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Recall that by the Enumeration Theorem, the collection of r.e. sets
can be written as
Wy, Wo, ..., W,, ...

where W, = {x e N | ®(x,n) |}.
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Let K be the set of all numbers n such that the program number n
eventually halts on number n.

Definition
The set K is defined as:

K={neN| neW,}

Note that n € W, if and only if ®(n, n) | if and only if
HALT(n, n) = TRUE.
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The set K is r.e. but not recursive.

Recursive Sets

Recursive Enumerable Sets
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Proof.

Note that K = {n € N | ®(n, n) |}, ® is partially computable,
hence K is r.e.
If K were r.e, by the Enumeration Theorem we would have
K = W; for some i. Then,
iceKesicW sickK,

which is a contradiction. Therefore, K is not r.e., which implies
that K is not recursive. ]
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Recursive Sets
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7/21



THEORY OF COMPUTATION Recursively Enumerable Sets - 11 part 2
L The set K and Its Complement

An alternative characterization of r.e. sets is provided next.

Theorem

Projection Theorem Let B be an r.e. set. There exists a
primitive recursive predicate R(x,t) such that:

B={xeN | (3t)R(x,t)}.

Note that this is unbounded existential quantification!
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Proof.
Let B = W,. Then,

B={xeN| (3t)STPY(x,n, t)}

and STP is primitive recursive. The role of R(x, t) is played by
STPMW(x, n, t). O
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Theorem

Let S be a non-empty r.e. set. Then, there is a primitive recursive
function f(u) such that

S={f(n) | neN}={f(0),f(1),...}.

That is, S is the range of f.
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Proof.

By a previous theorem, S = {x € N | (3t)R(x, t)}, where R is a
primitive recursive predicate. Let xg be some fixed member of S
(for example the smallest). Let f the primitive recursive function:

) = {E(u) if R(£(u), r(u)),

X0 otherwise.

Each value of f(u) isin S, since xg € S, while if R({(u), r(u)) is
TRUE, then (3t)R(£(u), t) is TRUE, which implies that

f(u) =L(u) €S.

Conversely, if x € S, then R(x, tp) is TRUE for some ty. Then,
f((x, to)) = €({x, to)) = x, so that x = f(u) for u = (x, to). O
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Theorem

Let f(x) be a partially computable function and let

S ={f(x) | f(x)l}. In other words, S is the range of f. Then, S
is r.e.
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1 otherwise.

£(0) {o if x € S,

Since S = {x | g(x) |} it suffices to show that the fact that
partially computability of f implies that g is partially
computable. O
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Proof cont'd

Let P be a program that computes f and #(P) = p. Then, g is
computed by

[A] IF STPM(Z,p, T) GOTO B
V + f(2)
IF V=X GOTO E
[B] Z+Z+1
IF Z< T GOTO A
T+ T+1
Z+0
GOTO A

Note that V < f(Z) is entered only when the step-counter test
has already determined that f is defined.
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Theorem

Suppose that S # (0. The following statements are equivalent:
Sisre.;
S is the range of a primitive recursive function;
S is the range of a recursive function;

S is the range of a partial recursive function;

This follows from previous theorems: the implication (1) = (2)
follows from the theorem on Slide 10. The implications (2) = (3)
and (3) = (4) are obvious. The implication (4) = (1) follows from
the theorem on Slide 12.

15/21



THEORY OF COMPUTATION Recursively Enumerable Sets - 11 part 2
LThe Parameter Theorem

The parameter theorem is also known as the smn-theorem.

Theorem

For each n, m > Q there is a primitive recursive function
Sh(u1, ..., un,y) such that

d>(m+”)(xl, ey Xmy ULy ey Uny YY)
= (D(m)(xl, ey Xmy Sp(ULy ooy Uny YY)
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Proof.
The proof is by induction on n, the number of arguments
u1,...,u, packed into S.

For n = 1, the base case, we need to show that there is a function
Sl such that

¢(m+n)(xl, ce ey Xmy Ul,}/)
= oM (xq, ..., xm, Sh(u1,y)).

Here St (u1,y) must be the number of a program which, given m
inputs xi, ..., Xn computes the same value as the program y does
when given the m + 1 inputs xi, ..., Xm, U1.

Let P be the program with #(P) = y. Then, S} (u1,y) can be
taken as the number of a program which first gives X;,+1 the value
uy and then proceeds to execute P. O
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Proof cont'd

So the new program begins with

Xmt1 & Xmy1 +1
: uy
Xm+1 < Xm+1 +1

Note that the code of X1 « Xipe1 + 1 is

(0,(1,2m + 1)) = 16m + 10.
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Proof cont'd

So, we may take

un 16m+10 Lt(y+1) o
51 ula le H PU{H h = 1a
j=1

which is a primitive recursive function.
Note that the numbers of the instructions of P which appear as
exponents in the prime power factorization of y + 1 have been

shifted to the primes py, 11, Puy+2; - - - s PuyLt(y+1)- []
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Proof cont'd

Suppose now that the result holds for n = k. Then, we have

(D(m—l—k-i-l)(xl’ ey Xmy ULy« ooy Uky Uk 1, Y)
d)(m+k)(X1, ey Xmy ULy o ooy U, 5,1n+k(uk+1’}/))
O™t Xy SE 1 6, Sy (tk41,)),

using the result for n = 1 and the induction hypothesis. Now, we
can define

Smtt(uns st k) = Sp(un, - Uk S (U1, ¥))-
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Example

Using the smn theorem we can show the existence of a primitive
recursive function g such that ®,(®,(x)) = ®4(,,,)(x). This

means that
Pu(®y(x)) = O(P(x, v), u),

so ®,(P,(x)) = P(x, u, v, z9) is a partially computable function of
X, u,v. Hence

CDU((DV(X)) = (D(X’ Sf(uv v, ZO))a

and g(u,v) = S}(u, v, z).
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