
THEORY OF COMPUTATION
Problem session - 7

Prof. Dan A. Simovici

UMB

1 / 13

1 Problems

2 Solutions

2 / 13

Problem 1: Two numbers are relatively prime if they have no
common factor except 1. Define the predicate R(x , y) as

R(x , y) =

{
1 if x , y are relatively prime,

0 otherwise.

Prove that R is primitive recursive without using quotient,
remainder, or the gcd function

3 / 13

Problem 2: Let g be a primitive recursive function. Denote by gk

the function defined as gk(x) = g(· · · (g(x)) · · ·) is primitive
recursive and let h(x , y) = g y (x). Prove that h is primitive
recursive.

4 / 13

Problem 3: Let f (x , 0) = g(x) and f (x , y + 1) = f (f (x , y), y).
Show that if g is primitive recursive, then so is f .

5 / 13

Problem 4: Let g(x , y) be a function. Suppose that f is a function
such that f (n) = g(n, [f (0), f (1), . . . , f (n − 1)]) for all n. This is
the course-of-value recursive definition of f . Prove that if g is a
primitive recursive function, then so is f .

6 / 13

Problem 5: Let h be a function defined as

h(0) = 3,

h(x + 1) =
x∑

t=0

h(t).

Prove that h is primitive recursive.

7 / 13

Solution for Problem 1: If x , y are not relatively prime they have a
common factor that is greater than 1, that is, there exists t > 1
such that t|x and t|y . Therefore, R(x , y) is
∼ (∃t)6x((t > 1)&(t|x)&(t|y)).

8 / 13

Solution for Problem 2: The recursive definition is

h(x , 0) = g0(x) = x ,

h(x , y + 1) = f (y , h(x , y), x),

where f (x1, x2, x3) = g(x2). The function f is primitive recursive
because f (x1, x2, x3) = g(u32(x1, x2, x3), so the above definition of
h shows its primitive recursiveness.

9 / 13

Solution for Problem 3: We prove first that f (x , y) = g2y (x).
For y = 0 and for every x , g20(x) = g(x), which is f (x , 0) by
definition.
Suppose that for f (x , y) = g2y (x). Then,

f (x , y + 1) = f (f (x , y), y)

(by the definition of f)

= f (g2y (x), y)

(by inductive hypothesis)

= g2y (g2y (x)) = g2(y+1)
(x),

which proves the above equality.
Now, xy is primitive recursive and g y (x) is primitive recursive, by
Problem 2, which implies that f is primitive recursive.

10 / 13

Solution for Problem 4: Let f̃ be defined as

f̃ (0) = 1,

f̃ (n) = [f (0), f (1), . . . , f (n − 1)] if n 6= 0.

Observe that f (n) = (f̃ (n + 1))n+1. Thus, if we manage to prove
that f̃ is primitive recursive, the primitive recursiveness of f would
follow.

11 / 13

Solution for Problem 4 cont’d:

Note that f (n) = g(n, f̃ (n)) and

f̃ (n + 1) = f̃ (n) · pf (n)n+1

= f̃ (n) · pf (n)n+1

= f̃ (n) · pg(n,f̃ (n))n+1 .

Let U(n, y) be the function defined as U(n, y) = y · pg(n,y)n+1 . It is
clear that U is primitive recursive because all components and
operations of U(n, y) are primitive recursive. Since
f̃ (n + 1) = U(n, f̃ (n)), this means that f̃ is primitive recursive, and
this implies the primitive recursiveness of f , as we have seen above.

12 / 13

Solution for Problem 5: Let h be a function defined as

h(0) = 3,

h(x + 1) =
x∑

t=0

h(t).

Prove that h is primitive recursive.
We show that h can be built through course-of-values recursion,
that is, there is a primitive recursive function g such that

h(x + 1) = g(x , [h(0), h(1), . . . , h(x)])

for all x . We need g to satisfy the equality

g(x , [h(0), . . . , h(x)]) =
x∑

t=0

h(t).

For this, it suffices to define

g(x , y) =

Lt(y)+1∑
i=1

(y)i−1,

which is clearly primitive recursive. Thus, h is primitive recursive.
13 / 13

	Outline
	Problems
	Solutions

