
CS624: Analysis of Algorithms

Final Exam – Practice

Instructor – Nurit Haspel

1. Greedy algorithms: Greedy Algorithms: (30%)

You drive from Boston to Washington DC. Your gas tank, when full, holds enough gas to travel m miles
and you have a map that gives you the distances between gas stations on the way. Let d1 < d2 < ... < dn
be the locations of the gas stations, where di is the distance from Boston to the gas station (the list is
sorted). Assume that the distance between two consecutive gas stations is at most m miles.

Your goal is to make as few stops for gas as possible along the way without getting stuck. A greedy
algorithm to solve the problem is to always drive as far as possible before stopping for gas. More
formally, let ci be the destination with distance di from Boston:

S = ∅
last = 0

for (i = 1..n)

if (di − last > m) // di is the distance of first station that’s too far
S = S ∪ ci−1 // Add the one before (the last that’s not too far)
last = di−1

return S

(a) Show the problem has the optimal substructure property. Start by: Let’s say S is an optimal
solution. Given that we stop for gas at stop at di, then what can you say about the the parts of
the road uncovered by di?
The parts of the road uncovered by di must be optimal as well (both m miles before and m miles
after di), since otherwise we could cut them out and replace them by a better solution.

(b) Show that the greedy choice is safe. Specifically, let g be the first stop selected by the greedy
algorithm (the farthest from Boston you can stop without getting stuck). Show that there is an
optimal solution S that contains g as its first stop. Explain your answer.
The answer is similar to the activity scheduling problem we saw in class. Say we have an optimal
solution S. If S contains g – the farthest from Boston you can drive without stopping for gas, we’re
ok. Otherwise, let’s look at f, the first gas stop on the way. We can take f out and replace it by
g. Since g is farther than f, it’s not going to spoil S (we are not going to get stuck before the next
stop, since g is closer to it, and we’re not going to get stuck before g, since g is still within the
distance). Therefore, the new solution is still optimal.

2. (20%) Graphs: In this question we refer to a node as “undiscovered” if it has not been seen yet by a
graph walk (colored white in class). A node is “discovered” if it has been seen but not yet done (colored
gray in class). A node is “processed” if it is done (colored black in class).

(a) (10%) Show an example of a graph G = (V,E) such that a BFS walk yields O(|V |) processed
(gray) nodes at some given moment. Explain. To get the full mark your example should
contain at least four nodes.
Answer: See figure:

1

a

b c d

When the BFS starts in a. When a is done, all the other vertices are gray.

(b) (10%) Show an example of a graph G = (V,E) such that a DFS walk yields O(|V |) processed
(gray) nodes at some given moment. Explain. To get the full mark your example should
contain at least four nodes.
Answer: See figure:

a b c d

When the BFS starts in a. When d is explored, all vertices are gray.

3. (20%) Flow: Given the following flow graph:

s

a b

c d

t

5

15

5

5

5 5

15

5

Show the maximum flow for this graph. No need to show the residual graphs. Write the augmenting
paths you find, the value of the flow for each path and the value of the overall maximum flow.

Answer:

The paths are:

• s → a → b → t (5)

• s → c → d → t (5)

• s → c → b → t (5)

The overall flow is 15.

4. (25%) NP: The directed Hamiltonian Path (HAM-Path) is the problem of finding a simple path that
goes through every vertex in a directed graph once. To show that the problem is NP-complete we use
a reduction from the directed Hamiltonian cycle problem (HAM-Cycle) – we start from an instance
G = (V,E) to the HAM-cycle problem. We create a directed graph H = (V ′, E′) as follows: Select
an arbitrary node u ∈ V and split it to two nodes, uin and uout. Every edge (u, v) in G will now
become (uout, v) in H and every edge (v, u) becomes (v, uin) in H. The other vertices and edges remain
unchanged.

(a) (6%) Show that directed HAM-Path is in NP.
Answer: This one is easy. Given the vertices in order, all we have to do is verify they constitute
a simple path (no cycles) and that they are all the vertices in the graph. This takes linear time in
the number of vertices.

(b) (7%) Show that the reduction described above is polynomial.
Answer: All we have to do is to add at most |V |− 1 edges from uout to all the rest, and at most
|V | − 1 edges from all the rest to uin (depending on the degree of u). This is linear in the number
of vertices, and we add a linear number of edges and one vertex, so the space is polynomial.

(c) (7%) Show that the graph G has a HAM-Cycle iff H has a HAM-Path. Don’t forget the two
directions.
Answer:
⇒ If G has a HAM-Cycle {v1 = u, v2, . . . , vn, v1 = u} (since it’s a cycle it doesn’t matter where
we start the cycle, so we start with u). This corresponds to the path {uout, v2, . . . , vn, uin}. Since
there is an edge (u, v2) in the original graph, there is an edge (uout, v2) in H, and since there is
an edge (vn, u) in the original graph, there is an edge (vn, uout) in H.
⇐ If H has a HAM-PATH, it must start with uout and end with uin, since they don’t have
incoming and outgoing edges, respectively. But they both represent the same node u in G, so this
path corresponds to a cycle in G.

