
Breadth-First Search
CS 624 — Analysis of Algorithms

November 18, 2024

Nurit Haspel 13 BFS 1

Graphs

Definitions
A graph G = (V ,E) contains a set V of vertices and a set E of edges.

A directed graph has E ⊆ V × V . An edge (u, v) is an edge from u to
v, also written u → v. Self loops such as (u,u) are allowed.

An undirected graph has E ⊆ {{u, v} | u, v ∈ V , u ̸= v}. An edge
{u, v} connects u and v. It is also written (u, v), but we consider
(u, v) = (v,u). Self loops are not allowed.

A weighted graph (either directed or undirected) also associates a
weight with each edge, given by a weight function w : E → R.

Nurit Haspel 13 BFS Graphs 2

More Definitions

▶ A graph is called dense if |E| ≈ |V |2, or sparse if |E| ≪ |V |2.
In any case, |E| = O(|V |2).

▶ If (u, v) ∈ E, then vertex v is adjacent to vertex u.
▶ Adjacency relationship is symmetric if G is undirected, not

necessarily so if G is directed.

Nurit Haspel 13 BFS Graphs 3

More Definitions

For an undirected graph G = (V ,E):
▶ G is connected if there is a path between every pair of vertices.
▶ If G is connected, then |E| ≥ |V | − 1.
▶ Furthermore, if G is connected and |E| = |V | − 1, then G is a tree.
▶ Other definitions in Appendix B (B.4 and B.5) as needed.

Nurit Haspel 13 BFS Graphs 4

Graph Representations

One way to represent a graph is as a list of vertices, where each
vertex has an adjacency list represnting its edges.
▶ For each vertex v ∈ V , we have a list Adj[v] consisting of those

vertices u such that (v,u) ∈ E.
▶ It is actually a set, but usually implemented as a list.
▶ This works for both directed and undirected graphs.

Directed graph: an edge (v,u) is represented by u ∈ Adj[v].
Undirected graph: an edge (v,u) is represented by u ∈ Adj[v]
and v ∈ Adj[u].

Another representation uses a single adjacency matrix.

Nurit Haspel 13 BFS Graphs 5

Graph Search Algorithms

Searching a graph:
▶ Systematically follow the edges of a graph

to visit all of the vertices of the graph.
▶ Used to discover the structure of a graph.
▶ Standard graph-searching algorithms:

▶ Breadth-First Search (BFS)
▶ Depth-First Search (DFS)

Nurit Haspel 13 BFS Graphs 6

Breadth-First Search (BFS)

▶ BFS scans the graph G, starting from some given node s.
▶ BFS expands the frontier between discovered and undiscovered

vertices uniformly across the breadth of the frontier.
▶ The key mechanism in this algorithm is the use of a queue,

denoted by Q.

Nurit Haspel 13 BFS Breadth-First Search (BFS) 7

The BFS Algorithm

Algorithm 1 BFS(G, s)
1: for each vertex u ∈ V[G]− {s} do
2: Color[u]← White
3: d[u]←∞
4: π[u]← nil
5: end for
6: Color[s]← Gray discover s
7: d[s]← 0
8: π[s]← nil
9: Q← ∅

10: Enqueue(Q, s)
11: while Q ̸= ∅ do
12: u← Dequeue(Q) process u
13: for each v ∈ Adj[u] do
14: if Color[v] = White then
15: Color[v]← Gray discover v
16: d[v]← d[u] + 1
17: π[v]← u (u, v) is a “tree edge”
18: Enqueue(Q, v)
19: end if
20: end for
21: Color[u]← Black finish u
22: end while

A vertex is “discovered” the first time it is
encountered during the search.
A vertex is “finished” if all vertices adjacent to it
have been discovered.

Colors indicate progress:
▶ White means undiscovered.
▶ Gray means discovered, not processed.
▶ Black means fully processed.

Colors are helpful for reasoning about the
algorithm. Not necessary for implementation.

d[u] is length of shortest path from s to u.
π[u] is previous node on shortest path from s to u.

Nurit Haspel 13 BFS Breadth-First Search (BFS) 8

BFS Example

∞ 0 ∞ ∞

∞ ∞ ∞ ∞

r s t u

v w x y

Q s

▶ Note that all nodes are initially colored white.
▶ A node is colored gray when it is placed on the queue.

Nurit Haspel 13 BFS Breadth-First Search (BFS) 9

BFS Example

1 0 ∞ ∞

∞ 1 ∞ ∞

r s t u

v w x y

Q w r

▶ A node is colored black when taken off the queue.
▶ Nodes colored white have not yet been visited. The nodes

colored black are “finished” and the nodes colored gray are still
being processed.

Nurit Haspel 13 BFS Breadth-First Search (BFS) 10

BFS Example

1 0 2 ∞

∞ 1 2 ∞

r s t u

v w x y

Q r t x

▶ When a node is placed on the queue, the edge from the first
node in the queue (which is being taken off the queue) to that
node is marked as a tree edge in the breadth-first tree.

▶ These edges actually do form a tree (called the breadth-first
tree) whose root is the start node s.

Nurit Haspel 13 BFS Breadth-First Search (BFS) 11

BFS Example

1 0 2 ∞

2 1 2 ∞

r s t u

v w x y

Q t x v
1 0 2 3

2 1 2 ∞

r s t u

v w x y

Q x v u

1 0 2 3

2 1 2 3

r s t u

v w x y

Q v u y
1 0 2 3

2 1 2 3

r s t u

v w x y

Q u y

1 0 2 3

2 1 2 3

r s t u

v w x y

Q y
1 0 2 3

2 1 2 3

r s t u

v w x y

Nurit Haspel 13 BFS Breadth-First Search (BFS) 12

Running Time

Each node is visited once and each edge is examined at most twice.

Therefore the cost is O(|V |+ |E|).

Nurit Haspel 13 BFS Properties of Breadth-First Search 13

The BFS Algorithm — Proof of Correctness

Lemma
If G is connected, then the breadth-first tree constructed by this
algorithm
▶ really is a tree, and
▶ contains all the nodes in the graph.

Nurit Haspel 13 BFS Properties of Breadth-First Search 14

The BFS Algorithm — Proof of Correctness

Proof.

▶ A node becomes the target of a tree edge when it is placed on
the queue. Since that only happens once, no node is the target
of two tree edges.

▶ Next, let us show that every node that is processed by the
algorithm is reachable by a chain of tree edges from the root. It
is enough to prove the following statement:

▶ When a node is placed on the queue, it is reachable by a chain of
tree edges from the root.

▶ It is clearly true at the beginning: There is only one node in the
queue and it is the root. The rest can be shown by induction.

Nurit Haspel 13 BFS Properties of Breadth-First Search 15

The BFS Algorithm – Proof of Correctness

Proof (Cont.)

▶ Suppose it is true up to some point.
▶ When the next node v is placed on the queue, v is an endpoint of

an edge whose other endpoint is the node at the head of the
queue, and that edge is made a tree edge.

▶ By the inductive assumption, the node at the head of the queue
is reachable by a path of tree edges from the root.

▶ Appending the new edge to the path gives a path of tree edges
from the root to v.

Nurit Haspel 13 BFS Properties of Breadth-First Search 16

The BFS Algorithm – Proof of Correctness

Proof (Cont.)

▶ Every node that is processed by the algorithm is reachable by a chain
of edges from the root – so the edges form a tree.

▶ Suppose there was one node v that was not reached by this process.
▶ Since G is connected, there would have to be a path from the root to v.
▶ On that path there is a first node (w) which was not in the tree.
▶ That node might be v, or it might come earlier in the path.
▶ That means that the edge in the path leading to that node starts from

a node in the tree.
▶ At some point, that node in the tree was at the head of the queue.
▶ Therefore, w would have been placed in the queue by the algorithm,

and the edge to w would have been a tree edge — a contradiction.

Nurit Haspel 13 BFS Properties of Breadth-First Search 17

The BFS Algorithm – Proof of Correctness

Lemma
If at any point in the execution of the BFS algorithm the queue
consists of the vertices {v1, v2, . . . , vn}, where v1 is at the head of the
queue, then d[vi] ≤ d[vi+1] for 1 ≤ i ≤ n − 1, and d[vn] ≤ d[v1|+ 1.

▶ In other words, the assigned depth numbers increase as one
walks down the queue, and there are at most two different
depths in the queue at any one time.

▶ If there are two, they are consecutive.

Nurit Haspel 13 BFS Properties of Breadth-First Search 18

The BFS Algorithm – Proof of Correctness

Proof.

▶ The result is true trivially at the start of the program, since there
is only one element in the queue. The rest by induction.

▶ At any step, a vertex is added to the tail of the queue only when
it is reachable from the vertex at the head (which is being taken
off).

▶ The depth assigned to the new vertex at the tail is 1 more than
that of the vertex at the head.

▶ By the inductive hypothesis it is greater than or equal to the
depths of any other vertex on the queue, and no more than 1
greater than any of them.

Nurit Haspel 13 BFS Properties of Breadth-First Search 19

The BFS Algorithm – Proof of Correctness

Lemma
If two nodes in G are joined by an edge in the graph (which might or might
not be a tree edge), their d values differ by at most 1.

Proof.

▶ Let the nodes be v and u. One of them is reached first in the
breadth-first walk.

▶ w.l.o.g, say v is reached first. So v is put on the queue first, and reaches
the head of the queue before u does. When v reaches the head of the
queue, there are two possibilities:
▶ u has not yet been reached. In that case, when we take v off the

queue, since there is an edge from v to u, u will be put on the
queue and we will have d[u] = d[v] + 1.

▶ u has been reached and therefore is on the queue. In this case,
we know from the previous lemma that d[v] ≤ d[u] ≤ d[v] + 1.

Nurit Haspel 13 BFS Properties of Breadth-First Search 20

The BFS Algorithm – Proof of Correctness

Theorem
If G is connected, then the breadth-first search tree gives the shortest path
from the root to any node.

Proof.

▶ We know there is a path in the tree from the root to any node.
▶ The depth of any node in the tree is the length of the path in the tree

from the root to that node.
▶ So for each node v in the tree, we have

d[v] = the length of the path in the tree from the root to v
and let us set

s[v] = the length of the shortest path in G from the root to v

Nurit Haspel 13 BFS Properties of Breadth-First Search 21

The BFS Algorithm – Proof of Correctness

Proof (Cont.)

▶ We are trying to prove that d[v] = s[v] for all v ∈ G.
▶ We know just by the definition of s[v] that s[v] ≤ d[v] for all v.
▶ Suppose there is at least one node for which the theorem is not

true.
▶ All the nodes w for which the statement of the theorem is not

true satisfy s[w] < d[w].
▶ Among all those nodes, pick one — call it v — for which s[v] is

smallest.

Nurit Haspel 13 BFS Properties of Breadth-First Search 22

The BFS Algorithm – Proof of Correctness

Cont.

▶ Let u be the node preceding v on a shortest path from the root
to v.

▶ We have

d[v] > s[v]
s[v] = s[u] + 1
s[u] = d[u]

▶ Hence d[v] > s[v] = s[u] + 1 = d[u] + 1.
▶ But by former lemma, this is impossible.

Nurit Haspel 13 BFS Properties of Breadth-First Search 23

Print Shortest Path
We assume that BFS(G, s) has already been run, so that each node x has
been assigned its depth d[x].

Algorithm 2 PrintPath(G, s, v)
1: if v = s then
2: PRINT s
3: else
4: if π[v] = nil then
5: PRINT “no path from” s “to” v “exists”
6: else
7: PrintPath(G, s, π[v])
8: PRINT v
9: end if

10: end if

The cost of this algorithm is proportional to the number of vertices in the
path, so it is O(d[v]).

Nurit Haspel 13 BFS Properties of Breadth-First Search 24

	Graphs
	Breadth-First Search (BFS)
	Properties of Breadth-First Search

