Breadth-First Search CS 624 — Analysis of Algorithms

November 18, 2024

Definitions

A graph $G = (V, E)$ contains a set V of **vertices** and a set E of **edges.**

A **directed graph** has $E \subset V \times V$. An edge (u, v) is an edge from u to *v*, also written $u \rightarrow v$. Self loops such as (u, u) are allowed.

An **undirected graph** has $E \subseteq \{ \{u, v\} \mid u, v \in V, u \neq v \}$. An edge $\{u, v\}$ connects *u* and *v*. It is also written (u, v) , but we consider $(u, v) = (v, u)$. Self loops are not allowed.

A **weighted graph** (either directed or undirected) also associates a weight with each edge, given by a weight function $w: E \to \mathbb{R}$.

- ▶ A graph is called **dense** if $|E| \approx |V|^2$, or **sparse** if $|E| \ll |V|^2$. In any case, $|E| = O(|V|^2).$
- ▶ If $(u, v) \in E$, then vertex *v* is **adjacent** to vertex *u*.
- ▶ Adjacency relationship is symmetric if *G* is undirected, not necessarily so if *G* is directed.

For an undirected graph $G = (V, E)$:

- \triangleright *G* is **connected** if there is a path between every pair of vertices.
- **►** If *G* is connected, then $|E| \ge |V| 1$.
- ▶ Furthermore, if *G* is connected and $|E| = |V| 1$, then *G* is a tree.
- \triangleright Other definitions in Appendix B (B.4 and B.5) as needed.

One way to represent a graph is as a list of vertices, where each vertex has an **adjacency list** represnting its edges.

- **►** For each vertex $v \in V$, we have a list $\text{Adj}[v]$ consisting of those vertices *u* such that $(v, u) \in E$.
- \blacktriangleright It is actually a set, but usually implemented as a list.
- \triangleright This works for both directed and undirected graphs. Directed graph: an edge (v, u) is represented by $u \in \text{Adj}[v]$. Undirected graph: an edge (v, u) is represented by $u \in \text{Adj}[v]$ and $v \in \text{Adj}[u]$.

Another representation uses a single **adjacency matrix**.

Searching a graph:

- \triangleright Systematically follow the edges of a graph to visit all of the vertices of the graph.
- \triangleright Used to discover the structure of a graph.
- ▶ Standard graph-searching algorithms:
	- ▶ Breadth-First Search (BFS)
	- ▶ Depth-First Search (DFS)
- ▶ BFS scans the graph *G*, starting from some given node *s*.
- ▶ BFS expands the frontier between discovered and undiscovered vertices uniformly across the breadth of the frontier.
- \blacktriangleright The key mechanism in this algorithm is the use of a queue, denoted by *Q*.

Algorithm 1 BFS(*G*, *s*)

```
1: for each vertex u \in V[G] - \{s\} do<br>2: Color[u] ← White
   2: Color[u] ← White<br>3: d[u] \leftarrow \infty<br>4: \pi[u] \leftarrow \text{NIL}<br>5: end for<br>6: Color[s] ← Gray
                d[u] \leftarrow \infty\pi[u] \leftarrow \text{NIL}5: end for
   6: Color[s] \leftarrow Gray discover s<br>7: d[s] \leftarrow 0d[s] \leftarrow 08: \pi[s] \leftarrow \text{NIL}<br>9: Q \leftarrow \varnothing9: Q \leftarrow \varnothing<br>10: Enquer
        \mathbf{E}_{\text{nqueue}}(Q, s)11: while Q \neq \emptyset do<br>12: u \leftarrow Deque
 12: u \leftarrow \text{Dequeue}(Q) process u<br>13: for each v \in \text{Adj}[u] do
 13: for each v \in \text{Adj}[u] do<br>14: if Color[v] = \text{White}14: if Color[v] = White then<br>15: Color[v] \leftarrow Gray15: Color[v] \leftarrow Gray discover v<br>16: d[v] \leftarrow d[u] + 116: d[v] \leftarrow d[u] + 1<br>17: \pi[v] \leftarrow u (
                             \pi[v] \leftarrow u (u, v) is a "tree edge"
18: \qquad \qquad \text{Enqueue}(Q, v)<br>19: end if
19: end if
20: end for
                Color[u] \leftarrow Black finish u
22: end while
```
A vertex is "**discovered**" the first time it is encountered during the search.

A vertex is "**finished**" if all vertices adjacent to it have been discovered.

Colors indicate progress:

- White means undiscovered.
- Gray means discovered, not processed.
- Black means fully processed.

Colors are helpful for reasoning about the algorithm. Not necessary for implementation.

 $d[u]$ is length of shortest path from s to u . $\pi[u]$ is previous node on shortest path from *s* to *u*.

 \blacktriangleright Note that all nodes are initially colored white.

▶ A node is colored gray when it is placed on the queue.

BFS Example

- \blacktriangleright A node is colored black when taken off the queue.
- \blacktriangleright Nodes colored white have not yet been visited. The nodes colored black are "finished" and the nodes colored gray are still being processed.

BFS Example

- \triangleright When a node is placed on the queue, the edge from the first node in the queue (which is being taken off the queue) to that node is marked as a *tree edge* in the breadth-first tree.
- \triangleright These edges actually do form a tree (called the breadth-first tree) whose root is the start node *s*.

BFS Example

Each node is visited once and each edge is examined at most twice. Therefore the cost is $O(|V| + |E|)$.

Lemma

If G is connected, then the breadth-first tree constructed by this algorithm

- ▶ *really is a tree, and*
- ▶ *contains all the nodes in the graph.*

Proof.

- \triangleright A node becomes the target of a tree edge when it is placed on the queue. Since that only happens once, no node is the target of two tree edges.
- \triangleright Next, let us show that every node that is processed by the algorithm is reachable by a chain of tree edges from the root. It is enough to prove the following statement:
- \triangleright When a node is placed on the queue, it is reachable by a chain of tree edges from the root.
- \blacktriangleright It is clearly true at the beginning: There is only one node in the queue and it is the root. The rest can be shown by induction.

Proof (Cont.)

- ▶ Suppose it is true up to some point.
- \triangleright When the next node *v* is placed on the queue, *v* is an endpoint of an edge whose other endpoint is the node at the head of the queue, and that edge is made a tree edge.
- \triangleright By the inductive assumption, the node at the head of the queue is reachable by a path of tree edges from the root.
- \triangleright Appending the new edge to the path gives a path of tree edges from the root to *v*.

Proof (Cont.)

- \blacktriangleright Every node that is processed by the algorithm is reachable by a chain of edges from the root – so the edges form a tree.
- \triangleright Suppose there was one node v that was not reached by this process.
- \triangleright Since *G* is connected, there would have to be a path from the root to *v*.
- \triangleright On that path there is a *first* node (w) which was not in the tree.
- \blacktriangleright That node might be *v*, or it might come earlier in the path.
- \blacktriangleright That means that the edge in the path leading to that node starts from a node in the tree.
- \triangleright At some point, that node in the tree was at the head of the queue.
- \blacktriangleright Therefore, w would have been placed in the queue by the algorithm, and the edge to w would have been a tree edge $-$ a contradiction.

Lemma

If at any point in the execution of the BFS algorithm the queue consists of the vertices $\{v_1, v_2, \ldots, v_n\}$ *, where* v_1 *is at the head of the* <code>queue, then $d[v_i] \leq d[v_{i+1}]$ for $1 \leq i \leq n-1$, and $d[v_n] \leq d[v_1] + 1$.</code>

- \blacktriangleright In other words, the assigned depth numbers increase as one walks down the queue, and there are at most two different depths in the queue at any one time.
- \blacktriangleright If there are two, they are consecutive.

Proof.

- \blacktriangleright The result is true trivially at the start of the program, since there is only one element in the queue. The rest by induction.
- \triangleright At any step, a vertex is added to the tail of the queue only when it is reachable from the vertex at the head (which is being taken off).
- \blacktriangleright The depth assigned to the new vertex at the tail is 1 more than that of the vertex at the head.
- \triangleright By the inductive hypothesis it is greater than or equal to the depths of any other vertex on the queue, and no more than 1 greater than any of them.

Lemma

If two nodes in G are joined by an edge in the graph (which might or might not be a tree edge), their d values differ by at most 1*.*

Proof.

- \blacktriangleright Let the nodes be *v* and *u*. One of them is reached first in the breadth-first walk.
- \triangleright w.l.o.g, say *v* is reached first. So *v* is put on the queue first, and reaches the head of the queue before *u* does. When *v* reaches the head of the queue, there are two possibilities:
	- \blacktriangleright *u* has not yet been reached. In that case, when we take *v* off the queue, since there is an edge from v to u , u will be put on the queue and we will have $d[u] = d[v] + 1$.
	- \blacktriangleright *u* has been reached and therefore is on the queue. In this case, we know from the previous lemma that $d[v] \le d[u] \le d[v] + 1$.

Theorem

If G is connected, then the breadth-first search tree gives the shortest path from the root to any node.

Proof.

- \triangleright We know there is a path in the tree from the root to any node.
- \triangleright The depth of any node in the tree is the length of the path in the tree from the root to that node.

\triangleright So for each node v in the tree, we have

 $d[v]$ = the length of the path in the tree from the root to v and let us set

 $s[v] =$ the length of the shortest path in *G* from the root to *v*

Proof (Cont.)

- ▶ We are trying to prove that $d[v] = s[v]$ for all $v \in G$.
- ▶ We know just by the definition of $s[v]$ that $s[v] \le d[v]$ for all v .
- \triangleright Suppose there is at least one node for which the theorem is not true.
- ▶ All the nodes *w* for which the statement of the theorem is not true satisfy $s[w] < d[w]$.
- ▶ Among all those nodes, pick one call it v for which $s[v]$ is smallest.

Cont.

 \blacktriangleright Let *u* be the node preceding *v* on a shortest path from the root to v .

 \blacktriangleright We have

 $d[v] > s[v]$ $s[v] = s[u] + 1$ $s[u] = d[u]$

▶ Hence $d[v] > s[v] = s[u] + 1 = d[u] + 1$. \blacktriangleright But by former lemma, this is impossible.

Print Shortest Path

We assume that $BFS(G, s)$ has already been run, so that each node x has been assigned its depth *d*[*x*].

Algorithm 2 $\text{PrintPath}(G, s, v)$

```
1: if v = s then
2: PRINT s
3: else
4: if \pi[v] = \text{NIL} then
5: PRINT "no path from" s "to" v "exists"
6: else
 7: PrintPath(G, s, \pi[v])8: PRINT v
9: end if
10: end if
```
The cost of this algorithm is proportional to the number of vertices in the path, so it is $O(d|v|)$.