THEORY OF COMPUTATION Recursively Enumerable Sets - 10 part 1

Prof. Dan A. Simovici

UMB

イロト イボト イヨト 一日

1/19

Outline

1 Recursive and Recursively Enumerable Sets

Predicates can be used to define sets.

Definition If $P(x_1,...,x_n)$ is a predicate, the set B_P defined by P is: $B_P = \{(x_1,...,x_n) \mid P(x_1,...,x_n) = \mathsf{TRUE}\}.$

P is the characteristic predicate of the set B_P . The set B_P is defined as computable or recursive if its characteristic predicate is computable.

 B_P is primitive recursive if P is a primitive recursive predicate.

In other words, B_P is recursive if we can give a yes/no answer to the question " $x \in B_P$ ". This follows from the fact that P is computable.

Example

The set

 $B = \{(x, y) \mid \text{ the program } \mathcal{P} \text{ with } \#(\mathcal{P}) = y \text{ halts on } x\}$

has HALT(X, Y) as its characteristic predicate. Since *HALT* is not computable, the set *B* is not recursive.

Definition

A set B belongs to a class of functions if its characteristic predicate belongs to that set.

Theorem

Let C be a PRC class. If B, C belong to C, then so do the sets $B \cup C, B \cap C$ and \overline{B} .

Proof.

If P_B , P_C are the characteristic predicates of B and C, respectively, and P_B , $P_C \in C$, then the characteristic predicates of $B \cup C$, $B \cap C$ and \overline{B} are $P_B \vee P_C$, $P_B \& P_C$, and $\sim P_B$, respectively, and we saw that they belong to C.

Theorem

Let C be a PRC class, and let $B \subseteq \mathbb{N}^m$, where $m \ge 1$. Then $B \in C$ if and only it the set of numbers

$$B' = \{ [x_1, \ldots, x_m] \mid (x_1, \ldots, x_m) \in B \}$$

belongs to C.

Proof.

If $P_B(x_1, \ldots, x_m)$ is the characteristic function of B, then

$$P_{B'}(x) \Leftrightarrow P_B((x)_1,\ldots,(x)_m)\≪(x) = m,$$

and $P_{B'}$ clearly belongs to C if $P_B \in C$. On the other hand, $P_B(x_1, \ldots, x_m) \Leftrightarrow P_{B'}([x_1, \ldots, x_n])$, hence $P_{B'} \in C$ implies $P_B \in C$.

イロト イヨト イヨト

Definition

The set $B \subseteq \mathbb{N}$ is recursively enumerable if there is a partially computable function g(x) such that

$$B = \{x \in \mathbb{N} \mid g(x) \downarrow\}.$$

The term recursively enumerable is abbreviated as r.e.

A set is recursively enumerable when it the domain of a partially computable function. Equivalently, B is r.e. if it is just the set of inputs on which some program \mathcal{P} halts.

- If \mathcal{P} is an algorithm for testing the membership in B, \mathcal{P} will provide an *yes* answer for any x in B.
- If $x \notin B$ the algorithm \mathcal{P} will never terminate. This is why \mathcal{P} is also called a semidecision procedure for B.

Theorem

If B is a recursive set, then B is r.e.

Proof.

Since *B* is recursive, the predicate $x \in B$ is computable, so we can write the program \mathcal{P} :

 $[A] \quad \mathsf{IF} \ \sim (X \in B) \ \mathsf{GOTO} \ A$

If h(x) is computed by this program then $B = \{x \in \mathbb{N} \mid h(x) \downarrow\}.$

Theorem

The set B is recursive if and only if both B and \overline{B} are both r.e.

Proof.

If B is recursive, then so is \overline{B} , hence both B and \overline{B} are r.e. Conversely, suppose that B and \overline{B} are both r.e., that is

$$B = \{x \in \mathbb{N} \mid g(x) \downarrow\},\$$

$$\overline{B} = \{x \in \mathbb{N} \mid h(x) \downarrow\},\$$

where g and h are both partially computable.

13/19

イロト 不同 とうほう 不同 とう

Proof cont'd

Proof.

Let g be the function computed by program \mathcal{P} and h be the function computed by program \mathcal{Q} , where $\#(\mathcal{P}) = p$ and $\#(\mathcal{Q}) = q$. The next program computes the characteristic function of B:

$$\begin{array}{ll} [A] & \text{IF STP}^{(1)}(X, p, T) \text{ GOTO } C \\ & \text{IF STP}^{(1)}(X, q, T) \text{ GOTO } E \\ & T \leftarrow T + 1 \\ & \text{GOTO } A \\ \hline \\ [C] & Y \leftarrow 1 \end{array}$$

The technique used in the previous proof is known as dovetailing. It combines the algorithms for computing g and h by running the two algorithms for longer and longer times until one of them terminates.

Theorem

If B and C are r.e. sets, then so are $B \cup C$ and $B \cap C$.

Proof.

Let

$$B = \{x \in \mathbb{N} \mid g(x) \downarrow\} \text{ and } C = \{x \in \mathbb{N} \mid h(x) \downarrow\},\$$

where g and h are partially computable. Let f be computed by

$$Y \leftarrow g(X)$$

 $Y \leftarrow h(X)$

Note that $f(x) \downarrow$ if and only if $g(x) \downarrow$ and $h(x) \downarrow$. Hence $B \cap C = \{x \in \mathbb{N} \mid f(x) \downarrow\}$, so $B \cap C$ is r.e.

Proof cont'd

Proof.

For $B \cup C$ we use dovetailing again. Let g be the function computed by program \mathcal{P} and h be the function computed by program \mathcal{Q} , where $\#(\mathcal{P}) = p$ and $\#(\mathcal{Q}) = q$. Let k(x) be computed by

$$\begin{array}{ll} [A] & \mathsf{IF} \; \mathsf{STP}^{(1)}(X, p, T) \; \mathsf{GOTO} \; E \\ & \mathsf{IF} \; \mathsf{STP}^{(1)}(X, q, T) \; \mathsf{GOTO} \; E \\ & T \leftarrow T + 1 \\ & \mathsf{GOTO} \; A \end{array}$$

Thus, $k(x) \downarrow$ just when either $g(x) \downarrow$ or $h(x) \downarrow$, that is $B \cup C = \{x \in \mathbb{N} \mid k(x) \downarrow\}.$

イロト 不同 とうほう 不同 とう

If $\Phi(x, n)$ is the universal function, n is the program code and x is the input. Alternatively, we use the notation

 $\Phi_n(x)$

for $\Phi(x, n)$. The definition domain of $\Phi_n(x)$ is the set denoted as W_n . Equivalently,

$$W_n = \{x \in \mathbb{N} \mid \Phi(x, n) \downarrow\}.$$

or

$$W_n = \{x \in \mathbb{N} \mid \Phi_n(x) \downarrow\}.$$

Theorem

Enumeration Theorem: A set B is r.e. if and only if there is an n for which $B = W_n$.

Proof.

This follows immediately from the definition of $\Phi(x, n)$.

The theorem gets its name from the fact that

 $W_0, W_1, \ldots, W_n, \ldots$

is an enumeration of all r.e. sets.