k) = g(n)
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Expected Height of a BST

▶ Based on this, we can assume that E(Yn) =
4
n

n−1∑
k=0

E(Yk).

▶ because any upper bound we obtain for E(Yn) from this identity
will also be an upper bound for the “real” E(Yn).

▶ This is a similar trick to the one we used in deriving the average
case running time of Quicksort.

▶ We can do something very similar here, although it is a little
more complicated:

▶ E(Yn+1) =
4

n+1
n∑

k=0
E(Yk) and E(Yn) =

4
n

n−1∑
k=0

E(Yk)

▶ We get rid of the denominators:
▶ (n + 1)E(Yn+1) = 4

n∑
k=0

E(Yk)

▶ nE(Yn) = 4
n−1∑
k=0

E(Yk)
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Expected Height of a BST

▶ Now let us subtract and get: (n + 1)E(Yn+1)− nE(Yn) = 4E(Yn)

▶ (n + 1)E(Yn+1) = (n + 4)E(Yn)

▶ Divide both sides by (n + 1)(n + 4). We get E(Yn+1)
n+4 = E(Yn)

n+1 .
▶ If you look at it closely for a little while, you will see that if we

now divide each side by (n + 2)(n + 3), we will get something
nice: E(Yn+1)

(n+4)(n+3)(n+2) =
E(Yn)

(n+3)(n+2)(n+1) .
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Expected Height of a BST

▶ And so if we define g(n) = E(Yn)
(n+3)(n+2)(n+1)

▶ Then we have just derived the fact that g(n+1) = g(n)
▶ In other words, g(n) is some constant. Call it c.
▶ Then we have E(Yn) = c(n + 3)(n + 2)(n + 1) = O(n3)

▶ We are not done yet! We have to find E(Xn)
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Expected Height of a BST

▶ We know that there is a constant C > 0 and a number n0 ≥ 0
such that for all n ≥ n0, E(Yn) ≤ Cn3. Hence for all n ≥ n0,
2E(Xn) ≤ E(2Xn) = E(Yn) ≤ Cn3

▶ Taking the logarithm of both sides we get
E(Xn) ≤ log2 C + 3 log2 n = O(logn)

▶ In other words, the expected height of a randomly build binary
search tree is O(logn).
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