CS624: Analysis of Algorithmns

Midterm exam 1 -practice

Instructor – Nurit Haspel

General Instructions

- 1. You may use the class notes and homework assignments. No books or any other printed/copied material is allowed. Electronic devices must be turned off.
- 2. The work is to be your own and you are expected to adhere to the UMass Boston honor system.
- 3. Write your answers in the available spaces, using the back of the page if needed. Write clearly and concisely and try to avoid cursive.
- 4. Please explain your answers if needed but do it briefly.
- 5. You may use any proof technique we showed in class or any other technique, as long as it constitutes a mathematical proof. Remember that a proof by example is generally good only to show that something is NOT true.
- 6. If you base your answer on a homework question state exactly which question it was.

Practice Questions

1. (25%) Order of growth:

Use the substitution/induction method to solve the recurrence formula: $T(n) = 8T(n/2) + n^3$. Assume T(2) = d (some constant). The result should be $T(n) = O(n^3 \log n)$ I know this can be shown easily with the master theorem, but please use induction and do not skip stages. Remember that you really have to show that $T(n) \leq Cn^3 \log n$ for some constant C.

Answer:

- Base case = T(2) = d.
- Inductive hypothesis: Assume $T(k) \leq Ck^3 \log k$ for any k < n.
- Use inductive hypothesis to prove for n. $T(n) = 8T(n/2) + n^3 \le 8C(\frac{n}{2})^3 \log \frac{n}{2} + n^3 = Cn^3(\log n 1) + n^3 = Cn^3 \log n + n^3(1 C)$. This expression is $\le Cn^3 \log n$ for any $C \ge 1$.
- 2. Sorting (25%) Let S be an unsorted array of n integers. Give an algorithm that finds the pair $x, y \in S$ that maximizes |x y|. Your algorithm must run in O(n) worst-case time.

Answer: This is simply finding the maximum and the minimum...

3. Heaps (25%): In a max-heap of size n, represented as discussed in class, in what index(es) can the smallest element reside? Explain. Assume all the n numbers are different.

Answer: We discussed this in class. The smallest element can be in any of the leaves, that is, in position $\left|\frac{n}{2}\right|$ to n.

4. Sorting bounds (25%): A researcher discovered a comparison-based sorting algorithm that runs in $O(n \log(\sqrt{n}))$. Given the existence of an $\Omega(n \log n)$ lower bound for sorting, how can this be possible? (Hint: It IS possible).

Answer: It looks like a trick question but it really isn't. The square root is just a factor of 1/2. $O(n \log \sqrt{n}) = O(n \log(n^{\frac{1}{2}})) = O(\frac{1}{2}n \log n) = O(n \log n)$, so it's ok.