THEORY OF COMPUTATION Recursively Enumerable Sets - 12 part 3

Prof. Dan A. Simovici

UMB

 $1/40$

 $2Q$

4 ロ > 4 何 > 4 ミ > 4 ミ > 1 ミ

 L [Outline](#page-1-0)

Diagonalization is a proof technique broadly used for constructing counter examples.

We discuss diagonalization in two contexts:

- **proving that certain sets are not countable, and**
- proving that certain sets are not r.e.

L [Outline](#page-1-0)

Definition

Two sets, A, B have the same cardinality, written $A \sim B$, if there exists a bijection $f : A \longrightarrow B$.

Example

The set of even numbers, $E = \{n | n = 2k, \text{ for some } k \in \mathbb{N}\}\$ and the set N have the same cardinality, because $f : \mathbb{N} \longrightarrow E$ defined by $f(n) = 2n$ is a bijection.

Theorem

The relation \sim is an equivalence relation.

メロトメ 御 トメ 君 トメ 君 トー 君 299 $5/40$

Proof.

For every set A, $1_A : A \longrightarrow A$ is a bijection. Therefore, $A \sim A$ for every A, so \sim is reflexive. If $f : A \longrightarrow B$ is a bijection, then $f^{-1}:B\longrightarrow A$ is a bijection, so $A\sim B$ implies $B\sim A$, which shows that \sim is symmetric. Transitivity follows from the fact that the composition of two bijections is a bijection.

Theorem

If $A \sim B$, then $\mathcal{P}(A) \sim \mathcal{P}(B)$.

Proof.

Let $f : A \longrightarrow B$ be a bijection between A and B. Define the mapping $F : \mathcal{P}(A) \longrightarrow \mathcal{P}(B)$ by $F(L) = \{b \in B \mid b = f(a) \text{ for some } a \in L\}$ for every $L \in \mathcal{P}(A)$. It is easy to verify that F is a bijection. Thus, $\mathcal{P}(A) \sim \mathcal{P}(B)$.

 L [Outline](#page-1-0)

Definition

A set A is *countable* if it has the same cardinality as a subset of N . A is *finite* if there is an integer $k \in \mathbb{N}$ such that A has the same cardinality as a subset of $\{0, 1, \ldots, k-1\}$.

Note that any finite set is countable.

Theorem

If A is finite, then there is a unique $k \in \mathbb{N}$ for which $A \sim \{0, 1, \ldots, k-1\}$. In this case, we write $|A| = k$ and say that "A has k elements."

Proof.

Assume A is finite. Let $M = \{m \in \mathbb{N} \mid A \text{ has the same cardinality}\}$ as some subset of $\{0, 1, \ldots, m-1\}$. Since A is finite, $M \neq \emptyset$, so M has a least element, k , which clearly satisfies the requirements of the theorem.

Often it is desirable to be able explicitly to enumerate the elements of A. If A is finite, with $|A| = k$, then there is a bijection $f: \{0, 1, \ldots k-1\} \longrightarrow A$, and we can enumerate $A = \{a_0, a_1, \ldots, a_{k-1}\}\$, where $a_i = f(i)$. If A is infinite but countable, we write $|A| = \aleph_0$ and say "A is countably infinite." 1 The following theorem permits us to enumerate countably infinite sets.

¹The symbol \aleph (pronounced "aleph") is the first letter of the Hebrew alphabet. This notation is standard in set theory. **KO KA KO KE KE KE SA KA KA KA KA KA KA CI**

Theorem

If
$$
|A| = \aleph_0
$$
, then there is a bijection $f : \mathbb{N} \longrightarrow A$.

Proof.

Since A is countable, there is a bijection $g : A \longrightarrow S \subseteq \mathbb{N}$. To define $f : \mathbb{N} \longrightarrow A$ inductively, we simultaneously define both f and a subset of $S.$ Let $f(0)=g^{-1}(s_0),$ where s_0 is the smallest element in S. Assume $\{f(0), f(1), \ldots f(k-1)\}\$ and $\{s_0, s_1, \ldots s_{k-1}\}\)$ have been defined. Then define $f(k) = g^{-1}(s_k)$, where s_k is the smallest element in $S - \{s_0, s_1, \ldots s_{k-1}\}\$. Since A is infinite, S is also infinite, so $S - \{s_0, s_1, \ldots s_{k-1}\} \neq \emptyset$, and a smallest element always exists.

Proof cont'd

Proof.

By construction, if $m_0 < m_1$ then $f(m_1) \notin \{f(0), f(1), \ldots f(m_0)\}\,$ since g is a bijection (and hence g^{-1} is, too.) So, if $f(m_0) = f(m_1)$ then clearly $m_0 = m_1$. We have to check that f is also onto. An easy induction shows that $s_k \geq k$, for all $k \in \mathbb{N}$. Let $a \in A$, with $g(a) = m$. Then, $m = s_j$ for some $j \leq m$, so $f(s_i) = a$. L

$\overline{}$ [Outline](#page-1-0)

Corollary

If
$$
|A| = \aleph_0
$$
, then there is a bijection $g : A \longrightarrow \mathbb{N}$.

Proof.

This follows from the fact that the inverse of a bijection is again a bijection. H

If A is countably infinite, then we can "enumerate" A using the the bijection previously defined. Thus, we have

$$
\mathcal{A}=\{a_0,a_1,a_2,\ldots\},
$$

where, just as in the finite case, $a_i = f(i)$.

4 ロ > 4 何 > 4 ミ > 4 ミ > - ミ 13 / 40

Next we give a useful characterization of countable sets.

Theorem

A set A is countable if and only if there exists an injection $f : A \longrightarrow \mathbb{N}$

Proof.

The necessity of the condition is immediate since every bijection is also an injection. Suppose, therefore, that $f : A \longrightarrow \mathbb{N}$ is an injection. Then, the function $g : A \longrightarrow Ran(f)$ is obviously a bijection between A and Ran(f), a subset of N, so A is indeed countable.

Theorem

Let A, B be two countable sets. Then, $A \cup B$ is countable.

Proof.

Assume A, B are two countable sets, and let $f : A \longrightarrow \mathbb{N}$ and $g : B \longrightarrow \mathbb{N}$ be injections. Define $h : A \cup B \longrightarrow \mathbb{N}$ by

$$
h(x) = \begin{cases} 2f(x) & \text{if } x \in A - B \\ 2g(x) + 1 & \text{if } x \in B. \end{cases}
$$

The function $h : A \cup B \longrightarrow \mathbb{N}$ is easily seen to be an injection; hence, $A \cup B$ is countable.

Corollary

The union of any finite collection of countable sets is countable.

メロトメ 御 トメ 君 トメ 君 トッ 君 $2Q$ 16 / 40

Theorem

Let A, B, C be sets, where A is countable.

- **1** If there is a surjection $f : A \longrightarrow B$, then B is countable.
- 2 If there is an injection $\ell: C \longrightarrow A$, then C is countable.

Proof.

For the first part of the theorem assume A is countable and f : A $→$ B is a surjection. Since A is countable, there is an injection $g : A \longrightarrow \mathbb{N}$. Define $h : B \longrightarrow \mathbb{N}$ by

$$
h(b) = \min\{g(a) \mid f(a) = b\}.
$$

We need to verify that h is an injection. Let $b_0, b_1 \in B$ such that $h(b_0) = h(b_1)$. Let $a_i \in A$ be the element such that $h(b_i) = g(a_i)$ for $i = 0, 1$. Then, $g(a_0) = g(a_1)$, and since g is an injection, $a_0 = a_1$, so $f(a_0) = f(a_1)$, and thus $b_0 = b_1$. For the second part note that the function $g\ell: C \longrightarrow \mathbb{N}$ is an injection; this implies immediately the countability of C.

Corollary

Let A, B be two sets. If $f : A \longrightarrow B$ is a bijection, then A is countable if and only if B is countable.

Corollary

Any subset of a countable set is countable.

Proof.

Assume $B \subseteq A$, where A is countable. If $B = \emptyset$, then it is clearly countable. If $B \neq \emptyset$, pick $b \in B$, and define $f : A \longrightarrow B$ by

> $f(x) = \begin{cases} x & \text{if } x \in B \\ b & \text{if } x \notin B \end{cases}$ b if $x \notin B$.

The function f is clearly a surjection, so B is countable.

20 / 40

Theorem

Let A_0, \ldots, A_{n-1} be n countable sets. The Cartesian product $A_0 \times \cdots \times A_{n-1}$ is countable.

> KO KARK KEK KEK E YOKA 21 / 40

Proof.

Since A_0, \ldots, A_{n-1} are countable sets, there exist injections $f_i: A_i \longrightarrow \mathbb{N}$ for $0 \leqslant i \leqslant n-1$. For $(a_0, \ldots, a_{n-1}) \in A_0 \times \cdots \times A_{n-1}$, define

$$
h(a_0,\ldots,a_{n-1})=2^{f_0(a_0)}\cdot 3^{f_1(a_1)}\cdot\cdots\cdot p_{n-1}^{f_{n-1}(a_{n-1})},
$$

where p_{i-1} is the i^{th} prime number for $0 \leqslant i \leqslant n-1.$ Since each natural number larger than one can be written uniquely as a product powers of primes, $h: A_0 \times \cdots \times A_{n-1} \longrightarrow \mathbb{N}$ is an injection, so $A_0 \times \cdots \times A_{n-1}$ is countable.

Example

Let D be a countable set. The set $\mathbf{Seq}_n(D)=D^n$ is a countable set for every $n \in \mathbb{N}$.

> K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ → 할 → 9 Q @ 23 / 40

Theorem

The union of a countable collection of countable sets that are pairwise disjoint, is a countable set.

L [Outline](#page-1-0)

Proof.

Let K be a countable set, and let each $\{A_k \mid k \in K\}$ be countable. Then there are injections $f : K \longrightarrow \mathbb{N}$ and $g_k : A_k \longrightarrow \mathbb{N}$ for each $k \in K$. Assume that $A_i \cap A_j = \emptyset$ for $i \neq j \in K$. To show that

$$
A = \bigcup_{k \in K} A_k
$$
 is countable,

25 / 40

イロト イ団 トイヨト イヨト 一番

we define an injection $h : A \longrightarrow \mathbb{N}$.

Proof cont'd

Proof.

Let $P = \{p_0, p_1, ...\}$ be an enumeration of the prime numbers. Since the sets A_k are pairwise disjoint, given any $a \in A$, there is a unique k with $a \in A_k$. We use this fact to define

$$
h(a)=p_{f(k)}^{g_k(a)}.
$$

It follows from the Fundamental Theorem of Arithmetic that h is an injection, and thus A is countable.

Corollary

The union of a countable collection of countable sets is a countable set.

> KO KARK KEK KEK E YOKA 27 / 40

Proof.

Let L be a countable set, and let each $\{A_l \mid l \in L\}$ be countable. Form sets $A'_l = A_l \times \{l\}$. These are clearly pairwise disjoint, so

$$
A' = \bigcup_{l \in L} A'_l
$$
 is countable.

Let

$$
A=\bigcup_{I\in L}A_I.
$$

The projection $u_1^2: A' \longrightarrow A$ is a surjection, and thus A is countable.

Example

We proved that if D is a countable set, $\mathbf{Seq}_n(D)$ is countable. Therefore, $\textbf{Seq}(D) = \bigcup \{ D^n \mid n \in \mathbb{N} \}$ is countable as a union of a countable collection of sets.

L [Outline](#page-1-0)

The set $N \times N$ is countably infinite, so there exists a bijection $\wp : \mathbb{N} \times \mathbb{N}$ → \mathbb{N} . We saw that $\langle x, y \rangle$ is a pairing function, that is, a bijection $\langle x, y \rangle : \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}$. An alternative bijection is suggested by the following picture:

Let D_m be the diagonal that contains all pairs (i, j) such that $i + j = m$. It is clear that D_m contains $m + 1$ pairs. Note that the pair (i, j) is located on the diagonal D_{i+j} and that this diagonal is preceded by the diagonals D_0, \ldots, D_{i+j-1} that have a total of $1 + 2 + \cdots + (i + i) = (i + i)(i + i + 1)/2$ elements. Thus, the pair (i, j) is enumerated on the place $(i+j)(i+j+1)/2+i$ and this shows that the mapping $h : \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}$ given by

$$
\wp(i,j) = \frac{1}{2}[(i+j)^2 + 3i + j]
$$

31 / 40

4 ロ ト 4 御 ト 4 ヨ ト 4 ヨ ト ニ ヨ ニ イ) Q C

is a bijection.

It is important to realize that not all sets are countable. Consider $\mathcal{P}(\mathbb{N})$, the power set of \mathbb{N} . This certainly has at least as many elements as N, since $\{k\}$ is in $\mathcal{P}(\mathbb{N})$ for each $k \in \mathbb{N}$. However, it has so many more sets that it is not possible to count them all, that is, to arrange all these sets in a list.

Theorem

The set $\mathcal{P}(\mathbb{N})$ is not countable.

Proof.

Assume that $\mathcal{P}(\mathbb{N})$ were countable. Then there would be an bijection $f : \mathbb{N} \longrightarrow \mathcal{P}(\mathbb{N})$; i.e., for each $n \in \mathbb{N}$, we would have a distinct subset $f(n) \subseteq \mathbb{N}$. We show that the existence of this bijection leads to a contradiction. Define the set $D = \{n \mid n \notin f(n)\}\$. Clearly, $D \subseteq \mathbb{N}$, so we must have $D = f(k)$ for some $k \in \mathbb{N}$. We must now have one of two situations: either $k \in D$, or $k \notin D$.

33 / 40

イロト イ団 トイヨト イヨト 一番

First, suppose that $k \in D$. Then, by the definition of D, $k \notin f(k)$, but $f(k) = D$, so we have that $k \in D$ implies that $k \notin D$; this cannot be.

Suppose, on the other hand, that $k \notin D$. Then, by the definition of D, $k \in f(k)$, and since $f(k) = D$, we have $k \notin D$ implies $k \in D$. Again, this cannot be. Either way, we have a contradiction. From this, we necessarily conclude that the assumed bijection f cannot exist.

L [Outline](#page-1-0)

An important way to regard this proof is the following. If there were a bijection $f : \mathbb{N} \longrightarrow \mathcal{P}(\mathbb{N})$, then we could have the following list:

> $0: a_{00} a_{01} a_{02} a_{03} a_{04} \ldots$ $1: a_{10} a_{11} a_{12} a_{13} a_{14} \ldots$ $2: a_{20} a_{21} a_{22} a_{23} a_{24} \ldots$ $3: a_{30} a_{31} a_{32} a_{33} a_{34} \ldots$ $4: a_{40} a_{41} a_{42} a_{43} a_{44} \ldots$ 5 : $a_{50} a_{51} a_{52} a_{53} a_{54} \ldots$. . . k : $a_{k0} a_{k1} a_{k2} a_{k3} a_{k4} \ldots a_{kk}$

where

$$
a_{ij} = \left\{ \begin{array}{ll} 0 & \text{if } j \notin f(i) \\ 1 & \text{if } j \in f(i). \end{array} \right.
$$

The set D is formed by "going down the diagonal" and spoiling the possibility that $D = f(k)$, for each k.

At row k, we look at a_{kk} in column k. If this is 1, i.e., if $k \in f(k)$, then we make sure that the corresponding position for the set D has a 0 in it by saying that $k \notin D$.

On the other hand, if a_{kk} is a 0, i.e., $k \notin f(k)$, then we force the corresponding position for the set D to be a 1 by putting k into D. This guarantees that $D \neq f(k)$, because its characteristic functions differs from that of $f(k)$ in column k.

 $0: \overline{a_{00}} a_{01} a_{02} a_{03} a_{04} \ldots$ $1: a_{10} \overline{a_{11}} a_{12} a_{13} a_{14} \ldots$ 2 : $a_{20} a_{21} \overline{a_{22}} a_{23} a_{24} \ldots$ $3: a_{30} a_{31} a_{32} \overline{a_{33}} a_{34} \ldots$ $4: a_{40} a_{41} a_{42} a_{43} \overline{a_{44}} \dots$ 5 : $a_{50} a_{51} a_{52} a_{53} a_{54} \ldots$. . . k : $a_{k0} a_{k1} a_{k2} a_{k3} a_{k4} \ldots \overline{a_{kk}}$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @ 37 / 40

This proof technique, usually referred to as diagonalization, first appeared in an 1891 paper of Georg Cantor (1845-1918); it has found many applications in the theory of computation.

Example

Let F_2 be the set of all functions of the form $f : \mathbb{N} \longrightarrow \{0, 1\}.$ Define the mapping $\phi : F_2 \longrightarrow \mathcal{P}(\mathbb{N})$ by $\phi(f) = \{n \in \mathbb{N} \mid f(n) = 1\}$. The function ϕ is a bijection. Indeed, suppose that $\phi(f) = \phi(g)$, that is ${n \in \mathbb{N} \mid f(n) = 1} = {n \in \mathbb{N} \mid g(n) = 1}.$ This means that $f(n) = 1$ if and only if $g(n) = 1$ for $n \in \mathbb{N}$, so $f = g$, which means that ϕ is an injection.

 $\overline{}$ [Outline](#page-1-0)

Example cont'd

Example

To prove that ϕ is a bijection consider an arbitrary subset K of N. Then, for its characteristic function f_K (given by $f_K(n) = 1$ if $n \in K$ and $f_K(n) = 0$, otherwise) we have $\phi(f_K) = K$, so ϕ is also a surjection, and therefore, a bijection. Thus, we conclude that the set F_2 is not countable.

If F is the set of functions of the form $f : \mathbb{N} \longrightarrow \mathbb{N}$, then the uncountability of F_2 implies the uncountability of F.