THEORY OF COMPUTATION
Problem session - 7

Prof. Dan A. Simovici

UMB

1/13

@ Problems

@® Solutions

2/13

Problem 1: Two numbers are relatively prime if they have no
common factor except 1. Define the predicate R(x,y) as

R(x.y) 1 if x,y are relatively prime,
X7 - .
d 0 otherwise.

Prove that R is primitive recursive without using quotient,
remainder, or the gcd function

3/13

Problem 2: Let g be a primitive recursive function. Denote by gk
the function defined as g%(x) = g(--- (g(x))---) is primitive
recursive and let h(x,y) = g¥(x). Prove that h is primitive
recursive.

4/13

Problem 3: Let f(x,0) = g(x) and f(x,y + 1) = f(f(x,y),y).
Show that if g is primitive recursive, then so is f.

5/13

Problem 4: Let g(x,y) be a function. Suppose that f is a function

such that f(n) = g(n,[f(0), f(1),...,f(n—1)]) for all n. This is
the course-of-value recursive def|n|t|on of f. Prove that if g is a

primitive recursive function, then so is f.

6/13

Problem 5: Let h be a function defined as

h0) = 3

h(x+1) = S h(t).

Prove that h is primitive recursive.

7/13

Solution for Problem 1: If x, y are not relatively prime they have a
common factor that is greater than 1, that is, there exists t > 1
such that t|x and t|y. Therefore, R(x,y) is

~ (Ft)<x((t > 1)&(t]x)&(t]y))-

8/13

Solution for Problem 2: The recursive definition is

h(x,0) = g°%x)=x,
h(x,y +1) = f(y,h(x,y),x),

where f(x1,x2,x3) = g(x2). The function f is primitive recursive
because f(x1,x2, x3) = g(u3(x1, x2, x3), so the above definition of
h shows its primitive recursiveness.

9/13

Solution for Problem 3: We prove first that f(x,y) = g2’ (x).
For y = 0 and for every x, g2'(x) = g(x), which is f(x 0) by
definition.

Suppose that for f(x,y) = g (x). Then,

fix,y +1) = f(f(x.y).y)
(by the definition of f)

= f(g¥(x).y)

(by inductive hypothesis)
(y+1)
= g7 (" () =¢"""(x),

which proves the above equality.
Now, x¥ is primitive recursive and g¥(x) is primitive recursive, by
Problem 2, which implies that f is primitive recursive.

10/13

Solution for Problem 4: Let f be defined as

0

n

17
[£(0), f(1), ..., f(n—1)] if n #0.

Ty
—~ o~

)
)

Observe that f(n) = (f(n+ 1))p+1. Thus, if we manage to prove
that f is primitive recursive, the primitive recursiveness of f would
follow.

11/13

Solution for Problem 4 cont’'d:

Note that f(n) = g(n, f(n)) and

fin+1) = F(n)-p)
(n)- p,ffl)

r n,f n
= F(n)- pEL .

|
2

Let U(n,y) be the function defined as U(n,y) =y - pffrnl’”. It is

clear that U is primitive recursive because all components and
operations of U(n, y) are primitive recursive. Since

f(n+1) = U(n, f(n)), this means that f is primitive recursive, and
this implies the primitive recursiveness of f, as we have seen above.

12/13

Solution for Problem 5: Let h be a function defined as
h(0) = 3,

h(x +1) Zh

Prove that h is primitive recursive.
We show that h can be built through course-of-values recursion,
that is, there is a primitive recursive function g such that

h(x + 1) = g(x, [h(0), h(1),..., h(x)])

for all x. We need g to satisfy the equality
g(x, [h(0),.., h(x)]) = D h(t).

For this, it suffices to define
Lt(y)+1

gly)= > i,

i=1

which is clearly primitive recursive. Thus, h is primitive recursive.

13/13

	Outline
	Problems
	Solutions

