
Maximum Flow
CS 624 — Analysis of Algorithms

November 27, 2024

Nurit Haspel 15 Max Flow 1

Flow Networks

Definition (Flow Network)
A flow network is a directed graph G = (V ,E) with two distinguished
vertices:
▶ s — the “source”, and
▶ t — the “sink”

such that the following properties hold:
1. For every node u ∈ V , there is a path from s to t through u.

Equivalently, for every node u ∈ V there is a path from s to u
and a path from u to t.

2. There are no “antiparallel” edges. That is, if (u, v) ∈ E then
(v,u) ̸∈ E. (But there could be a path from v to u.)

Nurit Haspel 15 Max Flow Flow Networks 2

Flow Networks

The “no antiparallel edges” condition is not a big deal.
If we have a graph with edges (u, v) and (v,u), we can just introduce
a new vertex w and replace the edge (v,u) by the two edges (v,w)
and (w,u). It won’t change anything.

Nurit Haspel 15 Max Flow Flow Networks 3

Flows

A flow in the flow network G as above is an assignment of a
non-negative real number to each edge of the graph.
The assignment is denoted by f : E → R≥0.
That is, for each edge e, f (e) is a non-negative real number.
If e = (u, v), then we may (by an abuse of notation) also write f (u, v)
for f (e) — they will mean the same thing.

Examples

▶ If G represents a system of circuits or pipes, then f (e) might represent
the amount of current or water passing over edge e per unit of time.

▶ If G represents a transportation network like a railroad line, then f (e)
might represent weight being transported over e per unit time.

Nurit Haspel 15 Max Flow Flow Networks 4

Conservation

Additionally, a flow must satisfy the following conservation property:

Conservation
At every node u except for the nodes s and t, the flow into u must
exactly equal the flow out of u.

There are two ways to define the conservation property
mathematically.

Nurit Haspel 15 Max Flow Flow Networks 5

Conservation v1: f remains non-negative

We extend the function f so that if (u, v) is not an edge, then we
simply set f (u, v) = 0.
Then conservation is: For each node u different from s and t:∑

v∈V
f (v,u) =

∑
v∈V

f (u, v)

This is in fact the way our text writes this constraint.

Nurit Haspel 15 Max Flow Flow Networks 6

Conservation v2: extend f with negative flow

If (u, v) is a (directed) edge in the graph, then (v,u) is not. We define

f (v,u) = −f (u, v) when (u, v) ∈ E

For all x and y not joined by an edge in either direction, we define

f (x, y) = f (y, x) = 0 when (x, y) ̸∈ E and (y, x) ̸∈ E

We can think of a flow along (u, v) as a “negative” flow along (v,u).
Then conservation is: For each node u different from s and t:∑

v∈V
f (u, v) = 0

We will use this formulation of flow and conservation.

Nurit Haspel 15 Max Flow Flow Networks 7

Definition of Flow

Definition (Flow)
A flow f on the flow network G = (V ,E) with source s and target t is
any function f : V → R that satisfies the following three conditions:

1. f lives on edges: If u and v are not joined by an edge in either
direction, then f (u, v) = 0.

2. f is skew-symmetric: For all vertices u and v, f (u, v) = −f (v,u).
3. f satisfies the conservation property: For all vertices u other

than s and t,
∑

v∈V f (u, v) = 0.

Nurit Haspel 15 Max Flow Flow Networks 8

Flows can be added

Definition
If f and g are two flows, we define their sum f + g in the obvious way:

(f + g)(u, v) = f (u, v) + g(u, v)

Definition
If f is a flow, the value of the flow, written |f |, is the flow out of the
source. To be precise,

|f | =
∑
v∈V

f (s, v)

Note that the flow out of s is equal to the total flow into t.

Nurit Haspel 15 Max Flow Flow Networks 9

Cuts

Definition
A cut in G is a partition of the vertex set V into two sets X and
X = V − X such that s ∈ X and t ∈ X .
If f is a flow and (X ,X) is a cut, the flow across the cut is defined as

f (X ,X) =
∑

v∈X ,w∈X

f (v,w)

Nurit Haspel 15 Max Flow Flow Networks 10

Cuts and Flows

Lemma
If f is a flow and (X ,X) is a cut, then the flow across the cut is equal
to the flow value |f |.

Proof.
First consider the following sum (note the bounds!):∑

v∈X
w∈V

f (v,w) =
∑
w∈V

f (s,w) +
∑

v∈X−{s}
w∈V

f (v,w) split sum

= |f |+
∑

v∈(X−{s})

∑
w∈V

f (v,w) by def. of flow value; unnest sum

= |f |+
∑

v∈(X−{s})
0 by conservation (x ̸= s and x ̸= t)

= |f |+ 0 = |f |
Nurit Haspel 15 Max Flow Flow Networks 11

Cuts and Flows (Proof Continued)

Proof (continued).
Using this, we see then that

f (X ,X) =
∑
v∈X
w∈X

f (v,w) by def. of flow across cut

=
∑
v∈X
w∈V

f (v,w)−
∑
v∈X
w∈X

f (v,w) split sum

= |f | − 1
2
∑
v∈X
w∈X

(f (v,w) + f (w, v)) by def. of flow value
sum twice + combine

= |f |+ 0 = |f | by skew-symmetry

Nurit Haspel 15 Max Flow Flow Networks 12

Capacity

Definition (Capacity)

Let G = (V ,E) be a flow network. A capacity function c : E → R≥0

represents the maximum flow that each edge can carry.
If (v,w) ∈ E, we also write c(v,w) for the capacity of that edge.
If (v,w) is not an edge (and in particular, if it is a “reverse edge”),
then we set c(v,w) = 0.

We want to optimize flow for a network with limited capacity. That is,
the flow along an edge can be no more than the capacity of the edge:

0 ≤ f (e) ≤ c(e) for every e ∈ E

Nurit Haspel 15 Max Flow Flow Networks 13

Cut Capacity

Definition
If (X ,X) is a cut, then the capacity of the cut is defined as

c(X ,X) =
∑
v∈X
w∈X

c(v,w)

It can be shown that if (X ,X) is a cut and f is a legal flow, then

f (X ,X) ≤ c(X ,X)

or equivalently,
|f | ≤ c(X ,X)

Nurit Haspel 15 Max Flow Flow Networks 14

Maximum Flow Problem

Maximum Flow Problem
Given a flow network with a capacity function, we want to find the
flow respecting that capacity and having the greatest possible value.
Such a flow is called a maximum flow.

How can we compute the maximum flow?

Nurit Haspel 15 Max Flow Maximum Flow 15

Representation of Flows and Capacities

We will label each edge of the flow network with a label of the form

[c′, c]f

with the following components:
▶ c′ is the capacity in the opposite direction of the edge. (?)
▶ c is the capacity in the direction of the edge.
▶ f is the flow in the direction of the edge.

It must satisfy c′ ≤ f ≤ c.

Nurit Haspel 15 Max Flow Maximum Flow 16

Representation of Flows and Capacities

s

a

b

t

[0, 5]4

[0, 3]1

[0, 6]1

[0, 10]2

[0, 4]3

▶ This graph represents a legal flow. (Check.)
▶ Notice that the flow from node a to node s is “counter-productive”.
▶ What is the value of this flow?

Nurit Haspel 15 Max Flow Maximum Flow 17

Residual Graph

Given a flow on a network, how much could the flow on each edge
change, in either direction?
The residual graph answers this question. Its capacities are
calculated by subtracting the flow from the original capacities.

s

a

b

t

[0, 5]4

[0, 3]1

[0, 6]1

[0, 10]2

[0, 4]3 s

a

b

t

[−4, 1]

[−1, 2]

[−1, 5]

[−2, 8]

[−3, 1]

The residual capacity on a → s is [−1,2]. That means we could
increase the flow by 1 backwards across that edge.

Nurit Haspel 15 Max Flow Maximum Flow 18

Allowable Flow on Residual Graph

A flow g is allowable on a residual graph if for each edge e, g(e) is in
the capacity interval labeling that edge e.

It should be clear that if f is the flow in the original graph, and g is
any allowable flow in the residual graph, then f + g is a flow which
satisfies the original capacity constraints.

Nurit Haspel 15 Max Flow Maximum Flow 19

Strategy for Max Flow

Strategy:
▶ Start with a flow f . Form the residual graph for that flow.
▶ Then find an allowable flow g in the residual graph such that

f + g has a greater value than f .
▶ Repeat this process until the maximum flow is found.

Nurit Haspel 15 Max Flow Maximum Flow 20

Augmenting Paths

How do we find an allowable flow in the residual graph?
▶ The easiest kind of flow to find is a “path” from s to t where each edge

carries the same amount. (Backwards traversals are allowed!)
▶ For instance, consider the “path” s → a → b → t in our residual graph.
▶ The maximum amount on each of these edges is shown here:

s

a

b

t

[−4, 1]

[−1, 2]

[−1, 5]

[−2, 8]

[−3, 1]
1

3
5

Nurit Haspel 15 Max Flow Maximum Flow 21

Augmenting Paths

▶ This is just one example, not necessarily the best path to pick.
▶ For any such path, the residual flow r is the minimum of those

maximum possible flows along that path’s edges.

In this case, r = min{1,3,5} = 1.
▶ If r > 0, the path with its flow values is an augmenting path.

s

a

b

t

[−4, 1]

[−1, 2]

[−1, 5]

[−2, 8]

[−3, 1]
1

1
1

Nurit Haspel 15 Max Flow Maximum Flow 22

Augmenting Paths

That augmenting path with its associated residual flow is itself a
flow. Let’s call it g.
If we add this residual flow g to our original flow f , we get the new
flow f + g shown below.

s

a

b

t

[0, 5]4

[0, 3]0

[0, 6]2

[0, 10]2

[0, 4]2

(In that graph above, the purple amounts are the amounts that have changed.)

Nurit Haspel 15 Max Flow Maximum Flow 23

Augmenting Paths

There are two important things to note:
1. We still have an allowable flow in our graph. That’s because the

adjustment we made was within the bounds allowed by the
“residual” computation. Note that while the augmenting path
had two edges “in the wrong direction”, the final graph does not.

2. The value of the flow in the new path is greater than the original
value. In fact, we have |f + g| = |f |+ |g| = |f |+ r > |f |.

Nurit Haspel 15 Max Flow Maximum Flow 24

Augmenting Paths Algorithm

So we have the beginnings of an algorithm here:
▶ Start with any allowable flow.
▶ From it, produce the residual graph.
▶ Use that residual graph to find any augmenting path.
▶ Add the augmenting path to the original flow to produce a new

flow. The new flow will still be allowable and will have a greater
value.

▶ Repeat this whole process until nothing more can be done.

Nurit Haspel 15 Max Flow Maximum Flow 25

Does the Algorithm Really Work?

There are two questions that come up immediately:
1. Is it possible that we might have a non-maximum flow f , but

nevertheless there was no augmenting path for f ? If there was,
then of course the algorithm would fail to yield a maximum flow.

2. Is it possible that the algorithm fails in some other way? For
instance, maybe it never ends.

Nurit Haspel 15 Max Flow Maximum Flow 26

The Max-Flow Min-Cut Theorem

Theorem (The Max-Flow Min-Cut Theorem, by Ford and Fulkerson)

If G = (V ,E) is a flow network with capacity function c and source
and sink nodes s and t, the following statements are equivalent:

1. f is a maximum flow.
2. There is no augmenting path for f .
3. There is some cut (X ,X) for which |f | = c(X ,X).

Nurit Haspel 15 Max Flow Maximum Flow 27

Proof of Max-Flow Min-Cut Theorem

(1) =⇒ (2). If there is an augmenting path p for f , then we can
increase the flow value.

(2) =⇒ (3). Suppose there is no augmenting path for f . Let X be the
set of vertices reachable from s on a path on which each
edge has positive residual value. Trivially, X includes s,
and by our assumption, X does not include t. Thus,
(X ,X) is a cut. Further, if (v,w) is an edge in the original
graph that crosses the cut (i.e., with v ∈ X and w ∈ X),
we must have f (v,w) = c(v,w), since otherwise w would
also be in X . Thus, we have

|f | =
∑
v∈X
w∈X

f (v,w) =
∑
v∈X
w∈X

c(v,w) = c(X ,X)

Nurit Haspel 15 Max Flow Maximum Flow 28

Proof of Max-Flow Min-Cut Theorem (Continued)

(3) =⇒ (1). We know that in any case, |f | ≤ c(X ,X) (See exercise in
class notes). The fact that with this cut they are equal
means that there is no flow with a greater value than f .

▶ Note that as a consequence of this theorem, we know that the
value of the maximum flow in the network is equal to minimum
capacity of any cut. That’s where the theorem gets its name.

▶ So this answers the first of our questions: if f is not maximum,
we know that there will be at least one augmenting flow, so the
algorithm can make progress.

Nurit Haspel 15 Max Flow Maximum Flow 29

Termination and correctness

▶ We need to know if the algorithm is guaranteed to terminate.
Here’s where things get complex.

▶ First of all, let us suppose that all the capacities of the network
are integers. In that case, there is something we can say,
provided we make two very natural assumptions:

▶ We assume that we start with a flow that is identically 0. (We’ll
always assume this in any case; it’s the natural way to start.)

▶ We assume that when we pick an augmenting path, we make the
flow along that path as large as possible. That is, we let it be the
minimum of the residual values of each edge on the flow.

Nurit Haspel 15 Max Flow Maximum Flow 30

Termination and correctness

▶ In this case, the augmenting flow value will of necessity be an
integer, and so we will always be increasing the value of the flow
by an integer each time we pick an augmenting path.

▶ Since the maximum flow value is finite, this process has to stop.
▶ This also shows that the maximum flow is an integral flow–the

flow along each edge is an integer.
▶ However, there are many flow networks that arise in practice in

which the capacities are not necessarily integers.
▶ This is not really a problem. If they are rational numbers, then

we can always reason in exactly the same way by using as our
“minimal unit” the fraction which is 1 over the least common
denominator of all the capacities. Exactly the same argument
then works.

Nurit Haspel 15 Max Flow Maximum Flow 31

Termination and correctness

▶ The problem of irrational numbers is peculiar, though. Ford and
Fulkerson actually gave an example where, by picking the
augmenting paths in a particularly stupid manner, even though
the flow along these augmenting paths was chosen to be as big
as possible, the following would happen:

▶ The process would not terminate. Of course the values of the
successive flows would keep increasing, but they would always
be less than the maximum possible value.

▶ It’s even worse than that. Because the values of the successive
flows keep increasing, they have a limit. But this limit is strictly
less than the value of the maximum flow in the network.

Nurit Haspel 15 Max Flow Maximum Flow 32

Termination and correctness

▶ You can find the example in their book. It’s amusing, at least.
▶ We can always assume that our capacities are rational, and so

our algorithm – however we pick the augmenting paths – will
definitely terminate and give the maximum flow.

▶ However, there still is the question of efficiency: how well can we
pick the augmenting paths so that we have to repeat the
iterations of the algorithm as few times as possible?

▶ This question has been considered over many years, and
successively better algorithms have been produced.

▶ Our textbook goes into this a little but we will stop here.

Nurit Haspel 15 Max Flow Maximum Flow 33

Application: the “Marriage Problem”

▶ Suppose we have two finite sets G (“girls”) and B (“boys”).
▶ Each girl likes one or more boys, and each boy likes one or more

girls.
▶ Let’s assume that if a girl and a boy both like each other, they

would be happy to marry each other.
▶ The problem then is: Is there a way of marrying all the girls and

all the boys to someone they each like? If so, we say that the
marriage problem is solvable.

▶ Let’s assume that there are n girls and n boys.

Nurit Haspel 15 Max Flow Marriage Problem 34

The “Marriage Problem”
▶ It’s not so simple to decide the question.
▶ For instance, suppose all the girls liked one boy (and he liked all

the girls), or all the boys liked one girl (and she liked all the
boys).

▶ There will be a lot of unhappy people in this case.
▶ To make the wording in what follows less cumbersome, let us

agree that when we say that “a girl g likes a boy b”, we also mean
that the boy b likes the girl g.

▶ The following theorem gives a necessary and sufficient condition
for the problem to be solvable:

Theorem (Hall’s “Marriage Theorem”)

The marriage problem is solvable iff for each r (with 1 ≤ r ≤ n), every
set of r girls likes at least r boys

Nurit Haspel 15 Max Flow Marriage Problem 35

The “Marriage Problem”

▶ The necessary and sufficient condition provided by this theorem
seems one-sided.

▶ Presumably one could instead assume that each set of r boys
likes at least r girls.

▶ It turns out that they are equivalent, and we state that as a
lemma now, because we will need this fact in the proof of the
theorem below.

Lemma
If for each r (with 1 ≤ r ≤ n), every set of r girls likes at least r boys,
then also every set of r boys likes at least r girls.

Nurit Haspel 15 Max Flow Marriage Problem 36

Proof of Lemma

▶ Suppose B0 is a set of r boys. Let G0
be the set of girls that those boys
like.

▶ Equivalently, G0 is the set of girls
that like any of those boys.

▶ We need to show that G0 contains at
least r girls.
Let us set

B1 = B \ B0
G1 = G \ G0

G B

B0

B1

G0

G1

Nurit Haspel 15 Max Flow Marriage Problem 37

Proof of Lemma

▶ For notational convenience, let us
define g0 to be the size of the set G0,
and similarly for g1, b0, and b1.

▶ The set of girls G1 likes only boys in
B1. (That’s by definition; any girl who
likes a boy in B0 is automatically in
G0.)

▶ Therefore by the assumption of the
lemma, we must have g1 ≤ b1. (It
might be that g1 is strictly less than
b1, but that’s OK also.)

▶ Therefore it follows that g0 ≥ b0, and
that’s what we needed to prove.

G B

B0

B1

G0

G1

Nurit Haspel 15 Max Flow Marriage Problem 38

Proof of Theorem
▶ If the problem is solvable, then certainly every group of r girls

likes at least r boys, since each one likes at least the one she
will marry, and possibly others as well, and none of those boys
is going to marry more than one girl, so there are at least r boys
liked by the r girls.

▶ Thus, we have to prove the other direction: if each group of r
girls likes at least r boys, then the problem is solvable.

▶ We can model this as a graph problem: the nodes in our graph
will be the union of the sets G and B.

▶ There is an (undirected) edge between a node g ∈ G and b ∈ B
iff they like each other.

▶ This is an example of what is called a bipartite graph. We want to
know if there is a map m from G to B such that the map is 1-1
and onto and such that m(g) = b only if there is an edge
between g and b.

Nurit Haspel 15 Max Flow Marriage Problem 39

Proof of Theorem – The Max Flow Problem

▶ First, we make the graph a directed graph. Every edge is between
a girl and a boy. We make the edge a directed edge from the girl
to the boy.

▶ We introduce two new nodes, s and t.
▶ We introduce an edge from s to each girl, and we introduce an

edge from each boy to t.
▶ The capacity of each flow is simply 1.
▶ The question is then to find the maximum flow from s to t.
▶ It is clear that the marriage problem is solvable iff the maximum

flow has value n. Certainly the maximum flow can’t be greater
than n.

▶ So to show that the marriage problem is solvable, it is enough to
show that the maximum flow has value ≥ n.

Nurit Haspel 15 Max Flow Marriage Problem 40

Proof of Theorem – The Max Flow Problem

▶ The max-flow min-cut theorem tells us that the maximum flow
will have value n iff the cut of minimum capacity has capacity n.

▶ Thus it is enough to show that the capacity of every cut is ≥ n.
▶ We are assuming that every group of r girls likes at least r boys.
▶ So say (X ,X) is a cut.
▶ Let us divide this into a number of different cases.

Nurit Haspel 15 Max Flow Marriage Problem 41

Proof of Theorem – The Different Cases

Case 1: X = {s} . In this case, c(X ,X) is just the sum of the
capacities of the n edges from s to G. And this is n.

Case 2: X = {t} . In this case c(X ,X) is just the sum of the
capacities of the n edges from B to t. And this is also n.

Case 3: X ⊆ {s} ∪ G . (X includes all of B.) Let G0 = X ∩ G. (G0
might be all of G, but doesn’t have to be.)
Say the number of elements of G0 is r. c(X ,X) counts
the following edges:
▶ The edges leaving G0. By our assumption, the

number of these edges is ≥ r
▶ The edges entering G \ G0. The number of these

edges is just n − r.
So c(X ,X) ≥ n.

Nurit Haspel 15 Max Flow Marriage Problem 42

Proof of Theorem – The Different Cases

Case 4: X ⊆ B ∪ {t} . (X includes all of G.) Let X0 = X ∩ B. (X0
might be all of B, but it doesn’t have to be.
Say the number of elements of X0 is r. c(X ,X) counts
the following edges:
▶ The edges entering X0—and by our assumption and

the result of the lemma, the number of these edges
is ≥ r.

▶ The edges leaving B \X . The number of these edges
is just n − r.

So c(X ,X) ≥ n.

Nurit Haspel 15 Max Flow Marriage Problem 43

Proof of Theorem – The Different Cases
Case 5: X ∩ G ̸= ∅ and X ∩ B ̸= ∅ . Set

X0 = X ∩ G
X1 = X ∩ B

Say the number of elements of X1 is r. Let A be the set
of elements of G which have edges leaving them and
arriving at elements of X1. There are at least r elements
of A.
Let us set

A0 = A ∩ X
A1 = A ∩ X = A \ A0

Let the number of elements of A0 be a0, and the number
of elements of A1 be a1. So we know that a0 + a1 ≥ r.

Nurit Haspel 15 Max Flow Marriage Problem 44

Proof of Theorem – The Different Cases

c(X ,X) counts the following edges:
▶ The edges from B \ X1 to t. The number of these edges is n − r.
▶ The edges entering X1 that come from A0. Since each element of

A0 has at least one edge leaving it and arriving at X1, there are
at least a1 such edges.

▶ The edges leaving s and entering A1. There are exactly a1 such
edges.

Thus c(X ,X) ≥ (n − r) + a1 + a0 = (n − r) + r = n

Nurit Haspel 15 Max Flow Marriage Problem 45

Proof of Theorem – Case 5

s

G B

t

X1

X0

A1

A0

Nurit Haspel 15 Max Flow Marriage Problem 46

	Flow Networks
	Maximum Flow
	Marriage Problem

