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Diagonalization is a proof technique broadly used for constructing
counter examples.
We discuss diagonalization in two contexts:

m proving that certain sets are not countable, and

m proving that certain sets are not r.e.
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Two sets, A, B have the same cardinality, written A ~ B, if there
exists a bijection f : A — B.

Example

The set of even numbers, E = {n | n = 2k, for some k € N} and
the set N have the same cardinality, because f : N — E defined
by f(n) = 2n is a bijection.
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The relation ~ is an equivalence relation.
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Proof.
For every set A, 14 : A— A is a bijection. Therefore, A ~ A for
every A, so ~ is reflexive. If f : A— B is a bijection, then

f~1: B — A'is a bijection, so A ~ B implies B ~ A, which
shows that ~ is symmetric. Transitivity follows from the fact that
the composition of two bijections is a bijection. Ol
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If A~ B, then P(A) ~ P(B).

Proof.

Let f : A—— B be a bijection between A and B. Define the
mapping F : P(A) — P(B) by

F(L)={be B | b= f(a) for some a € L} for every L € P(A). It
is easy to verify that F is a bijection. Thus, P(A) ~ P(B). O
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Definition

A set A is countable if it has the same cardinality as a subset of N.
A is finite if there is an integer k € N such that A has the same
cardinality as a subset of {0,1,...,k —1}.

Note that any finite set is countable.
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If A is finite, then there is a unique k € N for which
A~{0,1,...,k —1}. In this case, we write |A| = k and say that
“A has k elements.”

Proof.

Assume A is finite. Let M = {m € N | A has the same cardinality
as some subset of {0,1,...,m —1}}. Since A is finite, M # (), so
M has a least element, k, which clearly satisfies the requirements
of the theorem. Ol
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Often it is desirable to be able explicitly to enumerate the elements
of A. If Ais finite, with |A| = k, then there is a bijection
f:{0,1,...k—1} — A, and we can enumerate
A={ag,a1,...,ak_1}, where a; = f(i).

If A is infinite but countable, we write |A] = g and say “A is
countably infinite.” ! The following theorem permits us to
enumerate countably infinite sets.

!The symbol X (pronounced “aleph”) is the first letter of the Hebrew

alphabet. This notation is standard in set theory.
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If |A| = Ry, then there is a bijection f : N — A.

Proof.

Since A is countable, there is a bijection g: A— S C N. To
define f : N — A inductively, we simultaneously define both f and
a subset of S. Let f(0) = g~ 1(sp), where s is the smallest
element in S. Assume {f(0), f(1),...f(k—1)} and
{s0,51,--.5k_1} have been defined. Then define f(k) = g~1(sx),
where sy is the smallest element in S — {sp, s1,...5k_1}. Since A
is infinite, S is also infinite, so S — {sg,s1,...5k_1} # 0, and a
smallest element always exists. [
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Proof cont'd

By construction, if mg < mjy then f(my) & {f(0),f(1),...f(mo)},
since g is a bijection (and hence g~! is, too.) So, if

f(mg) = f(my) then clearly mg = m;. We have to check that £ is
also onto. An easy induction shows that s, > k, for all k € N. Let
a € A, with g(a) = m. Then, m = s; for some j < m, so

f(Sj) = a. []
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Corollary

If |A| = Ny, then there is a bijection g : A — N.

Proof.

This follows from the fact that the inverse of a bijection is again a
bijection. 0

If Ais countably infinite, then we can “enumerate” A using the the
bijection previously defined. Thus, we have

A= {ao, d1,az, .. .},

where, just as in the finite case, a; = (/).
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Next we give a useful characterization of countable sets.

Theorem

A set A is countable if and only if there exists an injection
f:A— N.

Proof.

The necessity of the condition is immediate since every bijection is
also an injection. Suppose, therefore, that f : A — N is an
injection. Then, the function g : A — Ran(f) is obviously a
bijection between A and Ran(f), a subset of N, so A is indeed
countable. [
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Let A, B be two countable sets. Then, AU B is countable.

Proof.

Assume A, B are two countable sets, and let f : A— N and
g : B— N be injections. Define h: AUB — N by

[ 2f(x) ifxe A-—B
h(x)_{ 2¢(x)+1 if x € B.

The function h: AU B — N is easily seen to be an injection;
hence, AU B is countable. O
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Corollary

The union of any finite collection of countable sets is countable.
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Let A, B, C be sets, where A is countable.
If there is a surjection f : A— B, then B is countable.

If there is an injection £ : C — A, then C is countable.
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Proof.

For the first part of the theorem assume A is countable and
f: A— B is a surjection. Since A is countable, there is an
injection g : A — N. Define h: B — N by

h(b) = min{g(a) | F(a) = b}.

We need to verify that h is an injection. Let by, by € B such that
h(bo) = h(b1). Let a; € A be the element such that h(b;) = g(a;)
for i =0,1. Then, g(ap) = g(a1), and since g is an injection,

ap = a1, so f(ag) = f(a1), and thus by = b;.

For the second part note that the function g : C — N is an
injection; this implies immediately the countability of C. Ol
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Corollary

Let A, B be two sets. If f : A— B is a bijection, then A is
countable if and only if B is countable.
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Corollary

Any subset of a countable set is countable.

Proof.

Assume B C A, where A is countable. If B = (), then it is clearly
countable. If B # (), pick b € B, and define f : A— B by

x ifxeB
f(x):{ b ifx¢B.

The function f is clearly a surjection, so B is countable. [
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Let Ao, ...,An_1 be n countable sets. The Cartesian product
Ag X - -+ X Ap_1 Is countable.
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Proof.
Since Ao, ..., An_1 are countable sets, there exist injections
fi:Ai — Nfor0 < i< n—1. For
(ao, aong a,,_l) € Ap X -+ X Ap_1, define
_ ofo(a0) . 2fi(a1) fo—1(an—1)
h(ao,...,an—1) =2 .3 oo pil :
h

where p;_1 is the it prime number for 0 </ < n— 1. Since each
natural number larger than one can be written uniquely as a
product powers of primes, h: Ag X --- X A,_1 —> Nis an
injection, so Ag X - -+ X A,_1 is countable. OJ
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Let D be a countable set. The set Seq,(D) = D" is a countable
set for every n € N.
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The union of a countable collection of countable sets that are
pairwise disjoint, is a countable set.
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Proof.

Let K be a countable set, and let each {Ax | kK € K} be countable.
Then there are injections f : K — N and gx : Ax — N for each
k € K. Assume that A; N Aj =0 for i # j € K. To show that

A= U Ay is countable,
keK

we define an injection h: A — N. Ol
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Proof cont'd

Let P = {po, p1, ..} be an enumeration of the prime numbers.
Since the sets Ay are pairwise disjoint, given any a € A, there is a
unique k with a € Ax. We use this fact to define

h(a) = p&\3).

It follows from the Fundamental Theorem of Arithmetic that h is
an injection, and thus A is countable. O
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Corollary

The union of a countable collection of countable sets is a
countable set.
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Let L be a countable set, and let each {A; | | € L} be countable.
Form sets A} = A; x {/}. These are clearly pairwise disjoint, so

A = U A} is countable.
leL

A:Um.

The projection uf : A — A'is a surjection, and thus A is
countable. ]

Let
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Example

We proved that if D is a countable set, Seq, (D) is countable.
Therefore, Seq(D) = |J{D" | n € N} is countable as a union of a
countable collection of sets.
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The set N x N is countably infinite, so there exists a bijection
p:Nx N— N. We saw that (x, y) is a pairing function, that is,
a bijection (x,y) : N x N — N. An alternative bijection is
suggested by the following picture:

0 1 2 3

0 0 1 3 6

1 2 4 7
2 5 8
3 9
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Let D, be the diagonal that contains all pairs (i, ) such that
i+ j = m. Itis clear that Dy, contains m+ 1 pairs.

Note that the pair (/, ) is located on the diagonal D;; and that
this diagonal is preceded by the diagonals Dy, ..., D;;;_1 that
have a total of 1 +2+---+ (i +j) = (i +/)(i +,+ 1)/2 elements.
Thus, the pair (i, /) is enumerated on the place
(i+j)(i+j+1)/2+ i and this shows that the mapping

h:N x N — N given by

i) = 21+ +3i-+]

is a bijection.
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It is important to realize that not all sets are countable. Consider
P(N), the power set of N. This certainly has at least as many
elements as N, since {k} is in P(N) for each k € N. However, it
has so many more sets that it is not possible to count them all,
that is, to arrange all these sets in a list.

Theorem
The set P(N) is not countable.
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Proof.

Assume that P(N) were countable. Then there would be an
bijection f : N — P(N); i.e., for each n € N, we would have a
distinct subset f(n) C N.

We show that the existence of this bijection leads to a
contradiction. Define the set D = {n | n & f(n)}. Clearly, D CN,
so we must have D = f(k) for some k € N. We must now have
one of two situations: either k € D, or k ¢ D. O]
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First, suppose that k € D. Then, by the definition of D, k & f(k),
but f(k) = D, so we have that k € D implies that k ¢ D; this
cannot be.

Suppose, on the other hand, that k ¢ D. Then, by the definition
of D, k € f(k), and since f(k) = D, we have k ¢ D implies

k € D. Again, this cannot be. Either way, we have a contradiction.
From this, we necessarily conclude that the assumed bijection f
cannot exist.
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An important way to regard this proof is the following. If there
were a bijection f : N — P(N), then we could have the following
list:

400 401 902 403 304 - - -

a10 411 912 913 d14 - - -

a0 d21 922 a23 a4 ...

d30 931 932 433 d34 . - .

d40 d41 d42 A43 44 . . .

as50 ds51 d52 d53 d54 . . .

Gk w N RO

k: ako aki ak2 ak3 ak4 - - - kk

where
_J o ifj¢g (i
W1 i e ().
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The set D is formed by “going down the diagonal” and spoiling
the possibility that D = f(k), for each k.

At row k, we look at akx in column k. If thisis 1, i.e., if k € f(k),
then we make sure that the corresponding position for the set D
has a 0 in it by saying that k ¢ D.

On the other hand, if ax is a 0, i.e., k & f(k), then we force the
corresponding position for the set D to be a 1 by putting k into D.
This guarantees that D # f(k), because its characteristic functions
differs from that of f(k) in column k.
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300 A01 402 303 04 - - -
a10 311 912 413 314 - - -
a0 @21 @2 a3 ay4. ..
a30 431 432 433 a34 . - -
40 A41 A42 A43 A44 . . .
asp as1 852 as3 ds4 - . -

g b~ W NN HHO

k: axo ak1 ako ak3 aka - - - Akk
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This proof technique, usually referred to as diagonalization, first
appeared in an 1891 paper of Georg Cantor (1845-1918); it has
found many applications in the theory of computation.
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Example

Let F» be the set of all functions of the form f : N — {0,1}.
Define the mapping ¢ : F; — P(N) by

¢(f) ={neN | f(n) =1}. The function ¢ is a bijection.

Indeed, suppose that ¢(f) = ¢(g), that is

{neN| f(n)=1} ={ne N | g(n) =1}. This means that

f(n) =1if and only if g(n) =1 for n € N, so f = g, which means
that ¢ is an injection.
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Example cont'd

Example

To prove that ¢ is a bijection consider an arbitrary subset K of N.
Then, for its characteristic function fx (given by fx(n) =1 if

n € K and fkx(n) = 0, otherwise) we have ¢(fx) = K, so ¢ is also
a surjection, and therefore, a bijection. Thus, we conclude that the
set F» is not countable.

If F is the set of functions of the form f : N — N, then the
uncountability of F, implies the uncountability of F.
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