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Problem: Making Change

Task: Pay for a cup of coffee that costs 63 cents.
▶ You must give exact change.
▶ You have an unlimited number of coins of the following

denominations: 1 cent, 5 cents, 10 cents, and 25 cents.

1 cent 5 cents 10 cents 25 cents

Questions:
▶ Is there any solution?
▶ Can you find a solution, any solution?
▶ Can you find a solution that minimizes the number of coins?
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Greedy Thinking

The “greedy” approach:
▶ While the debt is at least 25 cents, give a quarter.
▶ Then while the debt is at least 10 cents, give a dime.
▶ Then while the debt is at least 5 cents, give a nickel.
▶ Then while the debt is at least 1 cent, give a penny.

Example

For 63 cents, we give 2(25) + 1(10) + 0(5) + 3(1) = 63,
using 2 + 1 + 0 + 3 = 6 coins.
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Greedy Algorithms

A greedy person grabs everything they can as soon as possible.

Similarly, a greedy algorithm makes locally optimized decisions
that appear to be the best thing to do at each step.

Sometimes, a greedy approach cannot solve the problem.
We must prove that a greedy algorithm does not miss solutions.
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Change Making

Does the greedy method always work for change-making?
▶ If we use US coinage: coin denominations {1,5,10,25} — yes.
▶ If we only have quarters and dimes ({10,25}) — no.

▶ Some problems are just unsolvable.
There’s no way to make change for 63 cents.

▶ The greedy approach sometimes misses solutions.
For example, make change for 30 cents: 1(25) + ...stuck...,
even though 3(10) is a solution.

▶ Even with {1,10,25}, the greedy solution can be suboptimal:
For example, for 30 cents, it says 1(25) + 5(1), but 3(10) is better.
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Greedy Algorithms

Lessons:
▶ Greedy algorithms are popular, because they are (generally)

simple and fast.
▶ But the greedy approach does not always solve the problem.

It might produce a sub-optimal solution, or it might miss a
solution completely!

▶ We will revisit greedy algorithms later in the course,
but for now, don’t be greedy!

That is, don’t get trapped into short-sighted, greedy thinking.
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Reorder Your Priorities

solve problems︸ ︷︷ ︸
#1

efficiently︸ ︷︷ ︸
#2
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Recursive Strategy

Idea: divide and conquer
▶ Break each non-trivial problem into two subproblems.
▶ There are lots of ways (“places”) to divide the problem.

63 = 1 + 62 = 2 + 61 = · · · = 33 + 30 = · · · = 62 + 1
Try all of them, pick the best result.
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Recursive Solution

// minCoins : int -> int
// Returns the minimum number of coins needed for given amount.
function minCoins(amount) {

if (amount < 0) return ∞; // ‘‘no solution’’
else if (amount == 0) return 0;
else if (amount == 1) return 1;
else if (amount == 5) return 1;
else if (amount == 10) return 1;
else if (amount == 25) return 1;
else return min{ for m from 1 to amount-1 } (

minCoins(m) + minCoins(amount - m)
);

}
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Analysis

Correctness: “obviously” correct

Running time: incredibly bad, right?
Consider minCoins(4).

4

1 + 3

1 + (1 + 2)

1 + (1 + (1 + 1))

1 + (2 + 1)

1 + ((1 + 1) + 1)

2 + 2

(1 + 1) + (1 + 1)

3 + 1

(1 + 2) + 1

(1 + (1 + 1)) + 1

(2 + 1) + 1

((1 + 1) + 1) + 1

All of these correspond to the task solution 1 + 1 + 1 + 1.
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Recursive Strategy: A Better Idea

What does an optimal solution for 63 cents look like?
Any solution to the task is a list of coins.

An optimal solution for 63 must be one of the following:
▶ one penny (1 cent) + an optimal solution for 62
▶ one nickel (5 cents) + an optimal solution for 58
▶ one dime (10 cents) + an optimal solution for 53
▶ one quarter (25 cents) + an optimal solution for 38

This is called the optimal substructure property. (Proof?)

So we can calculate those candidates and then pick the
minimum-length one.
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Recursive Strategy

Refinement to divide and conquer:
▶ Break each non-trivial problem into

▶ one piece of the task solution — the first (next) coin given
▶ one subproblem — how to handle leftover amount

▶ Only 4 choices of first piece of solution!
(In general, n choices for n different coin denominations.)
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Recursive Solution

// minCoins : int -> int
// Returns the minimum number of coins needed for given amount.
function minCoins(amount) {

if (amount < 0) return ∞; // ‘‘no solution’’
else if (amount == 0) return 0;
else return min(

1 + minCoins(amount - 25), // try a quarter
1 + minCoins(amount - 10), // try a dime
1 + minCoins(amount - 5), // try a nickel
1 + minCoins(amount - 1) // try a penny

);
}
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Recursive Solution

// makeChange : int -> [int]
// Returns a minimum-length list of coins summing to amount.
function makeChange(amount) {

if (amount < 0) return ∞; // ‘‘no solution’’
else if (amount == 0) return [];
else return shortest(

[25] ++ makeChange(amount - 25), // try a quarter
[10] ++ makeChange(amount - 10), // try a dime
[5] ++ makeChange(amount - 5), // try a nickel
[1] ++ makeChange(amount - 1) // try a penny

);
}
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Recursive Solution, Generalized

// minCoins : int [int] -> int
// Returns the minimum number of coins needed for given amount.
function minCoins(amount, denominations) {

if (amount < 0) return ∞; // ‘‘no solution’’
else if (amount == 0) return 0;
else return min {for d in denominations } (

1 + minCoins(amount - d, denominations)
);

}
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Recursive Solution, Generalized

// makeChange : int [int] -> [int]
// Returns a minimum-length list of coins summing to amount.
function makeChange(amount, denominations) {

if (cents < 0) return ∞; // ‘‘no solution’’
else if (cents == 0) return [];
else return shortest { for d in denominations } (

[d] ++ makeChange(amount - d, denominations)
);

}
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Analysis

Correctness: still “obvious”

Running time: still lots of recursive calls (branch factor of 4!)

The next refinement:
▶ Insight: We keep encountering the same subproblems.
▶ Save (memoize) the result so we only compute it once.

This approach is what we call dynamic programming.

Then to make change for n with k different denominations of coins,
the running time is O(nk).
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Dynamic Programming, Top Down
// minCoins : int [int] -> void
// Returns the minimum number of coins needed for given amount.
function minCoins(amount, denominations) {

return minCoinsTD(amount, denominations, new array[amount]);
}

// minCoinsInner : int [int] [int] -> int
function minCoinsTD(amount, denominations, table) {

if table[amount] is undefined {
if (amount == 0) table[amount] = 0;
else table[amount] = min

{ for d in denominations where d ≤ amount } (
1 + minCoinsTD(amount - d, denominations, table)

);
}
return table[amount];

}
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Dynamic Programming, Bottom Up

// minCoins : int -> int
// Returns the minimum number of coins needed for given amount.
function minCoins(amount) {

let table = new array[amount];
table[0] = 0;
for m = 1 to amount do {

table[m] = min { for d in denominations where d ≤ m } (
1 + table[m - d]

);
}
return table[amount];

}
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Dynamic Programming

Dynamic programming (DP) is an algorithm design technique for
optimization problems—generally, minimizing or maximizing some
quantity with respect to some constraint.

▶ Like divide and conquer, DP solves problems by combining solutions
to subproblems.

▶ Unlike divide and conquer, subproblems are not disjoint; they may
share subsubproblems. (That is, they may “overlap”.)
(But subproblems are still self-contained. There’s no hidden
dependence between sibling subproblems.)

▶ DP correctness relies on optimal substructure property.
▶ DP efficiency relies on memoization of overlapping subproblems.
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Self-Contained Subproblems

Subproblems must be independent, even though they may overlap.

For example, the change-making problem assumes I have an
unlimited supply of each denomination of coin.
A subproblem is identified simply by the amount of change to make.

If I have a limited supply of each denomination of coin, the previous
decomposition of the problem is no longer valid, because I might
reach the same amount through paths that use up different portions
of my coin supply.
Instead, now a subproblem is identified by the amount of change to
make together with the remaining supply of coins.

Nurit Haspel 10 Dynamic Programming Dynamic Programming 21



Solving a Problem with Dynamic Programming

Let denoms ⊂ N be fixed. Then

mincoins(m) =


∞ if m < 0
0 if m = 0
mind∈denoms(1 + mincoins(m− d)) if m > 0

That is the solution, effectively.
There is little need to write out the algorithm.
▶ The function arguments determine the subproblem labeling.
▶ The equations determine the recursion structure and base cases.
▶ Memoization (bottom-up or top-down) can be added mechanically.

But you still must show optimal substructure and analyze the
running time given “de-duplicated” overlapping subproblems.
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More Examples of Dynamic Programming

▶ longest common subsequence (LCS)
▶ optimal binary search tree
▶ chained matrix multiplications
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Subsequences

Definition (Subsequence)

A subsequence of a sequence A = ⟨a1,a2, . . . ,an⟩ is a sequence
B = ⟨b1,b2, . . . ,bm⟩ (with m ≤ n) such that
▶ each bi is an element of A, and
▶ if i < j, then bi occurs before bj in A

Note: The elements of B might not be consecutive elements of A.

Example

▶ “axdy” is a subsequence of “baxefdoym”
▶ “abba” is a subsequence of “abracadabra”
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Longest Common Subsequence (LCS)

Longest Common Subsequence (LCS) Problem

Given two sequences X = ⟨x1, x2, . . . , xm⟩ and Y = ⟨y1, y2, . . . , yn⟩
(note that the sequences may have different lengths), find a
subsequence common to both whose length is longest.
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Example: LCS

s p r i n g t i m e

p i o n e e r

▶ This is part of a class of what are called alignment problems,
which are extremely important in biology.

▶ It can help us to compare genome sequences to deduce quite
accurately how closely related different organisms are, and to
infer the real “tree of life”.

▶ Trees showing the evolutionary development of classes of
organisms are called “phylogenetic trees”.

▶ A lot of this kind of comparison amounts to finding common
subsequences.
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LCS: Naive approach

LCS: Inputs are X = ⟨x1, . . . , xm⟩ ,Y = ⟨y1, . . . , yn⟩.

Naive approach: List all the subsequences of X and check each to
see if it is a subsequence of Y , and pick the longest one that is.

Analysis:
▶ There are 2m subsequences of X .
▶ To check to see if a subsequence of X is also a subsequence of

Y will take time O(n). (Is this obvious?)
▶ The cost of this naive method is O(n2m).
▶ That’s pretty awful, since the strings that we are concerned with

in biology have hundreds or thousands of elements at least.
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LCS: Dynamic Programming

Recipe for applying Dynamic Programming:
▶ Determine the optimal substructure property.
▶ Use that to formulate a recursive solution.
▶ Memoize the recursive solution.

What is the optimal substructure property for LCS? That is,
▶ What are a problem’s sub-problems?

What stays the same, what varies?
▶ Even assuming we found optimal solutions to the sub-problems,

how does that help us optimally solve the original problem?
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Example: LCS

Example (LCS of “aptly” and “catchy”)

aptly
catchy ⇒ aty

. . . aptly
atchy ⇒ aty

ptly
tchy ⇒ ty

tly
tchy ⇒ ty . . .

ly
chy ⇒ y

...
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LCS: DP Strategy

Strategy: subproblem = pair of suffixes of original strings
▶ If both strings have common first letter, take it,

one subproblem (rest of both strings).
▶ Otherwise, discard first letter of one of the strings.

▶ Cannot discard from both, might lose an optimal solution!
▶ Don’t know a priori which to discard from.
▶ Try both subproblems, pick best result.

In fact, prefixes work as well as suffixes.
Just compare last letters instead, discard from end.
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Prefixes

Definition
Let X = ⟨x1, . . . , xm⟩ be a sequence.
The prefix of length k ≤ m of X is Xk = ⟨x1, . . . , xk⟩.
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LCS: Optimal Substructure

LCS: Input is two strings, with possibly different lengths:
X = ⟨x1, x2, . . . , xm⟩ and Y = ⟨y1, y2, . . . , yn⟩

Theorem
Let Z = ⟨z1, z2, . . . , zk⟩ be any LCS of X and Y .

1. If xm = yn, then zk = xm = yn,
and Zk−1 is an LCS of Xm−1 and Yn−1.

2. If xm ̸= yn, then zk ̸= xm ⇒ Z is an LCS of Xm−1 and Y .
3. If xm ̸= yn, then zk ̸= yn ⇒ Z is an LCS of X and Yn−1.
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LCS: Proof of Optimal Substructure

Proof.
Let X ,Y be sequences, and suppose Z is an LCS for X and Y .
Case analysis:

1. Case xm = yn: Then zk = xm = yn. Suppose for sake of contradiction it
isn’t. Then Z must be a common subsequence of Xm−1 and Yn−1. But
then Z′ = Z || ⟨xm⟩ would also be a common subsequence of X and Y ,
and longer than Z, which contradicts the premise that Z is an LCS.
Moreover, Zk−1 is an LCS for Xm−1 and Yn−1. If it were not, we could
again create a better common subsequence than Z, contradicting the
premise.

2. Case zk ̸= xm: Then Z must be a subsequence of Xm−1, and so it is a
common subsequence of Xm−1 and Y . If there were a longer one, then
it would also be a common subsequence of X and Y , which would be a
contradiction.

3. Case zk ̸= yn: Similar to case 2.
Nurit Haspel 10 Dynamic Programming Longest Common Subsequence 33



LCS: Optimal Substructure

Corollary

If xm ̸= yn, then either
▶ Z is an LCS of Xm−1 and Y , or
▶ Z is an LCS of X and Yn−1.

The optimal substructure theorem assures us that if our recursive
function considers only the sub-problems named in the theorem,
that is sufficient to find an optimal solution.

Similar properties hold for suffixes, but prefixes are slightly tidier.
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Recursive Algorithm

Let c[i, j] be the length of the LCS of Xi and Yj.
Based on the optimal substructure theorem, we can write the
following recurrence:

c[i, j] =


0 if i = 0 or j = 0
c[i− 1, j − 1] + 1 if i, j > 0 and xi = yj

max {c[i− 1, j], c[i, j − 1]} if i, j > 0 and xi ̸= yj

▶ The optimal substructure property allows us to write down an
elegant recursive algorithm.

▶ However, the cost is still far too great – we can see that there are
Ω(2min{m,n}) nodes in the tree, which is still a killer.

Nurit Haspel 10 Dynamic Programming Longest Common Subsequence 35



Analysis of Overlapping Subproblems

[4,3]

[3,3] [4,2]

[2,3] [3,2] [3,2] [4,1]

[1,3] [2,2] [2,2] [3,1] [2,2] [3,1] [3,1] [4,0]

[0,3][1,2][1,2][2,1][1,2][2,1][2,1][3,0][1,2][2,1][2,1][3,0][2,1][3,0]
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Analyis of Overlapping Subproblems

▶ There are only O(mn) distinct nodes, but many nodes appear
multiple times.

▶ We only have to compute each subproblem once, and save the
result so we can use it again.

▶ This is called memoization, which refers to the process of saving
(i.e., making a “memo”) of a intermediate result so that it can be
used again without recomputing it.

▶ Of course the words “memoize” and “memorize” are related
etymologically, but they are different words, and you should not
mix them up.
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Constructing the Actual LCS
c[i, j] stores the length of the LCS; b[i, j] stores which case that subproblem used

Algorithm 1 LCSLength(X,Y,m,n)
1: for i← 1 . . .m do
2: c[i, 0]← 0
3: end for
4: for j ← 0 . . .n do
5: c[0, j]← 0
6: end for
7: for i← 1 . . .m do
8: for j ← 1 . . .n do
9: if xi == yj then

10: c[i, j]← c[i− 1, j − 1] + 1; b[i, j]← “↖”
11: else if c[i− 1, j] ≥ c[i, j − 1] then
12: c[i, j]← c[i− 1, j]; b[i, j]← “↑”
13: else
14: c[i, j]← c[i, j − 1]; b[i, j]← “←”
15: end if
16: end for
17: end for
18: return c and b
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Constructing the Actual LCS

j 0 1 2 3 4 5 6

i yj B D C A B A

0
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0 0
↑
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↑

0
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1
տ

1← 1
տ

0 0 0 0 0 0 0

Just backtrack from b[m,n]
following the arrows:

Algorithm 2 PrintLCS(b, X, i, j)
1: if i = 0 or j = 0 then
2: return
3: end if
4: if b[i, j] = “↖” then
5: PrintLCS(b,X , i− 1, j − 1)
6: PRINT xi
7: else if b[i, j] = “↑” then
8: PrintLCS(b,X , i− 1, j)
9: else

10: PrintLCS(b,X , i, j − 1)
11: end if
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What Makes Dynamic Programming Work?
It is important to understand the two properties of this problem that
made it possible for use of dynamic programming:
▶ Optimal substructure: Subproblems are just “smaller versions”

of the main problem.
Finding the LCS of two substrings could be reduced to the
problem of finding the LCS of shorter substrings.
This property enables us to write a recursive algorithm to solve
the problem, but this recursion is much too expensive —
typically, it has an exponential cost.

▶ Overlapping subproblems: This is what saves the running time.
The same subproblem is encountered many times, so we can
just solve each subproblem once and “memoize” the result.
In the current problem, that memoization cut down the cost
from exponential to quadratic, a dramatic improvement.
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Optimal Binary Search Tree

Optimal Binary Search Tree Problem

Given sequence K = k1 < k2 < · · · < kn of n sorted keys, with a
search probability pi for each key ki, build a binary search tree (BST)
with minimum expected search cost.
This is a simplified version of what the book calls the Optimal BST problem:
It assumes that there will never be searches for absent keys.

Example: translation dictionary, where not all words have equal
frequency
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Example: Optimal BST

Suppose we have 5 keys:

k1 < k2 < k3 < k4 < k5

and suppose the following table shows the probabilities of searching
for these different nodes:

i 1 2 3 4 5
pi 0.25 0.20 0.05 0.20 0.30
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Expected Search Cost
Suppose that T is a BST containing all of the ki keys. Then:
▶ The cost of looking up a specific key ki is

depthT(ki) + 1

For any node x in the tree T, let us say that depthT(x) is the
distance of x from the root of T. (So the root has depth 0.)

▶ Let E(T) be the expected search cost—the average over all keys
{ki} with the distribution described by {pi}. Then:

E(T) =

n∑
i=1

(depthT(ki) + 1) · pi

=
n∑

i=1
depthT(ki) · pi +

n∑
i=1

pi
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Expected Search Cost

▶ If we think of the {pi} probabilities as “weights”,
then the total weight of the tree is w(1,n) =

n∑
i=1

pi.

▶ So the equation above could also be written like this:

E(T) = w(1,n) +
n∑

i=1
depthT(ki) · pi

▶ Since the {pi} weights are probabilities, then w(1,n) = 1, but
this is not necessary, and it won’t be true for subproblems.
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Example: Expected Search Costs

k2

k1 k4

k3 k5

key prob. depth+1 cost
k1 0.25 2 0.50
k2 0.20 1 0.20
k3 0.05 3 0.15
k4 0.20 2 0.40
k5 0.30 3 0.90

Total 2.15

k2

k1 k5

k4

k3

key prob. depth+1 cost
k1 0.25 2 0.50
k2 0.20 1 0.20
k3 0.05 4 0.20
k4 0.20 3 0.60
k5 0.30 2 0.60

Total 2.10

So “more balanced” is not necessarily optimal for this problem.
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Optimal Substructure

The number of binary trees on n nodes is

1
n + 1

(
2n
n

)
=

4n
√
πn3/2 (1 + O(1/n))

So exhaustive search is not viable.

What is the optimal substructure property for this problem?
▶ What are the original problem’s sub-problems?
▶ Even assuming we found optimal solutions to the sub-problems,

how does that help us optimally solve the original problem?
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Brainstorming
▶ Input is a set K = {k1, . . . ,kn}, {pi} (treat as function).
▶ Final output is a BST.
▶ Most likely, a subproblem solution is also a BST.

How do we divide and combine?

▶ Possibility: Minimize over last leaf inserted

not promising
1. Pick a key ki, let Ti be solution for K − {ki}
2. For each i, calculate Insert(T′,ki)
3. Minimize E(Ti) over choice of i
4. Subproblems identified by subset of K , so 2n total

▶ Possibility: Minimize over choice of root node

let’s try this
1. Pick a key ki to be the root
2. Let L,R be solutions for subsets of K left/right of ki
3. Let Ti be tree with ki as root, L and R as children
4. Minimize E(Ti) over choice of i
5. Subproblems identified by interval in 1 .. n, so O(n2) total
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not promising

1. Pick a key ki, let Ti be solution for K − {ki}
2. For each i, calculate Insert(T′,ki)
3. Minimize E(Ti) over choice of i
4. Subproblems identified by subset of K , so 2n total

▶ Possibility: Minimize over choice of root node

let’s try this
1. Pick a key ki to be the root
2. Let L,R be solutions for subsets of K left/right of ki
3. Let Ti be tree with ki as root, L and R as children
4. Minimize E(Ti) over choice of i
5. Subproblems identified by interval in 1 .. n, so O(n2) total
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Brainstorming

The second approach (minimize over choices of the key at the root)
seems more promising.
But we don’t know yet if that will actually yield a viable algorithm.

What optimal substructure property would justify this approach?
▶ We don’t have a clever strategy for picking the root key.
▶ So many trees built from optimal sub-trees will be sub-optimal!
▶ But an optimal tree can only be built from optimal sub-trees.
▶ The algorithm still must search over trees built from optimal

sub-trees, but at least it must search only over such trees.
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Optimal Substructure

Theorem (Optimal Substructure for Optimal BST Problem)

If T is an optimal binary search tree and if T ′ is any subtree of T,
then T ′ is an optimal binary search tree for its keys.

Proof.
By the standard optimal substructure argument:
Suppose for sake of contradiction that T ′ is not optimal. Then there
is a better solution, but you could use that to improve T, which
violates the premise that T is optimal.
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Computing the Optimal Solution

▶ Let Ti,j be an optimal BST for keys
{

ki, . . . ,kj
}

(i ≤ j).
▶ Let e[i, j] be the expected cost of searching an optimal binary

search tree containing the keys {ki, . . . ,kj}.
That is, e[i, j] is the expected cost of searching the tree Ti,j.
Ultimately, we want to compute e[1,n].

▶ Let w(i, j) =
∑j

k=i pk. That is, w(i, j) is the sum of the weights of
keys ki through kj.
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Computing the Optimal Solution
If Ti,j has kr at its root, then e[i, j] has three components:
▶ The expected cost of searching the left child. This tree is Ti,r−1,

but as the left child, each node it at a depth 1 greater than
accounted for by e[i, r − 1]; we must adjust to compensate.
The cost is rather e[i, r − 1] +

∑r−1
k=i pk = e[i, r − 1] + w(i, r − 1).

▶ The cost of searching for the root kr, which is pkr = w(r, r).
▶ The expected cost of searching the right child. This tree is Tr+1,j,

but we must likewise adjust for the increased depth.
Its cost is e[r + 1, j] +

∑j
k=r+1 pk = e[r + 1, j] + w(r + 1, j).

So the total cost is

e[i, j] = e[i, r − 1] + e[r + 1, j] + w(i, r − 1) + w(r, r) + w(r + 1, j)
= e[i, r − 1] + e[r + 1, j] + w(i, j)
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Simplifying Things a Little

If Ti,j has kr as the root, then

e[i, j] = e[i, r − 1] + e[r + 1, j] + w(i, j)

We must find r by minimizing the expect cost over all possible
choices:

e[i, j] =
{

0 if i > j
mini≤r≤j {e[i, r − 1] + e[r + 1, j] + w(i, j)} otherwise
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Overlapping Subproblems

Let n be the number of keys in the original problem.
How many distinct subproblems are there?

Each nontrivial subproblem is identified by an interval i .. j,
where 1 ≤ i ≤ j ≤ n.
There are O(n2) such intervals.
That’s the size of the memo table.
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Running Time Analysis

▶ Precompute w(i, j), store in a n× n table w[i, j]. We have

w[i, j] =
{

0 if i > j
w[i, j − 1] + pj otherwise

There are O(n2) values of w[i, j] and each one takes a constant
time to compute, so the cost of computing the w array is O(n2).

▶ The cost of computing each value of e[i, j] is O(n) and there are
O(n2) such values, so the cost of computing all the values of
e[i, j] is O(n3).

▶ So the total cost of computing the w array first and then the e
array is O(n2) + O(n3) = O(n3)
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Chain Operations

Chain Operation Problem

Determine the optimal sequence for performing a series of
operations. This general class of problems is important in compiler
design for code optimization & in databases for query optimization.

Example (Chain Matrix Multiplication)

Given a series of matrices: A1 . . .An , we can “parenthesize” this
expression however we like, since matrix multiplication is associative
but not commutative.
Multiplying a p× q matrix A by a q× r matrix B produces a p× r
matrix C. (# of columns of A must be equal to # of rows of B.)
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Matrix Multiplications
Suppose A is a p× q matrix and B is a q× r matrix.
Then C = AB is a p× r matrix defined by

C[i, j] =
q∑

k=1
A[i,k]B[k, j]

Observe that each element of C takes O(q) time to compute, thus
the total time to multiply A and B is pqr.

A * B = C

p

q

q

r

p

r
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Chain Matrix Multiplication (CMM)

Chain Matrix Multiplication (CMM) Problem

Given a sequence of matrices A1,A2, . . .An, and dimensions
p0,p1 . . .pn where Ai is of dimension pi−1 × pi , determine a
multiplication sequence that minimizes the number of operations.
Note: This algorithm does not perform the multiplication, it just
figures out the best order in which to perform the multiplication.
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Example: Chain Matrix Multiplication

▶ Consider 3 matrices: A1 is 5× 4, A2 is 4× 6, and A3 is 6× 2.
▶ Count the number of operations:

cost[((A1A2)A3)] = (5 · 4 · 6) + (5 · 6 · 2) = 180
cost[(A1(A2A3))] = (4 · 6 · 2) + (5 · 4 · 2) = 88

▶ Even for this small example, considerable savings can be
achieved by reordering the evaluation sequence.
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CMM: Naive Algorithm

Case: 1 item
▶ Then there is only one way to parenthesize.

Case: n>1 items
▶ There are n− 1 places where we could break the list into two

non-empty subproblems.
▶ When we split just after the kth item, we create two sub-lists to

be parenthesized, one with k items and the other with n− k
items. Then we consider all ways of parenthesizing these.

▶ If there are L ways to parenthesize the left sub-list, R ways to
parenthesize the right sub-list, then the total number of
possibilities is L ·R.

Enumerate all parenthesizations, choose one with least cost.
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Cost of Naive Algorithm

The number of different ways of parenthesizing n items is

P(n) =


1 if n = 1
n−1∑
k=1

P(k)P(n− k) if n ≥ 2

This is related to Catalan numbers, which in turn are related to the
number of different binary trees on n nodes.
Specifically, P(n) = C(n− 1).

C(n) = 1
n + 1 ·

(
2n
n

)
= Ω

(
4n

n3/2

)
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CMM: Dynamic Programming Solution

If we choose to break the original list of n matrices between k and
k+ 1, we don’t want to enumerate and consider all parenthesizations
of [1 .. k] and [k + 1 .. n].

We want to consider only the best parenthesization of [1 .. k] and the
best parenthesization of [k + 1 .. n].

That simplification is only justified if the CMM problem has the
optimal substructure property. (It does.)
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CMM: Dynamic Programming Solution

Input: matrices A1, . . . ,An with dimensions p0,p1, . . . ,pn.
▶ Let m[i, j] (where 1 ≤ i ≤ j ≤ n) denote the minimum number of

multiplications needed to compute
∏j

k=i Ak.
▶ Example: Minimum number of multiplies for A3 · · ·A7

A1A2 A3A4A5A6A7︸ ︷︷ ︸A8A9

m[3,7]

The product A3 · · ·A7 has dimensions p2 × p7.
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CMM: Dynamic Programming Solution

The optimal cost can be described be as follows:
▶ i = j ⇒ the sequence contains only 1 matrix, so m[i, j] = 0
▶ i < j ⇒ we consider, for each k where i ≤ k < j, the product of

Ai · · ·Ak (with dimensions pi−1 × pk) and Ak+1 · · ·Aj (with
dimensions pk × pj)

Thus m[i, j] is described by the following recursive rule:

m[i, j] =
{

0 if i = j
mini≤k<j(m[i,k] + m[k + 1, j] + pi−1pkpj) if i < j

Nurit Haspel 10 Dynamic Programming Chain Matrix Multiplication 63



Matrix Chain Order

Algorithm 3 MatrixChainOrder(p)
1: n← length[p]− 1
2: for i← 1 to n do
3: m[i, i]← 0
4: end for
5: for L← 2 to n do
6: for i← 1 to n− L + 1 do
7: j ← i + L− 1; m[i, j]←∞
8: for k← i to j − 1 do
9: q← m[i, k] + m[k + 1, j] + pi−1pkpj

10: if q < m[i, j] then
11: m[i, j]← q
12: s[i, j]← k
13: end if
14: end for
15: end for
16: end for
17: return m and s

m[i, j] contains cost of
optimal multiplication of
Ai · · ·Aj

s[i, j] is the decision log.
It contains the optimal
“split point”:
(Ai · · ·Ak)(Ak+1 · · ·Aj)
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Runtime Analysis

There are 3 nested loops and each can iterate at most n times, so the
total running time is Θ(n3).
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Example
We are multiplying the following matrices:

A1 (5× 4) times A2 (4× 6) times A3 (6× 2) times A4 (2× 7)

That is, the initial sequence of dimensions is ⟨5,4,6,2,7⟩.
The optimal parenthesization is (A1(A2A3))A4.

m[i,j]

0 120 88 158

0 48 104

0 84

0

1 2 3 4
j

4

3

2

1

i

5

4

6

2

7

p0

p1

p2

p3

p4

A1

A2

A3

A4

s[i,j]

1 1 3

2 3

3

2 3 4
j

3

2

1

i

Final order

3

2

1

A1 A2 A3 A4
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