
Greedy Algorithms
CS 624 — Analysis of Algorithms

April 2, 2024

Ryan Culpepper 11 Greedy 1

Greedy Algorithms

Greedy algorithms, like dynamic programming, are used to solve
optimization problems.
▶ Problems exhibit optimal substructure, as in DP.
▶ Problems also exhibit the greedy-choice property:

Instead of having to search over results of sub-problems,
we have a criterion (a locally optimal choice) that lets us
predict the choice that leads to a globally optimal solution.

Ryan Culpepper 11 Greedy 2

Character Encoding

Goal: Encode a text message as a bit string.

The message is 100,000 characters, with only the letters
{a,b, c,d, e, f }.
The frequency of each character is given by the following table:

character times used
a 45,000
b 13,000
c 12,000
d 16,000
e 9,000
f 5,000

Ryan Culpepper 11 Greedy Huffman Coding 3

Fixed-Length Encoding

An example fixed-length encoding:

character code
a 000
b 001
c 010
d 011
e 100
f 101

We need three bits for each character, so the entire message will
take 300,000 bits to encode. Can we do better?

Ryan Culpepper 11 Greedy Huffman Coding 4

Variable Length Code

Idea: use a variable-length encoding, where more frequent
characters are given shorter codes.

character times used
a 45,000
b 13,000
c 12,000
d 16,000
e 9,000
f 5,000

For example “a” should have a shorter code than “f ”.

Ryan Culpepper 11 Greedy Huffman Coding 5

Prefix Codes

Definition (Prefix Code)
A prefix code (aka prefix-free code) is a mapping from an alphabet to
codes (typically, bit strings), such that no code is a prefix of another
code.

This property allows variable-length codes to be uniquely parsed.

Ryan Culpepper 11 Greedy Huffman Coding 6

Prefix Codes
For example:

character frequency code
a .45 0
b .13 101
c .12 100
d .16 111
e .09 1101
f .05 1100

The total size of the encoded message is now

(1(.45) + 3(.13) + 3(.12) + 3(.16) + 4(.09) + 4(.05)) · 100,000 bits
= 224,000 bits

which is a significant improvement, even though some of the code
words are actually longer in this encoding.

Ryan Culpepper 11 Greedy Huffman Coding 7

Prefix Codes

If we treat the frequency as the relative number of times a character
appears in the code, then we can re-write the former equation as:

1(.45) + 3(.13) + 3(.12) + 3(.16) + 4(.09) + 4(.05) = 2.24

This is the expected number (or “average” number) of bits per
character, as opposed to 3 bits per character in our fixed-length
encoding.

Ryan Culpepper 11 Greedy Huffman Coding 8

Prefix Codes

The efficiency of a code is the expected number of bits per character
(given a distribution of characters).
▶ Let C be the set of characters.
▶ Let f (x) be the frequency of the character x ∈ C.

Assume that
∑

x∈C f (x) = 1.
▶ Let length(x) be the length of the code word for x ∈ C.

Then the average number of bits per character for this encoding is∑
x∈C

f (x) · length(x)

Our problem is this: Given the set C and the frequency function f ,
find a prefix code that minimizes this value.

Ryan Culpepper 11 Greedy Huffman Coding 9

Codes as Binary Trees

Codes can be represented by binary trees.

100

86 14

58 28 14

a:45 b:13 c:12 d:16 e:9 f :5

0 1

0 1 0

0 1 0 1 0 1

100

a:45 55

25 30

c:12 b:13 14 d:16

f :5 e:9

0 1

0 1

0 1 0 1

0 1

Left: fixed code, right: variable code.

Ryan Culpepper 11 Greedy Huffman Coding 10

Codes as Binary Trees

▶ The depth of a leaf in the tree is just the length of the code word
for that character.

▶ Let dT(x) be the depth of a leaf node corresponding to the
character x in the tree T.

▶ The average cost AC per character in the encoding scheme
defined by the tree T is

AC(T) =
∑
x∈C

f (x)dT(x)

Ryan Culpepper 11 Greedy Huffman Coding 11

Exhaustive Search

Strategy #1: Exhaustive search
▶ Enumerate all possible prefix trees and find the one with the

smallest average cost per character.
▶ Without performing an exact analysis, the cost of this algorithm

would be exponential in the number of characters, and therefore
completely useless.

Ryan Culpepper 11 Greedy Huffman Coding 12

Optimal Substructure

Lemma
If T is the tree corresponding to an optimal prefix encoding, and if TL
and TR are its left and right subtrees, respectively, then TL and TR
are also trees corresponding to optimal prefix encodings for the
alphabets they cover.

Proof.

▶ Let us say that CL is the set of characters that are leaf nodes in
TL and similarly for CR and TR.

▶ If x ∈ CL, then dT(x) = dTL(x) + 1, and likewise if x ∈ CR, then
dT(x) = dTR(x) + 1.

Ryan Culpepper 11 Greedy Huffman Coding 13

Optimal Substructure

Proof (cont.)

▶ Therefore we can see from our basic cost formula that

AC(T) =
∑
x∈C

f (x)dT(x)

=
∑
x∈CL

f (x)
(
dTL(x) + 1

)
+

∑
x∈CR

f (x)
(
dTR(x) + 1

)
=

∑
x∈CL

f (x)dTL(x) +
∑

x∈CR

f (x)dTR(x) +
∑
x∈C

f (x)

▶ If TR were not an optimal encoding tree, then we could replace it
by a more efficient one (with the same leaves and the same
frequencies), and this would show in turn that T could not have
been optimal, a contradiction.

Ryan Culpepper 11 Greedy Huffman Coding 14

Optimal Substructure

Corollary

If T is the tree corresponding to an optimal prefix encoding, then
every subtree of T also corresponds to an optimal prefix encoding.

Proof.
This follows immediately by induction.

Since this problem has the optimal substructure property, we could
use dynamic programming to solve it recursively.

Ryan Culpepper 11 Greedy Huffman Coding 15

Recursive (Top-Down) Algorithm

Strategy #2: Recursive algorithm
▶ For a given alphabet of characters C where |C| > 1, choose a

partition of C into two non-empty sets CL and CR.
▶ Solve the subproblems corresponding to CL and CR recursively,

and form a binary tree from the results.
▶ Minimize over AC(T) for every candidate T.
▶ There are overlapping subproblems when we hit the same

subset of C along different paths.

Analysis:
▶ A subproblem is identified by a non-empty subset of C.
▶ If |C| = n, then there are 2n − 1 subproblems.

Ryan Culpepper 11 Greedy Huffman Coding 16

Top-Down vs Bottom-Up

Strategy #2′: Bottom-up algorithm
▶ Build the tree from the leaves up.
▶ This corresponds to filling in the memo table in increasing order

by subproblem cardinality.
▶ Initialize the table for each single leaf (cardinality 1).
▶ Next fill in the table for all pairs of leafs (cardinality 2).
▶ And so on, until we get to cardinality n, which has the original C

mapped to the solution for the original problem.

Analysis:
▶ Memo table still has 2n − 1 entries, must fill all of them.

Ryan Culpepper 11 Greedy Huffman Coding 17

Greedy Choice Property

Lemma (Greedy Choice Property)

Let x and y be two characters in C having the lowest frequencies.
There exists an optimal prefix code for C in which the codewords for x
and y have the same length and differ only in the last bit.

Proof.

▶ Suppose that the tree T represents an optimal prefix code for
our problem.

▶ If x and y are sibling nodes of greatest depth, then we are done.
▶ Otherwise, suppose that p and q are sibling nodes of greatest

depth.
▶ We will exchange x and p, and we will also exchange y and q.

Ryan Culpepper 11 Greedy Huffman Coding 18

Finding the Optimal Encoding

Proof (cont.)

▶ We know that
dT(x) ≤ dT(p)
dT(y) ≤ dT(q)

f (x) ≤ f (p)
f (y) ≤ f (q)

▶ Suppose the tree T, after these two switches, is turned into the tree
T′. Then we have:

dT′(x) = dT(p)
dT′(p) = dT(x)
dT′(y) = dT(q)
dT′(q) = dT(y)

Ryan Culpepper 11 Greedy Huffman Coding 19

Finding the Optimal Encoding

Proof (cont.)

AC(T′)− AC(T) =
∑
z∈C

f (z)
(
dT′(z)− dT(z)

)
= f (p)

(
dT′(p)− dT(p)

)
+ f (x)

(
dT′(x)− dT(x)

)
+ f (q)

(
dT′(q)− dT(q)

)
+ f (y)

(
dT′(y)− dT(y)

)
= f (p)

(
dT(x)− dT(p)

)
+ f (x)

(
dT(p)− dT(x)

)
+ f (q)

(
dT(y)− dT(q)

)
+ f (y)

(
dT(q)− dT(y)

)
=

(
f (p)− f (x)

)(
dT(x)− dT(p)

)
+

(
f (q)− f (y)

)(
dT(y)− dT(q)

)
≤ 0

so AC(T′) ≤ AC(T). Since T was assumed to be optimal, it must be that
AC(T′) = AC(T) and so T′ is optimal and has x, y in the positions
described by the lemma.

Ryan Culpepper 11 Greedy Huffman Coding 20

Huffman’s Algorithm

Strategy #3: Iterative pairing
▶ Start with a set of leaf nodes, one for each character in C.
▶ Select the nodes with the least frequencies. Remove them from

the set, pair them to create a new tree, and add the new tree.
▶ Repeat the process: select the two trees with least total

frequencies, remove them, pair them, and add the new tree.
▶ Stop when there is a single tree left. That is the solution.

Worry: The greedy choice lemma guaranteed that doing this for the
least-frequency characters would work, but it said nothing about
repeating the process on intermediate trees.

Ryan Culpepper 11 Greedy Huffman Coding 21

Optimal Substructure, Revisited

Lemma (Optimal Substructure, v2)

Let C be an alphabet and f : C→ R+ be frequencies. Let x, y ∈ C be
the characters with least frequencies.
Let C′ = (C − {x, y}) ∪ {z}, where z ̸∈ C, and set f (z) = f (x) + f (y).
Suppose that T ′ is a tree representing an optimal prefix code for C′.
Define T by replacing z in T ′ with a node pairing x and y.
Then T represents an optimal prefix code for C.

The proof is in the textbook (p435, Lemma 16.3).

Note: this is a very different optimal substructure property than the
first one we showed. It is specialized to the single subproblem
generated by the greedy choice.

Ryan Culpepper 11 Greedy Huffman Coding 22

Huffman’s Algorithm

Algorithm 1 Huffman(C)
1: n← |C|
2: Q← BuildMinHeap(C)
3: for i← 1 to n− 1 do
4: z← allocate new node
5: left[z]← ExtractMin(Q)
6: right[z]← ExtractMin(Q)
7: f [z]← f [x] + f [y]
8: Insert(Q, z)
9: end for

10: return ExtractMin(Q)

Analysis:
▶ O(n) for BuildMinHeap

▶ n− 1 loop iterations
▶ O(logn) for ExtractMin×2
▶ O(logn) for Insert

▶ total: O(n logn)

Ryan Culpepper 11 Greedy Huffman Coding 23

Huffman’s Algorithm

▶ This algorithm works much more efficiently than a dynamic
programming algorithm.
▶ It avoids searching. We know at each step what to do.
▶ It does not need to memoize intermediate results.

▶ This is called a “greedy” algorithm because we chose the locally
best solution at each step.

▶ What is is the best at each step is guaranteed (in this case) to
turn to out to be the best overall.

Ryan Culpepper 11 Greedy Huffman Coding 24

Activity Selection

▶ Input: Set S of n activities: S = {a1,a2, . . . ,an}.
▶ si = start time of activity ai.
▶ fi = finish time of activity ai.
▶ Output: Subset A of maximum number of compatible activities.
▶ Two activities are compatible if their intervals do not overlap.

Example

Overlapping lines represent incompatible activities:

Ryan Culpepper 11 Greedy Activity Selection 25

Optimal Substructure

Optimal Substructure for Activity Selection

Assume activities are sorted by finishing times: f1 ≤ f2 ≤ · · · ≤ fn.
Suppose A is an optimal solution for activities S = {a1, . . . ,an},
and suppose ak ∈ A.
This generates two subproblems:
▶ Let SL ⊆ {a1, . . . ,ak−1} be the set of activities ending before ak starts.
▶ Let SR ⊆ {ak+1, . . . ,an} be the set of activties starting after ak ends.

Then AL = A ∩ SL is an optimal solution for SL, and AR = A ∩ SR is
an optimal solution for SR.
So A = AL ∪ {ak} ∪ AR.

Ryan Culpepper 11 Greedy Activity Selection 26

Optimal Substructure

Let Sij be the subset of activities in S that start after ai finishes and
finish before aj starts.

Let c[i, j] be the size of maximum-size subset of mutually compatible
activities in Sij.

c[i, j] =
{

0 if Sij = ∅
maxi<k<j {c[i,k] + c[k, j] + 1} otherwise

Can we do better?

Ryan Culpepper 11 Greedy Activity Selection 27

Greedy Choice Property

This problem also exhibits the greedy choice property.

Greedy Choice Property for Activity Selection

There is an optimal solution to the subproblem Sij that includes the
activity with the earliest finish time in the set Sij.

Proof.
(why?)

Ryan Culpepper 11 Greedy Activity Selection 28

Greedy Choice Property

Thus:

c[i, j] =
{

0 if Sij = ∅
c[k, j] + 1 where k = min

{
k
∣∣ ak ∈ Sij

}
(Recall that we are assuming that activities are sorted by finish time.)

That is, for a subproblem Sij:
▶ Make the greedy choice without solving subproblems first and

evaluating them. (No search!)
▶ Solve the (single) subproblem that ensues as a result of making

this greedy choice.
▶ Combine the greedy choice and the solution to the subproblem.

Ryan Culpepper 11 Greedy Activity Selection 29

Recursive Solution

Algorithm 2 SelectActivities(i, j)
1: m← i + 1
2: while m < j and sm < fi do
3: m← m + 1
4: end while
5: if m < j then
6: return {am} ∪ SelectActivities(m, j)
7: else
8: return ∅
9: end if

Treat s, f ,a as global.

Initial call:

SelectActivities(0,n + 1)

See text for iterative version.

What is the running time?

Ryan Culpepper 11 Greedy Activity Selection 30

Typical Steps

▶ Cast the optimization problem as one in which we make a choice
and are left with one subproblem to solve.

▶ Prove that there is always an optimal solution that makes the
greedy choice, so that the greedy choice is always safe.

▶ Show that greedy choice and optimal solution to subproblem
yield an optimal solution to the problem.

▶ Make the greedy choice and solve top-down.
▶ May have to preprocess input to put it into greedy order.

For example: Sorting activities by finish time.

Ryan Culpepper 11 Greedy Conclusion 31

	Huffman Coding
	Activity Selection
	Conclusion

