THEORY OF COMPUTATION Problem session - 3

Prof. Dan A. Simovici

UMB

1 / 9

 QQ

 $A \equiv 1 + 4 \pmod{4} \Rightarrow A \equiv 1 + 4 \equiv 1 + \cdots \equiv 1$

 $\, {\bf D} \,$ For any unary function $f(x)$, the $n^{\rm th}$ iteration of f , written $f^n,$ is

$$
f^{n}(x)=f(\cdots f(x)\cdots),
$$

where f is composed with itself n times on the right side of the equality. Note that $f^0(x) = x$. Let $h_f(n, x) = f^n(x)$. Show that if f is primitive recursive, then h_f is also primitive recursive.

- 2 Let $f(0)=0$, $f(1)=1$, $f(2)=2^2$, $f(3)=3^{3^3}$, etc. In general, $f(n)$ is written as a stack n high, of ns as exponents. Show that f is primitive recursive.
- **3** Let g be a primitive recursive function and let $f(0, x) = g(x)$, $f(n+1, x) = f(n, f(n, x))$. Prove that $f(n, x)$ is primitive recursive.

Problem 1: For any unary function $f(x)$, the n^{th} iteration of f, written f^n , is

$$
f^{n}(x)=f(\cdots f(x)\cdots),
$$

where f is composed with itself n times on the right side of the equality. Note that $f^0(x) = x$. Let $h_f(n,x) = f^n(x)$. Show that if f is primitive recursive, then h_f is also primitive recursive.

Solution for Problem 1: Note that

$$
h_f(0,x) = x,h_f(n+1,x) = f^{n+1}(x) = f(f^n(x)) = f(h_f(n,x)).
$$

The second equality can be written as

$$
h_f(n+1,x)=F(n,h_f(n,x),x),
$$

where $F(n, z, x) = f(z) = f(p_2^3(n, z, x))$. This is a definition by primitive recursion of h_f . Thus, if f is primitive recursive, then so is h_f .

Problem 2: Let $f(0) = 0$, $f(1) = 1$, $f(2) = 2^2$, $f(3) = 3^{3^3}$, etc. In general, $f(n)$ is written as a stack n high, of ns as exponents. Show that f is primitive recursive.

Solution for Problem 2: Define the function g as

$$
g(n,k)=n^{n^{N}}
$$

. n

7 / 9

 $A \equiv 1 + \sqrt{2} \Rightarrow A \equiv 1 + \sqrt{2} \Rightarrow \quad \equiv 1$

containing k exponents. The function g is primitive recursive because

$$
g(n,0) = 1,
$$

$$
g(n,k+1) = n^{g(n,k)}.
$$

This implies the primitive recursiveness of f because $f(n) = g(n, n).$

Problem 3: Let g be a primitive recursive function and let $f(0, x) = g(x)$, $f(n+1, x) = f(n, f(n, x))$. Prove that $f(n, x)$ is primitive recursive.

Solution: Note that we can write

$$
f(0,x) = g(x);
$$

\n
$$
f(1,x) = f(0, f(0,x)) = f(0, g(x)) = g(g(x)) = g^{2}(x);
$$

\n
$$
f(2,x) = f(1, f(1,x)) = f(1, g^{2}(x)) = f(0, f(0, g^{2}(x)) = f(0, g^{3}(x))
$$

\n
$$
= g^{4}(x).
$$

In general, we have $f(n, x) = g^{2^n}(x)$ (by induction on n). The basis step, $n = 0$ is immediate. If this this holds for n,

$$
f(n+1,x) = f(n, f(n,x)) = f(n, g^{2^n}(x))
$$

\n(by the inductive hypothesis)
\n
$$
= g^{2^n}(g^{2^n}(x))
$$

\n(by another application of the inductive hypothesis)
\n
$$
= g^{2^n+2^n}(x) = g^{2^{n+1}}(x),
$$

\nwhich proves that $f(n,x) = g^{2^n}(x)$.

8 / 9

Note that the function $h(\ell,x)=g^\ell(x)$ is primitive recursive because

$$
h(0,x) = x,
$$

$$
h(\ell+1,x) = g(h(\ell,x)).
$$

Since $f(n, x) = h(2^n, x)$ it follows that f is primitive recursive.