THEORY OF COMPUTATION Recursively Enumerable Sets - 11 part 2

Prof. Dan A. Simovici

UMB

Outline

1 The set K and Its Complement

2 The Parameter Theorem

Recall that by the Enumeration Theorem, the collection of r.e. sets can be written as

$$W_1, W_2, \ldots, W_n, \ldots$$

where
$$W_n = \{x \in \mathbb{N} \mid \Phi(x, n) \downarrow \}$$
.

Let K be the set of all numbers n such that the program number n eventually halts on number n.

Definition

The set K is defined as:

$$K = \{n \in \mathbb{N} \mid n \in W_n\}.$$

Note that $n \in W_n$ if and only if $\Phi(n, n) \downarrow$ if and only if $\mathsf{HALT}(n, n) = \mathsf{TRUE}$.

 \sqsubseteq The set K and Its Complement

Theorem

The set K is r.e. but not recursive.

Proof.

Note that $K = \{n \in \mathbb{N} \mid \Phi(n, n) \downarrow \}$, Φ is partially computable, hence K is r.e.

If \overline{K} were r.e, by the Enumeration Theorem we would have $\overline{K}=W_i$ for some i. Then,

$$i \in K \Leftrightarrow i \in W_i \Leftrightarrow i \in \overline{K}$$
,

which is a contradiction. Therefore, \overline{K} is not r.e., which implies that K is not recursive.

 \sqsubseteq The set K and Its Complement

An alternative characterization of r.e. sets is provided next.

Theorem

Projection Theorem Let B be an r.e. set. There exists a primitive recursive predicate R(x, t) such that:

$$B = \{x \in \mathbb{N} \mid (\exists t) R(x, t)\}.$$

Note that this is unbounded existential quantification!

 \sqsubseteq The set K and Its Complement

Proof.

Let $B = W_n$. Then,

$$B = \{x \in \mathbb{N} \mid (\exists t) \mathsf{STP}^{(1)}(x, n, t)\}$$

and STP is primitive recursive. The role of R(x, t) is played by $STP^{(1)}(x, n, t)$.

Theorem

Let S be a non-empty r.e. set. Then, there is a primitive recursive function f(u) such that

$$S = \{f(n) \mid n \in \mathbb{N}\} = \{f(0), f(1), \ldots\}.$$

That is, S is the range of f.

Proof.

By a previous theorem, $S = \{x \in \mathbb{N} \mid (\exists t)R(x,t)\}$, where R is a primitive recursive predicate. Let x_0 be some fixed member of S (for example the smallest). Let f the primitive recursive function:

$$f(u) = \begin{cases} \ell(u) & \text{if } R(\ell(u), r(u)), \\ x_0 & \text{otherwise.} \end{cases}$$

Each value of f(u) is in S, since $x_0 \in S$, while if $R(\ell(u), r(u))$ is TRUE, then $(\exists t)R(\ell(u), t)$ is TRUE, which implies that $f(u) = \ell(u) \in S$.

Conversely, if $x \in S$, then $R(x, t_0)$ is TRUE for some t_0 . Then, $f(\langle x, t_0 \rangle) = \ell(\langle x, t_0 \rangle) = x$, so that x = f(u) for $u = \langle x, t_0 \rangle$.

 \sqsubseteq The set K and Its Complement

Theorem

Let f(x) be a partially computable function and let $S = \{f(x) \mid f(x) \downarrow\}$. In other words, S is the range of f. Then, S is r.e.

Proof.

Let

$$g(x) = \begin{cases} 0 & \text{if } x \in S, \\ \uparrow & \text{otherwise.} \end{cases}$$

Since $S = \{x \mid g(x) \downarrow\}$ it suffices to show that the fact that partially computability of f implies that g is partially computable.

Proof.

Let \mathcal{P} be a program that computes f and $\#(\mathcal{P}) = p$. Then, g is computed by

[A] IF
$$STP^{(1)}(Z, p, T)$$
 GOTO B

 $V \leftarrow f(Z)$

IF $V = X$ GOTO E

[B] $Z \leftarrow Z + 1$

IF $Z \leqslant T$ GOTO A

 $T \leftarrow T + 1$
 $Z \leftarrow 0$

GOTO A

Note that $V \leftarrow f(Z)$ is entered only when the step-counter test has already determined that f is defined.

Theorem

Suppose that $S \neq \emptyset$. The following statements are equivalent:

- 1 *S* is r.e.;
- **2** *S* is the range of a primitive recursive function;
- 3 S is the range of a recursive function;
- 4 S is the range of a partial recursive function;

This follows from previous theorems: the implication $(1) \Rightarrow (2)$ follows from the theorem on Slide 10. The implications $(2) \Rightarrow (3)$ and $(3) \Rightarrow (4)$ are obvious. The implication $(4) \Rightarrow (1)$ follows from the theorem on Slide 12.

The parameter theorem is also known as the smn-theorem.

Theorem

For each n, m > 0 there is a primitive recursive function $S_m^n(u_1, \ldots, u_n, y)$ such that

$$\Phi^{(m+n)}(x_1,...,x_m,u_1,...,u_n,y) = \Phi^{(m)}(x_1,...,x_m,S_m^n(u_1,...,u_n,y)).$$

Proof.

The proof is by induction on n, the number of arguments u_1, \ldots, u_n packed into S.

For n=1, the base case, we need to show that there is a function S_m^1 such that

$$\Phi^{(m+n)}(x_1,\ldots,x_m,u_1,y) = \Phi^{(m)}(x_1,\ldots,x_m,S_m^1(u_1,y)).$$

Here $S_m^1(u_1, y)$ must be the number of a program which, given m inputs x_1, \ldots, x_m computes the same value as the program y does when given the m+1 inputs x_1, \ldots, x_m, u_1 .

Let \mathcal{P} be the program with $\#(\mathcal{P}) = y$. Then, $S_m^1(u_1, y)$ can be taken as the number of a program which first gives X_{m+1} the value u_1 and then proceeds to execute \mathcal{P} .

Proof.

So the new program begins with

$$X_{m+1} \leftarrow X_{m+1} + 1$$

 \vdots
 $X_{m+1} \leftarrow X_{m+1} + 1$ u_1

Note that the code of $X_{m+1} \leftarrow X_{m+1} + 1$ is

$$\langle 0, \langle 1, 2m+1 \rangle \rangle = 16m+10.$$

Proof.

So, we may take

$$S_m^1(u_1,y) = \left(\prod_{i=1}^{u_1} p_i\right)^{16m+10} \prod_{j=1}^{\operatorname{tt}(y+1)} p_{u_1+j}^{(y+1)_j} \doteq 1,$$

which is a primitive recursive function.

Note that the numbers of the instructions of \mathcal{P} which appear as exponents in the prime power factorization of y+1 have been shifted to the primes $p_{u_1+1}, p_{u_1+2}, \ldots, p_{u_1+Lt(y+1)}$.

Proof.

Suppose now that the result holds for n = k. Then, we have

$$\Phi^{(m+k+1)}(x_1, \dots, x_m, u_1, \dots, u_k, u_{k+1}, y)$$

$$= \Phi^{(m+k)}(x_1, \dots, x_m, u_1, \dots, u_k, S^1_{m+k}(u_{k+1}, y))$$

$$= \Phi^m(x_1, \dots, x_m, S^k_m(u_1, \dots, u_k, S^1_{m+k}(u_{k+1}, y))),$$

using the result for n=1 and the induction hypothesis. Now, we can define

$$S_m^{k+1}(u_1,\ldots,u_k,u_{k+1})=S_m^k(u_1,\ldots,u_k,S_{m+k}^1(u_{k+1},y)).$$

Example

Using the smn theorem we can show the existence of a primitive recursive function g such that $\Phi_u(\Phi_v(x)) = \Phi_{g(u,v)}(x)$. This means that

$$\Phi_u(\Phi_v(x)) = \Phi(\Phi(x,v),u),$$

so $\Phi_u(\Phi_v(x)) = \Phi(x, u, v, z_0)$ is a partially computable function of x, u, v. Hence

$$\Phi_u(\Phi_v(x)) = \Phi(x, S_1^3(u, v, z_0)),$$

and
$$g(u, v) = S_1^3(u, v, z_0)$$
.