Depth-First Search CS 624 — Analysis of Algorithms

November 20, 2024

Nurit Haspel **[13 DFS](#page-45-0) 13 DFS 13 DFS 13 DFS 13 DFS 13 DFS** 13 DFS 1

- \blacktriangleright DFS scans a graph (directed or undirected) $G = (V, E)$. Unlike BFS, no source vertex given!
- ▶ Adds 2 "**timestamps**" to each vertex, integers in [¹ .. ²|*V*|].
	- \blacktriangleright *d*[*v*] = discovery time (*v* turns from White to Gray)
	- \blacktriangleright $f[v]$ = finishing time (*v* turns from Gray to Black)
- $\blacktriangleright \pi[v]$ = predecessor of *v*; a vertex *u* such that *v* was discovered during the scan of *u*'s adjacency list
- \triangleright Uses the same coloring scheme for vertices as BFS.
- \blacktriangleright The key mechanisms in this algorithm are the timestamps and a stack (implicit in the structure of recursive calls).

Algorithm 1 DFS(*G*)

- 1: **for each** $u \in V[G]$ do
- 2: $color[u] \leftarrow$ White
3: $\pi[u] \leftarrow$ NIL
- $\pi[u] \leftarrow \mathsf{NIL}$
- 4: **end for**
- $\mathfrak{s}:$ *time* \leftarrow 0
- 6: **for** each $u \in V[G]$ do
- 7: **if** $color[u] =$ White **then**
- 8: DFS-Visit (u)
- 9: **end if**

10: **end for**

Algorithm 2 DFS-Visit (u)

- 1: $color[u] \leftarrow$ Gray
- 2: $time \leftarrow time + 1$
- 3: $d[u] \leftarrow time$
- 4: **for** each $v \in Adj[u]$ **do**
5: **if** $color[v] = \text{White } t$
- $\textbf{if} \text{ color}[v] = \text{White} \textbf{then}$

$$
6: \qquad \pi[v] \leftarrow u
$$

7:
$$
\text{DFS-Visit}(v)
$$

- 8: **end if**
- 9: **end for**
- 10: $color[u] \leftarrow$ Black
- 11: $time \leftarrow time + 1$
- 12: $f[u].time \leftarrow time + 1$

 $u \qquad \quad v \qquad \quad w$

The DFS Algorithm – Runtime and Properties

- $▶$ The loops on lines 1-2 & 5-7 take $\Theta(V)$ time, excluding time to execute DFS-Visit.
- ▶ DFS-Visit is called once for each white vertex *^v* [∈] V when it's painted gray the first time.
- ▶ Lines 3-6 of DFS-Visit is executed |Adj[v]| times. The total cost of $\mathsf{executing \; DFS\text{-}Visit \; is} \; \sum_{v \in V|Adj[v]|} = \Theta(E).$
- \blacktriangleright Total running time of DFS is $\Theta(V + E)$.

Theorem (Parenthesis Theorem, Alternative Version)

Let $G = (V, E)$ *and let* $u, v \in V$ *and suppose* $d[u] < d[v]$ *after DFS.*

Then exactly one of the following cases holds:

- 1. $d[u] < f[u] < d[v] < f[v]$, and neither *u* nor *v* is a descendant of *the other*
- 2. $d[u] < d[v] < f[u] < f[u]$, and *v* is a descendant of *u*

So $d[u] < d[v] < f[u] < f[v]$ cannot happen.

- \triangleright OK: () [] ([]) [()]
- \triangleright Not OK: ([)][(])

The Parenthesis Theorem – Example

 $(s (z (y (x x) y) (w w) z) s) (t (v v) (u u) t)$

Theorem

For all u, v, exactly one of the following holds:

- 1. $d[u] < f[u] < d[v] < f[v]$ or $d[v] < f[v] < d[u] < f[u]$ and neither *u nor v is a descendant of the other.*
- 2. $d[u] < d[v] < f[v] < f[u]$ and v is a descendant of u .
- 3. $d[v] < d[u] < f[u] < f[v]$ and u is a descendant of v .

Corollary

v is a proper descendant of *u* iff $d[u] < d[v] < f[u]$.

The Parenthesis Theorem

Proof.

- If $start[x] < start[y] < finish[x]$ then x is on the stack when v is first reached.
- \triangleright Therefore the processing of y starts while x is on the stack, and so it also must finish while x is on the stack:
- ▶ we have $start[x] < start[y] < finish[y] < finish[x]$.
- \blacktriangleright The case when $start[y] < start[x] < finish[y]$ is handled in the same way.

 \triangleright Another way to state the parenthesis nesting property is that given any two nodes x and y, the intervals [start[x], finish[x]] and [start[y], finish[y]] must be either nested or disjoint.

- ▶ Predecessor subgraph defined slightly different from that of BFS.
- ▶ The predecessor subgraph of DFS is $G_{\pi} = (V, E_{\pi})$ where $E_{\pi} = \{(\pi[v], v) : v \in V \text{ and } \pi[v] \neq NIL\}.$
- ▶ How does it differ from that of BFS?
- **▶ The predecessor subgraph** G_{π} **forms a depth-first forest** composed of several depth-first trees.
- \blacktriangleright The edges in E_π are called tree edges.

Definition (Forest)

An acyclic graph G that may be disconnected.

Theorem

 v *is a tree descendant of* u *if and only if at time* $d[u]$ *, there is a path* $u \rightsquigarrow v$ consisting of only white vertices (except for u , which was just *colored gray).*

Proof.

One direction: (if *v* is a tree descendant of *u* then there is a white path $u \rightsquigarrow v$ at time $d[u]$) is obvious from the definition of a tree descendant (see the parenthesis theorem).

Cont. – Reverse Direction.

- \blacktriangleright Is it possible that *v* is not a descendant of *u* in the DFS forest?
- \triangleright By induction on all the vertices along the path: Of course u is a descendant of itself.
- \blacktriangleright Let us pick any vertex p on the path other than the first vertex u , and let q be the previous vertex on the path (so it can be that $q = u$).
- \triangleright We assume that all vertices along the path from u to q inclusive are descendants of *u* (inductive hypothesis).
- \blacktriangleright We will argue that p is also a descendant of u .

Cont. – Reverse Direction.

- \triangleright At time $d[u]$ vertex p is white [by assumption about the white path], so $d[u] < d[p]$.
- \triangleright But there is an edge from *q* to *p*, so *q* must explore this edge before finishing.
- \blacktriangleright At the time when the edge is explored, p can be:
- \blacktriangleright **WHITE**, then *p* becomes a descendant of *q*, and so of *u*.
- \blacktriangleright **BLACK**, then $f[p] < f[q]$ [because $f[p]$ must have already been assigned by that time, while $f[q]$ will get assigned later].
- \triangleright But since *q* is a descendant of *u* [not necessarily proper], $f[q] \leq f[u]$, we have $d[u] < d[p] < f[p] < f[q] \leq f[u]$, and we can use the Parenthesis Theorem to conclude that *p* is a descendant of u .

Cont. – Reverse Direction.

- **GRAY**, then p is already discovered, while q is not yet finished, so $d[p] < f[q]$.
- \triangleright Since *q* is a descendant of *u* [not necessarily proper], by the Parenthesis Theorem, $f[q] \leq f[u]$.
- ▶ Hence $d[u] < d[p] < f[q] \le f[u]$. So $d[p]$ belongs to the set ${d[u], \ldots, f[u]}$, and so we can use the the Parenthesis Theorem again to conclude that *p* must be a descendant of *u*.
- \blacktriangleright The conclusion thus far is that p is a descendant of u . Now, as long as there is a vertex on the remainder of the path from *p* to v , we can repeatedly apply the inductive argument, and finally conclude that the vertex *v* is a descendant of *u*, too.
- \blacktriangleright **Tree edge:** in the depth-first forest. Found by exploring (u, v) .
- \triangleright **Back edge:** (u, v) , where u is a descendant of v (in the depth-first tree).
- **Forward edge:** (u, v) , where v is a descendant of u , but (u, v) is not a tree edge.
- ▶ **Cross edge:** any other edge. Can go between vertices in same depth-first tree or in different depth-first trees.

Edge type for edge (u, v) can be identified when it is first explored by DFS based on the color of *v*.

White \rightarrow tree edge. Gray \rightarrow back edge. Black \rightarrow forward or cross edge.

Classification of Edges

The edge $x \rightarrow z$ is discovered when exploring *z*, so it is a back edge.

Classification of Edges

Theorem

In DFS of an undirected graph, we get only tree and back edges. No forward or cross edges.

Starting from 1, either 2 discovers 3 or vice versa, therefore one of them is the other's descendant, Hence no cross edges.

- \triangleright DAG Directed graph with no cycles.
- ▶ Good for modeling processes and structures that have a partial order:
- \blacktriangleright $a > b$ and $b > c \Rightarrow a > c$.
- \blacktriangleright But may have a and b such that neither $a > b$ nor $b > a$.
- \blacktriangleright Can always *make* a total order (either $a > b$ or $b > a$ for all $a \neq b$) from a partial order.

Directed Acyclic Graph (DAG) – Example

Characterizing a DAG

Lemma

A directed graph G is acyclic iff a DFS of G yields no back edges.

Proof.

 \Rightarrow Show that back edge \rightarrow cycle: Suppose there is a back edge (u, v) . Then v is ancestor of u in depth-first forest. Therefore, there is a path $v \rightsquigarrow u$, so $v \rightsquigarrow u \rightsquigarrow v$ is a cycle.

Characterizing a DAG

Proof.

[⇒]: Show that a cycle implies a back edge.

- \triangleright c : cycle in G, u : first vertex discovered in c, (v, u) : preceding edge in c.
- At time d[v], vertices of c form a white path $u \leadsto v$. Why?
- \triangleright By white-path theorem, v is a descendent of u in depth-first forest.

 \blacktriangleright Therefore, (v, u) is a back edge.

Topological Sorting

- ▶ We want to "sort" a DAG.
- ▶ Think of original DAG as a partial order.
- \blacktriangleright We want a total order that extends this partial order.

▶ Performed on a DAG.

▶ Linear ordering of the vertices of G such that if $(u, v) \in E$, then u appears somewhere before v.

TopologicalSort(G)

- 1. call DFS(G) to compute finishing times f[v] for all $v \in V$
- 2. as each vertex is finished, insert it onto the front of a linked list
- 3. return the linked list of vertices (with *decreasing* finish times)

Runtime – $\Theta(V + E)$

Linked list:

Linked list:

Topological Sorting – Proof of Correctness

- ▶ Just need to show if $(u, v) \in E$, then $f[v] < f[u]$.
- \triangleright When we explore (u,v) then u is gray. What is the color of v?
- ▶ Is v **gray**?
- ▶ No, because then v would be ancestor of $u \Rightarrow (u, v)$ is a back edge, which contradicts the fact that A DAG has no back edges.
- ▶ Is v **white**?
- \blacktriangleright Then becomes descendant of u.
- ▶ By parenthesis theorem, $d[u] < d[v] < f[u]$.
- ▶ Is v **black**?
- \blacktriangleright Then v is already finished.
- \triangleright Since we're exploring (u,v), we have not yet finished u.
- \blacktriangleright Therefore, $f[v] < f[u]$.

Strongly Connected Components

- \triangleright G is strongly connected if every pair (u, v) of vertices in G is reachable from one another.
- ▶ A strongly connected component (SCC) of G is a maximal set of vertices $C \subset V$ such that for all $u, v \in C$, there is a path from u to v and from v to u.

Theorem

Let C and C' be distinct SCC's in G, let u, $v \in C, u', v' \in C'$, and suppose there is a path $u \leadsto u'$ in G. Then there cannot also be a path $v' \leadsto v$ in *G.*

Proof.

- \triangleright Suppose there is a path from v' to v in G.
- \triangleright Then there are paths from u to u' to v' and from v' to v to u in G.
- \blacktriangleright Therefore, u and v' are reachable from each other, so they are not in separate SCC's.
- \blacktriangleright *G*^{*T*} = transpose of directed G.
- ▶ $G^T = (V, E^T), E^T = (u, v) : (v, u) \in E$.
- \blacktriangleright G^T is G with all edges reversed.
- **►** Can create G^T in $\Theta(V + E)$ time if using adjacency lists.
- \blacktriangleright G and G^T have the same SCC's. (u and v are reachable from each other in G if and only if reachable from each other in *GT*).
- 1. Call *DFS*(*G*) to compute finishing times f [u] for all u
- 2. Compute *G^T*
- 3. Call $DFS(G^T)$, but in the main loop, consider vertices in order of decreasing f [u] (as computed in first DFS)
- 4. Output the vertices in each tree of the depth-first forest formed in second DFS as a separate SCC

Runtime – $\Theta(V + E)$

Example

G

 G^T

▶ Idea:

- ▶ By considering vertices in second DFS in decreasing order of finishing times from first DFS, we are visiting vertices of the component graph in topologically sorted order.
- ▶ Because we are running DFS on GT, we will not be visiting any v from a u, where v and u are in different components.
- ▶ Notation:
	- ▶ d[u] and f[u] always refer to first DFS.
	- ▶ Extend notation for d and f to sets of vertices *^U* [⊆] *^V*:
	- \blacktriangleright $d(U) = \min_{u \in U} \{d[u]\}$ (earliest discovery time)
	- ▶ $f(U) = \max_{u \in U} {f[u]}$ (latest finishing time)

SCCs and DFS finishing times

Lemma

Let C and C' be distinct SCC's in G = (V, E). Suppose there is an edge $(u, v) \in E$ such that $u \in C$ and $v \in C'$. Then $f(C) > f(C')$.

Case 1: $d(C) < d(C')$.

- \blacktriangleright Let x be the first vertex discovered in C.
- \blacktriangleright At time d[x], all vertices in C and C' are unvisited. Thus, there exist paths of unvisited vertices from x to all vertices in C and C'.
- \blacktriangleright All vertices in C and C' are descendants of x in depth-first tree.
- ▶ Therefore, $f[x] = f(C) > f(C')$.

SCCs and DFS finishing times

Lemma

Let C and C' be distinct SCC's in G = (V, E). Suppose there is an edge $(u, v) \in E$ such that $u \in C$ and $v \in C'$. Then $f(C) > f(C')$.

Case 2: $d(C) > d(C')$.

- \blacktriangleright Let y be the first vertex discovered in C'.
- At time $d[y]$, all vertices in C' are unvisited and there is an unvisited path from y to each vertex in C" all vertices in C' become descendants of y. Again, $f[y] = f(C')$.
- \blacktriangleright At time d[y], all vertices in C are also unvisited.

SCCs and DFS finishing times

Lemma

Let C and C' be distinct SCC's in G = (V, E). Suppose there is an edge $(u, v) \in E$ such that $u \in C$ and $v \in C'$. Then $f(C) > f(C')$.

Case 2: $d(C) > d(C')$.

- \blacktriangleright By earlier lemma, since there is an edge (u, v), we cannot have a path from C' to C.
- \triangleright So no vertex in C is reachable from y.
- Therefore, at time f[y], all vertices in C are still white.
- ▶ Therefore, for all $w \in C$, $f[w] > f[y]$, which implies that $f(C) > f(C')$.

Corollary

Let C and C' be distinct SCC's in G = (V, E). Suppose there is an edge $(u, v) \in E^T$, where $u \in C$ and $v \in C'$. Then $f(C) < f(C')$.

Proof.

 $(u, v) ∈ E^T ⇒ (v, u) ∈ E$. Since SCC's of G and G^T are the same, $f(C') > f(C)$, by former Lemma.

- \blacktriangleright When we do the second DFS, on G^T , start with SCC C such that f(C) is maximum.
- $▶$ The second DFS starts from some $x \in C$, and it visits all vertices in C.
- ▶ Corollary above says that since $f(C) > f(C')$ for all $C \neq C'$, there are no edges from C to C' in *GT*.
- ▶ Therefore, DFS will visit only vertices in C.
- \triangleright Which means that the depth-first tree rooted at x contains exactly the vertices of C.
- \triangleright The next root chosen in the second DFS is in SCC C' such that f(C') is maximum over all SCC's other than C.
- \triangleright DFS visits all vertices in C', but the only edges out of C' go to C, which we've already visited.
- \blacktriangleright Therefore, the only tree edges will be to vertices in C.
- \blacktriangleright We can continue the process.
- ▶ Each time we choose a root for the second DFS, it can reach only vertices in its SCC–get tree edges to these,
- ▶ Vertices in SCC's already visited in second DFS-get no tree edges to these.