THEORY OF COMPUTATION Recursively Enumerable Sets - 10 part 1

Prof. Dan A. Simovici

UMB

1 / 19

 QQ

4 ロ > 4 何 > 4 ミ > 4 ミ > - ミ

 L_{Outline} L_{Outline} L_{Outline}

1 [Recursive and Recursively Enumerable Sets](#page-2-0)

Predicates can be used to define sets.

Definition If $P(x_1, \ldots, x_n)$ is a predicate, the set B_P defined by P is: $B_P = \{(x_1, \ldots, x_n) \mid P(x_1, \ldots, x_n) = \text{TRUE}\}.$

P is the characteristic predicate of the set B_P . The set B_P is defined as computable or recursive if its characteristic predicate is computable.

 B_P is primitive recursive if P is a primitive recursive predicate.

In other words, B_P is recursive if we can give a yes/no answer to the question " $x \in B_P$ ". This follows from the fact that P is computable.

Example

The set

 $B = \{(x, y) \mid$ the program P with $\#(\mathcal{P}) = y$ halts on $x\}$

has $HALT(X, Y)$ as its characteristic predicate. Since $HALT$ is not computable, the set B is not recursive.

Definition

A set B belongs to a class of functions if its characteristic predicate belongs to that set.

Theorem

Let $\cal C$ be a PRC class. If B, C belong to $\cal C$, then so do the sets $B \cup C$, $B \cap C$ and B.

Proof.

If P_B , P_C are the characteristic predicates of B and C, respectively, and $P_B, P_C \in \mathcal{C}$, then the characteristic predicates of $B \cup C, B \cap C$ and \overline{B} are $P_B \vee P_C$, $P_B \& P_C$, and $\sim P_B$, respectively, and we saw that they belong to C .

Theorem

Let C be a PRC class, and let $B \subseteq \mathbb{N}^m$, where $m \geqslant 1$. Then $B \in \mathcal{C}$ if and only it the set of numbers

$$
B' = \{ [x_1,\ldots,x_m] \mid (x_1,\ldots,x_m) \in B \}
$$

belongs to C.

Proof.

If $P_B(x_1, \ldots, x_m)$ is the characteristic function of B, then

$$
P_{B'}(x) \Leftrightarrow P_B((x)_1,\ldots,(x)_m)\&\mathsf{Lt}(x)=m,
$$

and $P_{B'}$ clearly belongs to C if $P_B \in \mathcal{C}$. On the other hand, $P_B(x_1, \ldots, x_m) \Leftrightarrow P_{B'}([x_1, \ldots, x_n])$, hence $P_{B'} \in \mathcal{C}$ implies $P_B \in \mathcal{C}$.

 $\mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A}$

Definition

The set $B \subseteq \mathbb{N}$ is recursively enumerable if there is a partially computable function $g(x)$ such that

$$
B = \{x \in \mathbb{N} \mid g(x) \downarrow \}.
$$

The term recursively enumerable is abbreviated as r.e.

A set is recursively enumerable when it the domain of a partially computable function. Equivalently, B is r.e. if it is just the set of inputs on which some program P halts.

- If P is an algorithm for testing the membership in B, P will provide an yes answer for any x in B .
- If $x \notin B$ the algorithm P will never terminate. This is why P is also called a semidecision procedure for B.

[THEORY OF COMPUTATION Recursively Enumerable Sets - 10 part 1](#page-0-0)

[Recursive and Recursively Enumerable Sets](#page-2-0)

4 ロ > 4 何 > 4 ミ > 4 ミ > - ミ 299 11 / 19

Theorem

If B is a recursive set, then B is r.e.

Proof.

Since B is recursive, the predicate $x \in B$ is computable, so we can write the program \mathcal{P} :

$$
[A] \quad \text{IF} \quad \sim (X \in B) \quad \text{GOTO} \quad A
$$

If $h(x)$ is computed by this program then $B = \{x \in \mathbb{N} \mid h(x) \downarrow \}.$

> 4 ロ > 4 何 > 4 ミ > 4 ミ > - ミ - വൈറ 12 / 19

Theorem

The set B is recursive if and only if both B and \overline{B} are both r.e.

Proof.

If B is recursive, then so is \overline{B} , hence both B and \overline{B} are r.e. Conversely, suppose that B and \overline{B} are both r.e., that is

$$
\begin{array}{rcl}\nB & = & \{x \in \mathbb{N} \mid g(x) \downarrow\}, \\
\overline{B} & = & \{x \in \mathbb{N} \mid h(x) \downarrow\},\n\end{array}
$$

where g and h are both partially computable.

4 ロ > 4 何 > 4 ミ > 4 ミ > 1 ミ 13 / 19

Proof cont'd

Proof.

Let g be the function computed by program P and h be the function computed by program Q , where $\#(\mathcal{P}) = p$ and $H(Q) = q$. The next program computes the characteristic function of B^1

$$
[A] \quad \text{IF} \quad \text{STP}^{(1)}(X, p, T) \quad \text{GOTO} \quad C \\
 \text{IF} \quad \text{STP}^{(1)}(X, q, T) \quad \text{GOTO} \quad E \\
 \text{I} \leftarrow T + 1 \\
 \text{GOTO} \quad A \\
 [C] \quad Y \leftarrow 1
$$

The technique used in the previous proof is known as dovetailing. It combines the algorithms for computing g and h by running the two algorithms for longer and longer times until one of them terminates.

Theorem

If B and C are r.e. sets, then so are $B \cup C$ and $B \cap C$.

Proof.

Let

$$
B = \{x \in \mathbb{N} \mid g(x) \downarrow\} \text{ and } C = \{x \in \mathbb{N} \mid h(x) \downarrow\},
$$

where g and h are partially computable. Let f be computed by

$$
Y \leftarrow g(X) \\ Y \leftarrow h(X)
$$

Note that $f(x) \downarrow$ if and only if $g(x) \downarrow$ and $h(x) \downarrow$. Hence $B \cap C = \{x \in \mathbb{N} \mid f(x) \downarrow \}, \text{ so } B \cap C \text{ is r.e.}$

> 4 ロ > 4 何 > 4 ミ > 4 ミ > - ミ QQ 16 / 19

Proof cont'd

Proof.

For $B \cup C$ we use dovetailing again. Let g be the function computed by program P and h be the function computed by program Q, where $\#(\mathcal{P}) = p$ and $\#(\mathcal{Q}) = q$. Let $k(x)$ be computed by

$$
[A] \quad \text{IF } \text{STP}^{(1)}(X, p, T) \text{ GOTO } E
$$
\n
$$
\text{IF } \text{STP}^{(1)}(X, q, T) \text{ GOTO } E
$$
\n
$$
T \leftarrow T + 1
$$
\n
$$
\text{GOTO } A
$$

Thus, $k(x) \downarrow$ just when either $g(x) \downarrow$ or $h(x) \downarrow$, that is $B \cup C = \{x \in \mathbb{N} \mid k(x) \downarrow \}.$

イロト イ押 トイヨ トイヨ トー

If $\Phi(x, n)$ is the universal function, *n* is the program code and *x* is the input. Alternatively, we use the notation

 $\Phi_n(x)$

for $\Phi(x, n)$. The definition domain of $\Phi_n(x)$ is the set denoted as W_n . Equivalently,

$$
W_n = \{x \in \mathbb{N} \mid \Phi(x, n) \downarrow \}.
$$

or

$$
W_n = \{x \in \mathbb{N} \mid \Phi_n(x) \downarrow \}.
$$

18 / 19

KORKA BRASH ST AND

Theorem

Enumeration Theorem: A set B is r.e. if and only if there is an n for which $B = W_n$.

Proof.

This follows immediately from the definition of $\Phi(x, n)$.

The theorem gets its name from the fact that

 $W_0, W_1, \ldots, W_n, \ldots$

is an enumeration of all r.e. sets.