
Binary Search Trees
CS 624 — Analysis of Algorithms

October 7, 2024

Nurit Haspel 07 Binary Search Trees 1



Paths

For the next few slides, “graph” means “undirected graph”.1

Definitions (Path, Simple Path)

A path in a graph is a sequence v0, v1, v2, . . . , vn where each vj is a
vertex in the graph and where each vi and vi+1 are joined by an edge.
The length of the path v0, v1, v2, . . . , vn is n. A path can have length 0.
A path in a graph is simple iff it contains no vertex more than once.

Usually we write v0 → v1 → v2 → ...→ vn to denote a path.

1See also Appendix B.4 (Graphs) and B.5 (Trees) in the textbook.
Nurit Haspel 07 Binary Search Trees Preliminaries: Graphs 2



Loops

Definitions (Loop, Simple Loop)

A loop2 is a path with at least one edge that begins and ends at the
same vertex.

A loop v0 → v1 → v2 → ...→ vk is simple iff
1. k ≥ 3 (that is, there are at least 4 vertices on the path), and
2. it contains no vertex more than once, except of course for the

first and last vertices, v0 = vk, and
3. that (first and last) vertex occurs exactly twice

The definition of simple loop excludes trivial loops like v0 → v1 → v0
and v0 → v1 → v2 → v1 → v0.

2The textbook calls this a cycle.
Nurit Haspel 07 Binary Search Trees Preliminaries: Graphs 3



Trees (as Graphs)

Definition (Tree)

A tree is a undirected graph that contains no simple loops.

Definition (Rooted Tree)

A rooted tree is a tree with a distinguished vertex called the root.

Nurit Haspel 07 Binary Search Trees Preliminaries: Graphs 4



Ancestors and Descendants

Definitions (Ancestor, Descendant, Parent, Child)

Let T be a rooted tree with root r, and let x and y be vertices in T
(and either or both of them might be r).
▶ If there is a simple path from r through x to y, we say that x is an
ancestor of y and y is a descendant of x.

▶ Furthermore, if the part of the path from x to y consists of exactly
one edge, we say that x is the parent of y and y is a child of x.

Note that a vertex is both an ancestor and a descendant of itself.
But a vertex cannot be its own parent.

Nurit Haspel 07 Binary Search Trees Preliminaries: Graphs 5



Binary Trees

Recall from Lecture 03:

Definition (Binary Tree)

A binary tree is either
▶ a node with two children, called left and right, which are also

binary trees, and optionally a data field; or
▶ nil, representing the empty tree

Examples (Binary trees with and without data)

nil
3

7

nil nil

5

nil nil

6

5

9

nil nil

nil

2

4

nil nil

nil
nil nil nil nil

nil nil

nil

nil nil

nil

Nurit Haspel 07 Binary Search Trees Binary Trees 6



Traversals

Reminder, tree traversal (any binary tree):
▶ preorder traversal

1. visit the node itself first
2. traverse the left child
3. traverse the right child

▶ inorder traversal
1. traverse the left child
2. visit the node itself
3. traverse the right child

▶ postorder traversal
1. traverse the left child
2. traverse the right child
3. visit the node itself last

Nurit Haspel 07 Binary Search Trees Binary Trees 7



Traversal Algorithms

Algorithm 1 Preorder-Tree-Walk(x)
1: if x ̸= nil then
2: visit(x)
3: Preorder-Tree-Walk(left(x))
4: Preorder-Tree-Walk(right(x))
5: end if

Algorithm 2 Inorder-Tree-Walk(x)
1: if x ̸= nil then
2: Inorder-Tree-Walk(left(x))
3: visit(x)
4: Inorder-Tree-Walk(right(x))
5: end if

Algorithm 3 Postorder-Tree-Walk(x)
1: if x ̸= nil then
2: Postorder-Tree-Walk(left(x))
3: Postorder-Tree-Walk(right(x))
4: visit(x)
5: end if

Nurit Haspel 07 Binary Search Trees Binary Trees 8



Running Times of Traversal Algorithm

Theorem
If x is the root of a binary tree with n nodes, then each of the above
traversals takes Θ(n) time.

Proof.
Let us define:
▶ c = time for the test x ̸= nil
▶ v = time for the call to visit x
▶ T(k) = time for the call to traverse a tree with k nodes

Then certainly we have
1. T(0) = c and if the tree with n nodes has a right child with k nodes (so

its left child must have n− k− 1 nodes), then
2. T(n) = c + T(k) + T(n− k− 1) + v

We can show that T(n) = (2c + v)n + c.

Nurit Haspel 07 Binary Search Trees Binary Trees 9



Binary Search Trees (BSTs)

Definition
A binary search tree (BST) is a binary tree with data including a
comparison key, where every node x satisfies the BST properties:

1. If y is a node on the left of x, key[y] ≤ key[x].
2. If y is a node on the right of x, key[y] ≥ key[x].

Nurit Haspel 07 Binary Search Trees Binary Search Trees 10



Example: BST

15

6

3

2 4

8

13

9

18

17 20

Nurit Haspel 07 Binary Search Trees Binary Search Trees 11



Search

Recursive version

Algorithm 4 TreeSearch(x,k)
1: if x = nil or k = key[x] then
2: return x
3: end if
4: if k < key[x] then
5: return TreeSearch(left[x], k)
6: else
7: return TreeSearch(right[x], k)
8: end if

Iterative version

Algorithm 5 TreeSearch(x,k)
1: while x ̸= nil and k ̸= key[x] do
2: if k < key[x] then
3: x← left[x]
4: else
5: x← right[x]
6: end if
7: end while
8: return x

The running time is O(h), where h is the height of the tree.

Nurit Haspel 07 Binary Search Trees Operations on BSTs 12



Minimum and Maximum

Algorithm 6 TreeMinimum(x)
1: while left[x] ̸= nil do
2: x← left[x]
3: end while
4: return x

Algorithm 7 TreeMaximum(x)
1: while right[x] ̸= nil do
2: x← right[x]
3: end while
4: return x

The running time is O(h), where h is the height of the tree.

Nurit Haspel 07 Binary Search Trees Operations on BSTs 13



Successor and Predecessor

Algorithm 8 TreeSuccessor(x)
1: if right[x] ̸= nil then
2: return TreeMinimum(right[x])
3: end if
4: y← parent[x]
5: while y ̸= nil and x = right[y] do
6: x← y
7: y← parent[x]
8: end while
9: return y

▶ The running time of TreeSuccessor on a tree of height h is again O(h),
since the algorithm consists on following a path from a node to its
successor, and the maximum path length is h.

▶ What happens when we apply this procedure to the node in the figure
above whose key is 20?

Nurit Haspel 07 Binary Search Trees Operations on BSTs 14



Running Time of Tree Procedures

TreePredecessor runs in a similar fashion with a similar running time.

Theorem
The dynamic-set operations Search, Minimum, Maximum, Successor,
and Predecessor can be made to run in O(h) time on a binary search
tree of height h.

Nurit Haspel 07 Binary Search Trees Operations on BSTs 15



Insert

Algorithm 9 TreeInsert(T, z)
1: y← nil
2: x← Root[T]
3: while x ̸= nil do
4: y← x
5: if key[z] < key[x] then
6: x← left[x]
7: else
8: x← right[x]
9: end if

10: end while
11: parent[z]← y
12: if y == nil /* only if T was empty */ then
13: Root[T]← z
14: else if key[z] < key[y] then
15: left[y]← z
16: else
17: right[y]← z
18: end if

Lines 1–10:
▶ x is the “lead explorer”,

for where z ought to be
▶ y lags behind by one step
▶ when x becomes nil, y is the

last node on the path to z’s
destination (if non-empty)

Lines 11–18:
▶ insert z into the tree at “x”

Nurit Haspel 07 Binary Search Trees Operations on BSTs 16



Insert Example

15

6

3

2 4

8

7 13

9

18

17 20

Obviously, Insert runs in O(h) time on a tree of height h

Nurit Haspel 07 Binary Search Trees Operations on BSTs 17



Delete

▶ Deleting a node is more complicated.
If the node is buried within the tree, we will have to move some
of the other nodes around.

▶ There are three cases to consider when deleting a node d:
1. d is a leaf
2. d has one child
3. d has two children

Nurit Haspel 07 Binary Search Trees Operations on BSTs 18



Delete Examples
▶ Case I: 0 children 15

6

3

2 4

10

7

8

13

18

17 20 =⇒

15

6

3

2 4

10

7

8

18

17 20

▶ Case II: 1 child 15

6

3

2 4

10

7

8

13

18

17 20 =⇒

15

6

3

2 4

10

8 13

18

17 20

▶ Case III: 2 children
15

6

3

2 4

10

7

8

13

18

17 20 =⇒

15

7

3

2 4

10

8

13

18

17 20 =⇒

15

7

3

2 4

10

8 13

18

17 20

Nurit Haspel 07 Binary Search Trees Operations on BSTs 19



Delete: Case by Case

▶ Case I - d is a leaf. This case is trivial. Just delete the node. This
amounts to figuring out which child it is of its parent, and
making the corresponding child pointer nil.

▶ Case II: d has one child. In this case, delete d and “splice” its
child to its parent – that is, make the parent’s child pointer that
formerly pointed to d now point to d’s child, and make that
child’s parent pointer now point to d’s parent.

▶ Case III: d has two children. In this case we can’t simply move
one of the children of d into the position of d. What we need to
do is find d’s successor and replace d with it. Then delete d’s
successor. Since the successor has at most one child (why?) then
we revert to case I or II.

Nurit Haspel 07 Binary Search Trees Operations on BSTs 20



Building a BST

An algorithm for building a binary search tree from an array A[1 .. n]:

Algorithm 10 BuildBST(A)

1: T ← Create Empty Tree
2: for i← 1 to n do
3: TreeInsert(T,A[i])
4: end for

▶ What is the running time?
▶ Worst case: array already sorted, quadratic
▶ Best case: looks like O(n logn)
▶ What does it remind us of?

Nurit Haspel 07 Binary Search Trees Operations on BSTs 21



Modified Version of Partition

▶ pivot← A[p]
▶ Let L be the sequence of elements of A[p + 1 .. q] that are less

than the pivot, in the order they appear in A
▶ Let U be the sequence of elements of A[p + 1 .. q] that are

greater than pivot, in the order they appear in A
▶ Rearrange the elements in A[p .. q] so that they appear like this:

L pivot U

▶ This may require more time than the original partition but not
asymptotically more.

Nurit Haspel 07 Binary Search Trees Operations on BSTs 22



Exercise

▶ Show that the comparisons needed to build a BST from an array
A[1 .. n] are exactly the same comparisons needed to do
quicksort on the array, using ModifiedPartition.

▶ Hint: The comparisons in quicksort are against the pivot
elements and the successive pivot elements are the successive
elements added to the BST.

Nurit Haspel 07 Binary Search Trees Operations on BSTs 23



Running Time for Constructing a BST

▶ We know that the average time for quicksort is Θ(nlogn).
▶ What is the “average time” for building a BST?
▶ It is the average over all possible permutations of the input

array.
▶ This is exactly what we get with randomized quicksort.

Theorem
The average time for constructing a BST is Θ(nlogn).

Nurit Haspel 07 Binary Search Trees Operations on BSTs 24



Running Time for Searching a BST

▶ The average search time in a BST is h, the height of a tree.
▶ What is the average height of a BST?
▶ We know the search time is the depth of a node.
▶ Which is the number of comparisons we make when inserting

the node into the tree.

Nurit Haspel 07 Binary Search Trees Operations on BSTs 25



Running Time for Searching a BST

▶ We see that the total expected number of comparisons is
O(n logn).

▶ So the average number of comparisons is O(logn) per node.
▶ The average cost for search in a randomly build BST is therefore

O(logn).
▶ There may be longer paths — in a linear tree the average search

time is O(n).
▶ However, the average height of a randomly build BST is O(logn).

Nurit Haspel 07 Binary Search Trees Operations on BSTs 26



Running Time for Searching a BST

▶ Let Xn be a random variable whose value is the height of a
binary search tree on n keys

▶ Let Pn be the set of all permutations of those n keys. (So the
number of elements of Pn is n!)

▶ Let π to denote a permutation in Pn. Xn is actually a function on
Pn.

▶ Its value Xn(π) when applied to a permutation π ∈ Pn is the
height of the binary search tree built from that permutation π

▶ We want to find E(Xn), the expectation of Xn.
▶ This is by definition

∑
π∈Pn p(π)Xn(π) where p(π) denotes the

probability of the permutation π.
▶ Assuming that all permutations have equal probability, p(π) = 1

n!
for all π, and so E(Xn) =

1
n!
∑

π∈Pn Xn(π)

Nurit Haspel 07 Binary Search Trees Operations on BSTs 27



Note on Distribution
If A and B are two random variables on the same space Pn, then

E(A + B) =
∑
π∈Pn

p(π)
(
A(π) + B(π)

)
=

∑
π∈Pn

p(π)A(π) +
∑
π∈Pn

p(π)B(π)

= E(A) + E(B)

Note that max{A,B} is also a random variable on Pn – its value at π
is just max

{
A(π),B(π)

}
. And we have the useful inequality

E
(
max{A,B}

)
=

∑
π∈Pn

p(π)max
{

A(π),B(π)
}

≤
∑
π∈Pn

p(π)
(
A(π) + B(π)

)
= E(A + B) = E(A) + E(B)

Nurit Haspel 07 Binary Search Trees Operations on BSTs 28



Expected Height of a BST

▶ Consider a permutation π. The root of the tree will be the first
element of π.

▶ Suppose the root has position k in the sorted list of keys.
▶ That means that there will be k− 1 keys less than it and n− k

keys greater than it.
▶ So the left subtree will have k− 1 elements and the right

subtree will have n− k elements.
▶ Those elements are also chosen randomly from sets of size k− 1

and n− k respectively, so we have

Xn(π) = 1 +max{Xk−1(π),Xn−k(π)}

▶ This is our fundamental recursion.

Nurit Haspel 07 Binary Search Trees Operations on BSTs 29



Expected Height of a BST

▶ Since each value of k is chosen with the same probability (that
probability being 1

n ), we have

E(Xn) =
n∑

k=1

1
nE

(
1 +max{Xk−1,Xn−k}

)
▶ An effective way to estimate it would be to set Yn = 2Xn .
▶ So Yn is itself a random variable defined on the set P whose

value on the permutation π is Yn(π) = 2Xn(π)

▶ At first there is no intuitive significance to the reason for doing
this. It’s just that we can do better with the mathematics that
way.

▶ Compute E(Yn) and use this to get a bound on E(Xn).
▶ This step is also somewhat tricky if you haven’t seen it before,

but it is a general technique.

Nurit Haspel 07 Binary Search Trees Operations on BSTs 30



Expected Height of a BST

Yn(π) = 2Xn(π) = 21+max{Xk−1(π),Xn−k(π)}

= 2 · 2max{Xk−1(π),Xn−k(π)} = 2 ·max{2Xk−1(π), 2Xn−k(π)}
= 2 ·max{Yk−1(π),Yn−k(π)}

Since each value of k is chosen with probability 1
n :

E(Yn) =
n∑

k=1

1
n · 2E

(
max{Yk−1,Yn−k}

)
=

2
n

n∑
k=1

E
(
max{Yk−1,Yn−k}

)
≤ 2

n

n∑
k=1

(
E(Yk−1) + E(Yn−k)

)
Each term is counted twice so we can simplify to get this:

E(Yn) ≤
4
n

n∑
k=1

E(Yk−1) =
4
n

n−1∑
k=0

E(Yk)

Nurit Haspel 07 Binary Search Trees Operations on BSTs 31



Expected Height of a BST
It is more convenient to use a strict equality, rather than an
inequality. It turns out that we can assume this to be the case since
we’re really only concerned with an upper bound.

Lemma
If f and g are two functions such that

f (0) = g(0) (1)

f (n) ≤ 4
n

n−1∑
k=0

f (k) (2)

g(n) = 4
n

n−1∑
k=0

g(k) (3)

then f (k) ≤ g(k) for all k ≥ 1.
Nurit Haspel 07 Binary Search Trees Operations on BSTs 32



Expected Height of a BST

Proof.
We’ll prove this by induction. The inductive hypothesis is that
f (k) ≤ g(k) for all k < n. We know that this statement is true for
n = 1 by the equation above. The inductive step is then to show that
this statement remains true for k = n. To show this, we just compute
as follows:

f (n) ≤ 4
n

n−1∑
k=0

f (k)

≤ 4
n

n−1∑
k=0

g(k) = g(n)

Nurit Haspel 07 Binary Search Trees Operations on BSTs 33



Expected Height of a BST

▶ Based on this, we can assume that E(Yn) =
4
n

n−1∑
k=0

E(Yk).

▶ because any upper bound we obtain for E(Yn) from this identity
will also be an upper bound for the “real” E(Yn).

▶ This is a similar trick to the one we used in deriving the average
case running time of Quicksort.

▶ We can do something very similar here, although it is a little
more complicated:

▶ E(Yn+1) =
4

n+1
n∑

k=0
E(Yk) and E(Yn) =

4
n

n−1∑
k=0

E(Yk)

▶ We get rid of the denominators:
▶ (n + 1)E(Yn+1) = 4

n∑
k=0

E(Yk)

▶ nE(Yn) = 4
n−1∑
k=0

E(Yk)

Nurit Haspel 07 Binary Search Trees Operations on BSTs 34



Expected Height of a BST

▶ Now let us subtract and get: (n + 1)E(Yn+1)− nE(Yn) = 4E(Yn)

▶ (n + 1)E(Yn+1) = (n + 4)E(Yn)

▶ Divide both sides by (n + 1)(n + 4). We get E(Yn+1)
n+4 = E(Yn)

n+1 .
▶ If you look at it closely for a little while, you will see that if we

now divide each side by (n + 2)(n + 3), we will get something
nice: E(Yn+1)

(n+4)(n+3)(n+2) =
E(Yn)

(n+3)(n+2)(n+1) .

Nurit Haspel 07 Binary Search Trees Operations on BSTs 35



Expected Height of a BST

▶ And so if we define g(n) = E(Yn)
(n+3)(n+2)(n+1)

▶ Then we have just derived the fact that g(n+1) = g(n)
▶ In other words, g(n) is some constant. Call it c.
▶ Then we have E(Yn) = c(n + 3)(n + 2)(n + 1) = O(n3)

▶ We are not done yet! We have to find E(Xn)

Nurit Haspel 07 Binary Search Trees Operations on BSTs 36



Expected Height of a BST

▶ We know that there is a constant C > 0 and a number n0 ≥ 0
such that for all n ≥ n0, E(Yn) ≤ Cn3. Hence for all n ≥ n0,
2E(Xn) ≤ E(2Xn) = E(Yn) ≤ Cn3

▶ Taking the logarithm of both sides we get
E(Xn) ≤ log2 C + 3 log2 n = O(logn)

▶ In other words, the expected height of a randomly build binary
search tree is O(logn).

Nurit Haspel 07 Binary Search Trees Operations on BSTs 37


	Preliminaries: Graphs
	Binary Trees
	Binary Search Trees
	Operations on BSTs

