Breadth-First Search

CS 624 — Analysis of Algorithms

November 18, 2024

Nurit Haspel

Graphs

Definitions
A graph G = (V,E) contains a set V of vertices and a set E of edges.

A directed graph has E C V x V. An edge (u,v) is an edge from u to
v, also written u — v. Self loops such as (v, u) are allowed.

An undirected graph has E C {{u,v} |u,v € V, u # v}. An edge
{u,v} connects u and v. It is also written (u,v), but we consider
(u,v) = (v,u). Self loops are not allowed.

A weighted graph (either directed or undirected) also associates a
weight with each edge, given by a weight functionw : E — R.

Nurit Haspel

More Definitions

» A graph is called dense if |[E| ~ |V |2, or sparse if |E| < |V|2.
In any case, |[E| = O(|V|?).
» If (u,v) € E, then vertex v is adjacent to vertex u.

» Adjacency relationship is symmetric if G is undirected, not
necessarily so if G is directed.

Nurit Haspel

More Definitions

For an undirected graph G = (V,E):
» G is connected if there is a path between every pair of vertices.
» If G is connected, then |E| > |V| — 1.
» Furthermore, if G is connected and |[E| = |V| —1, then G is a tree.
» Other definitions in Appendix B (B.4 and B.5) as needed.

Nurit Haspel

Graph Representations

One way to represent a graph is as a list of vertices, where each
vertex has an adjacency list represnting its edges.

> For each vertex v € V, we have a list Adj[v] consisting of those
vertices u such that (v,u) € E.

> Itis actually a set, but usually implemented as a list.

» This works for both directed and undirected graphs.
Directed graph: an edge (v,u) is represented by u € Adj[v].
Undirected graph: an edge (v,u) is represented by u € Adj[v]
and v € Adj[u].

Another representation uses a single adjacency matrix.

Nurit Haspel

Graph Search Algorithms

Searching a graph:
» Systematically follow the edges of a graph
to visit all of the vertices of the graph.
» Used to discover the structure of a graph.
» Standard graph-searching algorithms:

» Breadth-First Search (BFS)
» Depth-First Search (DFS)

Nurit Haspel

Breadth-First Search (BFS)

» BFS scans the graph G, starting from some given node s.

> BFS expands the frontier between discovered and undiscovered
vertices uniformly across the breadth of the frontier.

» The key mechanism in this algorithm is the use of a queue,
denoted by @.

Breadth-First Search (BFS)

Nurit Haspel

The BFS Algorithm

Algorithm 1 BFS(G, s)

WRONDINEWN =

for each vertexu € V[G] — {s} do
Color[u] + White
dlu] « oo
7[u] < NIL
end for
Color(s] < Gray
d[s] < 0
7[s] « NIL
Q<+ o
Enqueue(Q, s)
while @ # @ do
u < Dequeue(Q)
for eachv € Adju] do
if Color[v] = White then
Color[v] « Gray
dv] < dfu] +1

discover s

process u

discover v

wv] «u (u,v) is a “tree edge”

Enqueue(Q, v)
end if
end for
Color[u] «+ Black

. end while

finish u

A vertex is “discovered” the first time it is
encountered during the search.

A vertex is “finished” if all vertices adjacent to it
have been discovered.

Colors indicate progress:
> White means undiscovered.
» Gray means discovered, not processed.
» Black means fully processed.

Colors are helpful for reasoning about the
algorithm. Not necessary for implementation.

d[u] is length of shortest path from s to u.
m[u] is previous node on shortest path from s to u.

Breadth-First Sea

Nurit Haspel

BFS Example

H® OO
e@"‘@

» Note that all nodes are initially colored white.

» A node is colored gray when it is placed on the queue.

Nurit Haspel Breadth-First Search (BFS)

BFS Example

» A node is colored black when taken off the queue.

» Nodes colored white have not yet been visited. The nodes

colored black are “finished” and the nodes colored gray are still
being processed.

Nurit Haspel

Breadth-First Search (BFS)

BFS Example

v w X Yy

» When a node is placed on the queue, the edge from the first
node in the queue (which is being taken off the queue) to that
node is marked as a tree edge in the breadth-first tree.

» These edges actually do form a tree (called the breadth-first
tree) whose root is the start node s.

Nurit Haspel Breadth-First Search (BFS)

BFS Example

r s t u r s t u
1 0 2 o
/LT o[l o[x]5]
® 0-0-®
v w x y v w x Yy

r S t u r S t u
mQ m
v w x y v w x Yy

Nurit Haspel Breadth-First Search (BFS)

Each node is visited once and each edge is examined at most twice.
Therefore the cost is O(|V| + |E|).

Nurit Haspel Properties of Breadth-First Search

The BFS Algorithm — Proof of Correctness

Lemma

If G is connected, then the breadth-first tree constructed by this
algorithm

» really is a tree, and
» contains all the nodes in the graph.

Nurit Haspel Properties of Breadth-First Search

The BFS Algorithm — Proof of Correctness

» A node becomes the target of a tree edge when it is placed on
the queue. Since that only happens once, no node is the target
of two tree edges.

> Next, let us show that every node that is processed by the
algorithm is reachable by a chain of tree edges from the root. It
is enough to prove the following statement:

» When a node is placed on the queue, it is reachable by a chain of
tree edges from the root.

» Itis clearly true at the beginning: There is only one node in the
queue and it is the root. The rest can be shown by induction.

Nurit Haspel Properties of Breadth-First Search

The BFS Algorithm — Proof of Correctness

Proof (Cont.)

» Suppose it is true up to some point.

» When the next node v is placed on the queue, v is an endpoint of
an edge whose other endpoint is the node at the head of the
queue, and that edge is made a tree edge.

» By the inductive assumption, the node at the head of the queue
is reachable by a path of tree edges from the root.

» Appending the new edge to the path gives a path of tree edges
from the root to v.

Nurit Haspel Properties of Breadth-First Search

The BFS Algorithm — Proof of Correctness

Proof (Cont.)

>

>
>
>
>
>

vy

Every node that is processed by the algorithm is reachable by a chain
of edges from the root - so the edges form a tree.

Suppose there was one node v that was not reached by this process.
Since G is connected, there would have to be a path from the root to v.
On that path there is a first node (w) which was not in the tree.

That node might be v, or it might come earlier in the path.

That means that the edge in the path leading to that node starts from
a node in the tree.

At some point, that node in the tree was at the head of the queue.

Therefore, w would have been placed in the queue by the algorithm,
and the edge to w would have been a tree edge — a contradiction.

O

Nurit Haspel Properties of Breadth-First Search

The BFS Algorithm — Proof of Correctness

Lemma
If at any point in the execution of the BFS algorithm the queue
consists of the vertices {vy,vy, ...,v,}, where vy is at the head of the

queue, then d[v;] < d[v; 1] for1 <i <n -1, andd[v,] <dv;| + 1.

» In other words, the assigned depth numbers increase as one
walks down the queue, and there are at most two different
depths in the queue at any one time.

» If there are two, they are consecutive.

Properties of Breadth-First Search

Nurit Haspel

The BFS Algorithm — Proof of Correctness

» The result is true trivially at the start of the program, since there
is only one element in the queue. The rest by induction.

» At any step, a vertex is added to the tail of the queue only when
it is reachable from the vertex at the head (which is being taken
off).

» The depth assigned to the new vertex at the tail is 1 more than
that of the vertex at the head.

» By the inductive hypothesis it is greater than or equal to the
depths of any other vertex on the queue, and no more than 1
greater than any of them.

Nurit Haspel Properties of Breadth-First Search

The BFS Algorithm — Proof of Correctness

Lemma

If two nodes in G are joined by an edge in the graph (which might or might
not be a tree edge), their d values differ by at most 1.

» Let the nodes be v and . One of them is reached first in the
breadth-first walk.

> w.l.o.g, say v is reached first. So v is put on the queue first, and reaches
the head of the queue before u does. When v reaches the head of the

queue, there are two possibilities:

» u has not yet been reached. In that case, when we take v off the
queue, since there is an edge from v to u, u will be put on the
queue and we will have d[u] = d[v] + 1.

» u has been reached and therefore is on the queue. In this case,
we know from the previous lemma that d[v] < d[u] <d[v]+1. O

Properties of Breadth-First Search

Nurit Haspel 13 BFS

The BFS Algorithm — Proof of Correctness

If G is connected, then the breadth-first search tree gives the shortest path
from the root to any node.

» We know there is a path in the tree from the root to any node.

» The depth of any node in the tree is the length of the path in the tree
from the root to that node.

» So for each node v in the tree, we have
d[v] = the length of the path in the tree from the root to v
and let us set

s|v] = the length of the shortest path in G from the root to v

Nurit Haspel Properties of Breadth-First Search

The BFS Algorithm — Proof of Correctness

Proof (Cont.)

>
|
>

We are trying to prove that d[v] = s[v] forallv € G.

We know just by the definition of s[v] that s[v] < d[v] for all v.
Suppose there is at least one node for which the theorem is not
true.

All the nodes w for which the statement of the theorem is not
true satisfy s{w] < d[w].

Among all those nodes, pick one — call it v — for which s[v] is
smallest.

Nurit Haspel Properties of Breadth-First Search

The BFS Algorithm — Proof of Correctness

» Let u be the node preceding v on a shortest path from the root

tov.
» We have
d[v] > s[v]
sv] =su]+1
s[u] = d[u]

» Hencedv] > sv] =s[u] +1=d[u] + 1.
» But by former lemma, this is impossible.

Nurit Haspel Properties of Breadth-First Search

Print Shortest Path

We assume that BFS(G, s) has already been run, so that each node x has
been assigned its depth d|x].

Algorithm 2 PrintPath(G, s, v)

1. if v = s then
2 PRINT s

3: else

4 if w[v] = NIL then

5 PRINT “no path from” s “to” v “exists”
6: else
7
8
9
10:

PrintPath(G, s, 7[v])
PRINT v
end if
end if

The cost of this algorithm is proportional to the number of vertices in the
path, so it is O(d[v]).

Nurit Haspel 13 BFS Properties of Breadth-First Search

	Graphs
	Breadth-First Search (BFS)
	Properties of Breadth-First Search

