THEORY OF COMPUTATION Recursively Enumerable Sets - 11 part 2

Prof. Dan A. Simovici

UMB

1 / 21

 QQQ

4 ロ > 4 何 > 4 ミ > 4 ミ > - ミ

 L_{Outline} L_{Outline} L_{Outline}

1 The set K [and Its Complement](#page-2-0)

2 [The Parameter Theorem](#page-15-0)

メロトメ 御 トメ 君 トメ 君 トッ 君 OQ 2 / 21

 L The set K [and Its Complement](#page-2-0)

Recall that by the Enumeration Theorem, the collection of r.e. sets can be written as

 $W_1, W_2, \ldots, W_n, \ldots$

where $W_n = \{x \in \mathbb{N} \mid \Phi(x, n) \downarrow \}.$

Let K be the set of all numbers n such that the program number n eventually halts on number n.

Definition

The set K is defined as:

$$
K=\{n\in\mathbb{N}\mid n\in W_n\}.
$$

Note that $n \in W_n$ if and only if $\Phi(n, n) \downarrow$ if and only if $HALT(n, n) = TRUE.$

Theorem

Proof.

Note that $K = \{n \in \mathbb{N} \mid \Phi(n, n) \downarrow\}$, Φ is partially computable, hence K is r.e. If \overline{K} were r.e, by the Enumeration Theorem we would have $K = W_i$ for some *i*. Then,

$$
i\in K \Leftrightarrow i\in W_i \Leftrightarrow i\in \overline{K},
$$

6 / 21

4 ロ > 4 何 > 4 ミ > 4 ミ > - ミ

which is a contradiction. Therefore, \overline{K} is not r.e., which implies that K is not recursive.

[THEORY OF COMPUTATION Recursively Enumerable Sets - 11 part 2](#page-0-0)

 \Box The set K [and Its Complement](#page-2-0)

An alternative characterization of r.e. sets is provided next.

Theorem

Projection Theorem Let B be an r.e. set. There exists a primitive recursive predicate $R(x, t)$ such that:

$$
B = \{x \in \mathbb{N} \mid (\exists t) R(x, t)\}.
$$

Note that this is unbounded existential quantification!

 L The set K [and Its Complement](#page-2-0)

Proof.

Let $B = W_n$. Then,

$$
B = \{x \in \mathbb{N} \mid (\exists t) \mathsf{STP}^{(1)}(x, n, t)\}
$$

and STP is primitive recursive. The role of $R(x, t)$ is played by $STP^{(1)}(x, n, t).$

П

Theorem

Let S be a non-empty r.e. set. Then, there is a primitive recursive function $f(u)$ such that

$$
S = \{f(n) \mid n \in \mathbb{N}\} = \{f(0), f(1), \ldots\}.
$$

10 / 21

 Ω

4 ロ > 4 何 > 4 ミ > 4 ミ > - ミ

That is, S is the range of f .

Proof.

By a previous theorem, $S = \{x \in \mathbb{N} \mid (\exists t) R(x, t)\}\)$, where R is a primitive recursive predicate. Let x_0 be some fixed member of S (for example the smallest). Let f the primitive recursive function:

$$
f(u) = \begin{cases} \ell(u) & \text{if } R(\ell(u), r(u)), \\ x_0 & \text{otherwise.} \end{cases}
$$

Each value of $f(u)$ is in S, since $x_0 \in S$, while if $R(\ell(u), r(u))$ is TRUE, then $(\exists t)R(\ell(u), t)$ is TRUE, which implies that $f(u) = \ell(u) \in S$. Conversely, if $x \in S$, then $R(x, t_0)$ is TRUE for some t_0 . Then, $f(\langle x,t_0 \rangle) = \ell(\langle x,t_0 \rangle) = x$, so that $x = f(u)$ for $u = \langle x,t_0 \rangle$.

Theorem

Let $f(x)$ be a partially computable function and let $S = \{f(x) | f(x) \downarrow\}$. In other words, S is the range of f. Then, S is r.e.

 L The set K [and Its Complement](#page-2-0)

Proof.

Let

$$
g(x) = \begin{cases} 0 & \text{if } x \in S, \\ \uparrow & \text{otherwise.} \end{cases}
$$

Since $S = \{x \mid g(x) \downarrow\}$ it suffices to show that the fact that partially computability of f implies that g is partially computable.

Proof cont'd

Proof.

Let P be a program that computes f and $\#(\mathcal{P}) = p$. Then, g is computed by

$$
[A] \quad \text{IF} \quad STP^{(1)}(Z, p, T) \quad \text{GOTO} \quad B \\
\quad V \leftarrow f(Z) \\
\quad \text{IF} \quad V = X \quad \text{GOTO} \quad E \\
\quad [B] \quad Z \leftarrow Z + 1 \\
\quad \text{IF} \quad Z \leq T \quad \text{GOTO} \quad A \\
\quad T \leftarrow T + 1 \\
\quad Z \leftarrow 0 \\
\quad \text{GOTO} \quad A
$$

Note that $V \leftarrow f(Z)$ is entered only when the step-counter test has already determined that f is defined.

つひひ 14 / 21

Theorem

Suppose that $S \neq \emptyset$. The following statements are equivalent:

- \blacksquare S is r.e.;
- 2 S is the range of a primitive recursive function;
- 3 S is the range of a recursive function;
- 4 S is the range of a partial recursive function;

This follows from previous theorems: the implication $(1) \Rightarrow (2)$ follows from the theorem on Slide [10.](#page-9-0) The implications (2) \Rightarrow (3) and (3) \Rightarrow (4) are obvious. The implication (4) \Rightarrow (1) follows from the theorem on Slide [12.](#page-11-0)

L [The Parameter Theorem](#page-15-0)

The parameter theorem is also known as the smn-theorem.

Theorem

For each $n, m > 0$ there is a primitive recursive function $S_m^n(u_1,\ldots,u_n,y)$ such that

$$
\Phi^{(m+n)}(x_1,\ldots,x_m,u_1,\ldots,u_n,y) = \Phi^{(m)}(x_1,\ldots,x_m,S_m^{(n)}(u_1,\ldots,u_n,y)).
$$

16 / 21

KO KARK KEK KEK EL YAN

L [The Parameter Theorem](#page-15-0)

Proof.

The proof is by induction on n , the number of arguments u_1, \ldots, u_n packed into S.

For $n = 1$, the base case, we need to show that there is a function S_m^1 such that

$$
\Phi^{(m+n)}(x_1,\ldots,x_m,u_1,y) = \Phi^{(m)}(x_1,\ldots,x_m,S_m^1(u_1,y)).
$$

Here $S_m^1(u_1, y)$ must be the number of a program which, given m inputs x_1, \ldots, x_m computes the same value as the program y does when given the $m + 1$ inputs x_1, \ldots, x_m, u_1 . Let ${\mathcal P}$ be the program with $\#({\mathcal P})=\mathsf{y}.$ Then, $\mathsf{S}^1_m(u_1,\mathsf{y})$ can be taken as the number of a program which first gives X_{m+1} the value u_1 and then proceeds to execute \mathcal{P} .

[The Parameter Theorem](#page-15-0)

Proof cont'd

Proof.

So the new program begins with

$$
X_{m+1} \leftarrow X_{m+1} + 1
$$

$$
\vdots
$$

$$
X_{m+1} \leftarrow X_{m+1} + 1
$$

Note that the code of $X_{m+1} \leftarrow X_{m+1} + 1$ is

 $\langle 0, \langle 1, 2m+1 \rangle \rangle = 16m + 10.$

KO KARK KEK KEK EL YAN 18 / 21

L [The Parameter Theorem](#page-15-0)

Proof cont'd

Proof.

So, we may take

$$
S_m^1(u_1, y) = \left(\prod_{i=1}^{u_1} p_i\right)^{16m+10 \, \text{Lt}(y+1)} \prod_{j=1}^{u_1 + u_2} p_{u_1+j}^{(y+1)j} \doteq 1,
$$

which is a primitive recursive function.

Note that the numbers of the instructions of P which appear as exponents in the prime power factorization of $y + 1$ have been shifted to the primes $p_{u_1+1}, p_{u_1+2}, \ldots, p_{u_1+Lt(y+1)}$.

[The Parameter Theorem](#page-15-0)

Proof cont'd

Proof.

Suppose now that the result holds for $n = k$. Then, we have

$$
\Phi^{(m+k+1)}(x_1,\ldots,x_m,u_1,\ldots,u_k,u_{k+1},y) \n= \Phi^{(m+k)}(x_1,\ldots,x_m,u_1,\ldots,u_k,S_{m+k}^1(u_{k+1},y)) \n= \Phi^{m}(x_1,\ldots,x_m,S_{m}^k(u_1,\ldots,u_k,S_{m+k}^1(u_{k+1},y))),
$$

using the result for $n = 1$ and the induction hypothesis. Now, we can define

$$
S_m^{k+1}(u_1,\ldots,u_k,u_{k+1})=S_m^k(u_1,\ldots,u_k,S_{m+k}^1(u_{k+1},y)).
$$

 QQ 20 / 21

イロト イ押 トイヨ トイヨ トー

L [The Parameter Theorem](#page-15-0)

Example

Using the smn theorem we can show the existence of a primitive recursive function g such that $\Phi_u(\Phi_{\nu}(\mathsf{x})) = \Phi_{g(u,\nu)}(\mathsf{x})$. This means that

$$
\Phi_u(\Phi_v(x)) = \Phi(\Phi(x,v),u),
$$

so $\Phi_{\mu}(\Phi_{\nu}(x)) = \Phi(x, u, v, z_0)$ is a partially computable function of x, u, v . Hence

$$
\Phi_u(\Phi_v(x)) = \Phi(x, S_1^3(u, v, z_0)),
$$

21 / 21

KO KAP KEKKEK E YAN

and $g(u, v) = S_1^3(u, v, z_0)$.