Greedy Algorithms CS 624 — Analysis of Algorithms

April 2, 2024

Ryan Culpepper

11 Greedy

Greedy algorithms, like dynamic programming, are used to solve optimization problems.

- Problems exhibit optimal substructure, as in DP.
- Problems also exhibit the greedy-choice property: Instead of having to search over results of sub-problems, we have a criterion (a locally optimal choice) that lets us predict the choice that leads to a globally optimal solution.

Goal: Encode a text message as a bit string.

The message is 100,000 characters, with only the letters $\{a, b, c, d, e, f\}$.

The frequency of each character is given by the following table:

character	times used
a	45,000
b	13,000
С	12,000
d	16,000
e	9,000
f	5,000

An example fixed-length encoding:

character	code
a	000
b	001
С	010
d	011
e	100
f	101

We need three bits for each character, so the entire message will take 300,000 bits to encode. Can we do better?

Ryan	Cul	lne	nr	her
ryun	cu	ipe.	۲۲	~

Idea: use a variable-length encoding, where more frequent characters are given shorter codes.

character	times used
a	45,000
b	13,000
c	12,000
d	16,000
e	9,000
f	5,000

For example "a" should have a shorter code than "f".

Definition (Prefix Code)

A **prefix code** (aka **prefix-free code**) is a mapping from an alphabet to codes (typically, bit strings), such that no code is a prefix of another code.

This property allows *variable-length* codes to be uniquely parsed.

Prefix Codes

For example:

character	frequency	code
a	.45	0
b	.13	101
С	.12	100
d	.16	111
e	.09	1101
f	.05	1100

The total size of the encoded message is now

 $\begin{array}{l} (1(.45)+3(.13)+3(.12)+3(.16)+4(.09)+4(.05))\cdot 100,000 \text{ bits} \\ \\ = 224,000 \text{ bits} \end{array}$

which is a significant improvement, even though some of the code words are actually longer in this encoding.

Ryan Culpepper	11 Greedy	Huffman Coding
----------------	-----------	----------------

If we treat the frequency as the relative number of times a character appears in the code, then we can re-write the former equation as:

1(.45) + 3(.13) + 3(.12) + 3(.16) + 4(.09) + 4(.05) = 2.24

This is the expected number (or "average" number) of bits per character, as opposed to 3 bits per character in our fixed-length encoding.

The **efficiency** of a code is the expected number of bits per character (given a distribution of characters).

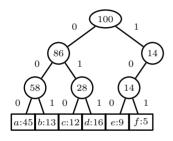
- ▶ Let *C* be the set of characters.
- Let f(x) be the frequency of the character $x \in C$. Assume that $\sum_{x \in C} f(x) = 1$.
- Let length(x) be the length of the code word for $x \in C$.

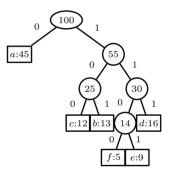
Then the average number of bits per character for this encoding is

$$\sum_{x \in C} f(x) \cdot length(x)$$

Our problem is this: Given the set C and the frequency function f, find a prefix code that minimizes this value.

Codes can be represented by binary trees.





Left: fixed code, right: variable code.

- The depth of a leaf in the tree is just the length of the code word for that character.
- Let $d_T(x)$ be the depth of a leaf node corresponding to the character x in the tree T.
- The average cost AC per character in the encoding scheme defined by the tree T is

$$AC(T) = \sum_{x \in C} f(x) d_T(x)$$

Strategy #1: Exhaustive search

- Enumerate all possible prefix trees and find the one with the smallest average cost per character.
- Without performing an exact analysis, the cost of this algorithm would be exponential in the number of characters, and therefore completely useless.

Lemma

If T is the tree corresponding to an optimal prefix encoding, and if T_L and T_R are its left and right subtrees, respectively, then T_L and T_R are also trees corresponding to optimal prefix encodings for the alphabets they cover.

Proof.

- Let us say that C_L is the set of characters that are leaf nodes in T_L and similarly for C_R and T_R .
- If $x \in C_L$, then $d_T(x) = d_{T_L}(x) + 1$, and likewise if $x \in C_R$, then $d_T(x) = d_{T_R}(x) + 1$.

Optimal Substructure

Proof (cont.)

Therefore we can see from our basic cost formula that

$$egin{aligned} &AC(T) = \sum_{x \in C} f(x) d_T(x) \ &= \sum_{x \in C_L} f(x) ig(d_{T_L}(x) + 1 ig) + \sum_{x \in C_R} f(x) ig(d_{T_R}(x) + 1 ig) \ &= \sum_{x \in C_L} f(x) d_{T_L}(x) + \sum_{x \in C_R} f(x) d_{T_R}(x) + \sum_{x \in C} f(x) \end{aligned}$$

If T_R were not an optimal encoding tree, then we could replace it by a more efficient one (with the same leaves and the same frequencies), and this would show in turn that T could not have been optimal, a contradiction.

11 Greedy

Corollary

If T is the tree corresponding to an optimal prefix encoding, then every subtree of T also corresponds to an optimal prefix encoding.

Proof.

This follows immediately by induction.

Since this problem has the optimal substructure property, we could use dynamic programming to solve it recursively.

Recursive (Top-Down) Algorithm

Strategy #2: Recursive algorithm

- ▶ For a given alphabet of characters C where |C| > 1, choose a partition of C into two non-empty sets C_L and C_R.
- Solve the subproblems corresponding to C_L and C_R recursively, and form a binary tree from the results.
- Minimize over AC(T) for every candidate T.
- There are overlapping subproblems when we hit the same subset of C along different paths.

Analysis:

- ► A subproblem is identified by a non-empty subset of *C*.
- If |C| = n, then there are $2^n 1$ subproblems.

Strategy #2': Bottom-up algorithm

- Build the tree from the leaves up.
- This corresponds to filling in the memo table in increasing order by subproblem cardinality.
- Initialize the table for each single leaf (cardinality 1).
- Next fill in the table for all pairs of leafs (cardinality 2).
- And so on, until we get to cardinality n, which has the original C mapped to the solution for the original problem.

Analysis:

• Memo table still has $2^n - 1$ entries, must fill all of them.

Lemma (Greedy Choice Property)

Let x and y be two characters in C having the lowest frequencies. There exists an optimal prefix code for C in which the codewords for xand y have the same length and differ only in the last bit.

Proof.

- Suppose that the tree T represents an optimal prefix code for our problem.
- ▶ If *x* and *y* are sibling nodes of greatest depth, then we are done.
- Otherwise, suppose that p and q are sibling nodes of greatest depth.
- We will exchange x and p, and we will also exchange y and q.

Finding the Optimal Encoding

Proof (cont.)

We know that

```
egin{aligned} &d_T(x) \leq d_T(p) \ &d_T(y) \leq d_T(q) \ &f(x) \leq f(p) \ &f(y) \leq f(q) \end{aligned}
```

Suppose the tree T, after these two switches, is turned into the tree T'. Then we have:

$$egin{aligned} d_{T'}(x) &= d_T(p) \ d_{T'}(p) &= d_T(x) \ d_{T'}(y) &= d_T(q) \ d_{T'}(q) &= d_T(q) \end{aligned}$$

Finding the Optimal Encoding

Proof (cont.)

$$egin{aligned} AC(T') - AC(T) &= \sum_{z \in C} f(z)ig(d_{T'}(z) - d_T(z)ig) \ &= f(p)ig(d_{T'}(p) - d_T(p)ig) + f(x)ig(d_{T'}(x) - d_T(x)ig) \ &+ f(q)ig(d_{T'}(q) - d_T(q)ig) + f(y)ig(d_{T'}(y) - d_T(y)ig) \ &= f(p)ig(d_T(x) - d_T(p)ig) + f(x)ig(d_T(p) - d_T(x)ig) \ &+ f(q)ig(d_T(y) - d_T(q)ig) + f(y)ig(d_T(q) - d_T(y)ig) \ &= ig(f(p) - f(x)ig)ig(d_T(x) - d_T(p)ig) \ &+ ig(f(q) - f(y)ig)ig(d_T(y) - d_T(q)ig) \ &\leq 0 \end{aligned}$$

so $AC(T') \leq AC(T)$. Since T was assumed to be optimal, it must be that AC(T') = AC(T) and so T' is optimal and has x, y in the positions described by the lemma.

Ryan Culpepper

Strategy #3: Iterative pairing

- Start with a set of leaf nodes, one for each character in C.
- Select the nodes with the least frequencies. Remove them from the set, pair them to create a new tree, and add the new tree.
- Repeat the process: select the two trees with least total frequencies, remove them, pair them, and add the new tree.
- Stop when there is a single tree left. That is the solution.

Worry: The greedy choice lemma guaranteed that doing this for the least-frequency *characters* would work, but it said nothing about repeating the process on intermediate trees.

Lemma (Optimal Substructure, v2)

Let C be an alphabet and $f: C \to \mathbb{R}^+$ be frequencies. Let $x, y \in C$ be the characters with least frequencies.

Let $C' = (C - \{x, y\}) \cup \{z\}$, where $z \not\in C$, and set f(z) = f(x) + f(y).

Suppose that T' is a tree representing an optimal prefix code for C'. Define T by replacing z in T' with a node pairing x and y.

Then T represents an optimal prefix code for C.

The proof is in the textbook (p435, Lemma 16.3).

Note: this is a very different optimal substructure property than the first one we showed. It is specialized to the single subproblem generated by the greedy choice.

Algorithm 1 Huffman(C)

- 1: $n \leftarrow |C|$
- 2: $\boldsymbol{Q} \leftarrow \operatorname{BuildMinHeap}(\boldsymbol{C})$
- 3: for $i \leftarrow 1$ to n-1 do
- 4: $z \leftarrow ext{allocate new node}$
- 5: $\operatorname{left}[z] \leftarrow \operatorname{ExtractMin}(Q)$
- 6: $\operatorname{right}[\boldsymbol{z}] \leftarrow \operatorname{ExtractMin}(\boldsymbol{Q})$
- 7: $f[z] \leftarrow f[x] + f[y]$
- 8: Insert(Q, z)
- 9: end for
- 10: return $\operatorname{ExtractMin}(Q)$

Analysis:

- ▶ O(n) for BuildMinHeap
- ▶ n-1 loop iterations
 - $O(\log n)$ for ExtractMin $\times 2$
 - $O(\log n)$ for Insert
- total: $O(n \log n)$

- This algorithm works much more efficiently than a dynamic programming algorithm.
 - It avoids searching. We know at each step what to do.
 - It does not need to memoize intermediate results.
- This is called a "greedy" algorithm because we chose the locally best solution at each step.
- What is is the best at each step is guaranteed (in this case) to turn to out to be the best overall.

Activity Selection

- Input: Set S of n activities: $S = \{a_1, a_2, \dots, a_n\}$.
- ▶ s_i = start time of activity a_i .
- f_i = finish time of activity a_i .
- **Output:** Subset *A* of maximum *number* of compatible activities.
- > Two activities are compatible if their intervals do not overlap.

Example

Overlapping lines represent incompatible activities:

Optimal Substructure for Activity Selection

Assume activities are sorted by finishing times: $f_1 \leq f_2 \leq \cdots \leq f_n$. Suppose A is an optimal solution for activities $S = \{a_1, \ldots, a_n\}$, and suppose $a_k \in A$.

This generates two subproblems:

- ▶ Let $S_L \subseteq \{a_1, \ldots, a_{k-1}\}$ be the set of activities ending before a_k starts.
- ▶ Let $S_R \subseteq \{a_{k+1}, \ldots, a_n\}$ be the set of activties starting after a_k ends.

Then $A_L = A \cap S_L$ is an optimal solution for S_L , and $A_R = A \cap S_R$ is an optimal solution for S_R .

So $A = A_L \cup \{a_k\} \cup A_R$.

Let S_{ij} be the subset of activities in S that start after a_i finishes and finish before a_j starts.

Let c[i,j] be the size of maximum-size subset of mutually compatible activities in S_{ij} .

$$c[i,j] = egin{cases} 0 & ext{if } S_{ij} = \emptyset \ \max_{i < k < j} \left\{ c[i,k] + c[k,j] + 1
ight\} & ext{otherwise} \end{cases}$$

Can we do better?

This problem also exhibits the greedy choice property.

Greedy Choice Property for Activity Selection

There is an optimal solution to the subproblem S_{ij} that includes the activity with the *earliest finish time* in the set S_{ij} .

Proof.

(why?)

Thus:

$$c[i,j] = egin{cases} 0 & ext{if } oldsymbol{S}_{ij} = \emptyset \ c[k,j] + 1 & ext{where } k = \minig\{k \mid a_k \in oldsymbol{S}_{ij}ig\} \end{cases}$$

(Recall that we are assuming that activities are sorted by finish time.)

That is, for a subproblem S_{ij} :

- Make the greedy choice without solving subproblems first and evaluating them. (No search!)
- Solve the (single) subproblem that ensues as a result of making this greedy choice.
- Combine the greedy choice and the solution to the subproblem.

Algorithm 2 SelectActivities(*i*, *j*) 1: $m \leftarrow i + 1$ Treat s, f, a as global. 2: while m < j and $s_m < f_i$ do Initial call: 3: $m \leftarrow m+1$ 4: end while SelectActivities(0, n + 1)5: if m < i then **return** $\{a_m\} \cup \text{SelectActivities}(m, i)$ 6: See text for iterative version. 7: else return Ø 8. o: end if

What is the running time?

- Cast the optimization problem as one in which we make a choice and are left with one subproblem to solve.
- Prove that there is always an optimal solution that makes the greedy choice, so that the greedy choice is always safe.
- Show that greedy choice and optimal solution to subproblem yield an optimal solution to the problem.
- Make the greedy choice and solve top-down.
- May have to preprocess input to put it into greedy order.
 For example: Sorting activities by finish time.