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Diagonalization is a proof technique broadly used for constructing
counter examples.
We discuss diagonalization in two contexts:

proving that certain sets are not countable, and

proving that certain sets are not r.e.
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Definition

Two sets, A,B have the same cardinality, written A ∼ B, if there
exists a bijection f : A −→ B.

Example

The set of even numbers, E = {n | n = 2k , for some k ∈ N} and
the set N have the same cardinality, because f : N −→ E defined
by f (n) = 2n is a bijection.
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Theorem

The relation ∼ is an equivalence relation.
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Proof.

For every set A, 1A : A −→ A is a bijection. Therefore, A ∼ A for
every A, so ∼ is reflexive. If f : A −→ B is a bijection, then
f −1 : B −→ A is a bijection, so A ∼ B implies B ∼ A, which
shows that ∼ is symmetric. Transitivity follows from the fact that
the composition of two bijections is a bijection.
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Theorem

If A ∼ B, then P(A) ∼ P(B).

Proof.

Let f : A −→ B be a bijection between A and B. Define the
mapping F : P(A) −→ P(B) by
F (L) = {b ∈ B | b = f (a) for some a ∈ L} for every L ∈ P(A). It
is easy to verify that F is a bijection. Thus, P(A) ∼ P(B).
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Definition

A set A is countable if it has the same cardinality as a subset of N.
A is finite if there is an integer k ∈ N such that A has the same
cardinality as a subset of {0, 1, . . . , k − 1}.

Note that any finite set is countable.
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Theorem

If A is finite, then there is a unique k ∈ N for which
A ∼ {0, 1, . . . , k − 1}. In this case, we write |A| = k and say that
“A has k elements.”

Proof.

Assume A is finite. Let M = {m ∈ N | A has the same cardinality
as some subset of {0, 1, . . . ,m − 1}}. Since A is finite, M ̸= ∅, so
M has a least element, k , which clearly satisfies the requirements
of the theorem.
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Often it is desirable to be able explicitly to enumerate the elements
of A. If A is finite, with |A| = k, then there is a bijection
f : {0, 1, . . . k − 1} −→ A, and we can enumerate
A = {a0, a1, . . . , ak−1}, where ai = f (i).
If A is infinite but countable, we write |A| = ℵ0 and say “A is
countably infinite.” 1 The following theorem permits us to
enumerate countably infinite sets.

1The symbol ℵ (pronounced “aleph”) is the first letter of the Hebrew
alphabet. This notation is standard in set theory.
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Theorem

If |A| = ℵ0, then there is a bijection f : N −→ A.

Proof.

Since A is countable, there is a bijection g : A −→ S ⊆ N. To
define f : N −→ A inductively, we simultaneously define both f and
a subset of S . Let f (0) = g−1(s0), where s0 is the smallest
element in S . Assume {f (0), f (1), . . . f (k − 1)} and
{s0, s1, . . . sk−1} have been defined. Then define f (k) = g−1(sk),
where sk is the smallest element in S − {s0, s1, . . . sk−1}. Since A
is infinite, S is also infinite, so S − {s0, s1, . . . sk−1} ≠ ∅, and a
smallest element always exists.
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Proof cont’d

Proof.

By construction, if m0 < m1 then f (m1) ̸∈ {f (0), f (1), . . . f (m0)},
since g is a bijection (and hence g−1 is, too.) So, if
f (m0) = f (m1) then clearly m0 = m1. We have to check that f is
also onto. An easy induction shows that sk ⩾ k , for all k ∈ N. Let
a ∈ A, with g(a) = m. Then, m = sj for some j ⩽ m, so
f (sj) = a.
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Corollary

If |A| = ℵ0, then there is a bijection g : A −→ N.

Proof.

This follows from the fact that the inverse of a bijection is again a
bijection.

If A is countably infinite, then we can “enumerate” A using the the
bijection previously defined. Thus, we have

A = {a0, a1, a2, . . .},

where, just as in the finite case, ai = f (i).
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Next we give a useful characterization of countable sets.

Theorem

A set A is countable if and only if there exists an injection
f : A −→ N.

Proof.

The necessity of the condition is immediate since every bijection is
also an injection. Suppose, therefore, that f : A −→ N is an
injection. Then, the function g : A −→ Ran(f ) is obviously a
bijection between A and Ran(f ), a subset of N, so A is indeed
countable.
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Theorem

Let A,B be two countable sets. Then, A ∪ B is countable.

Proof.

Assume A,B are two countable sets, and let f : A −→ N and
g : B −→ N be injections. Define h : A ∪ B −→ N by

h(x) =

{
2f (x) if x ∈ A− B
2g(x) + 1 if x ∈ B.

The function h : A ∪ B −→ N is easily seen to be an injection;
hence, A ∪ B is countable.
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Corollary

The union of any finite collection of countable sets is countable.
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Theorem

Let A,B,C be sets, where A is countable.

1 If there is a surjection f : A −→ B, then B is countable.

2 If there is an injection ℓ : C −→ A, then C is countable.
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Proof.

For the first part of the theorem assume A is countable and
f : A −→ B is a surjection. Since A is countable, there is an
injection g : A −→ N. Define h : B −→ N by

h(b) = min{g(a) | f (a) = b}.

We need to verify that h is an injection. Let b0, b1 ∈ B such that
h(b0) = h(b1). Let ai ∈ A be the element such that h(bi ) = g(ai )
for i = 0, 1. Then, g(a0) = g(a1), and since g is an injection,
a0 = a1, so f (a0) = f (a1), and thus b0 = b1.
For the second part note that the function gℓ : C −→ N is an
injection; this implies immediately the countability of C .
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Corollary

Let A,B be two sets. If f : A −→ B is a bijection, then A is
countable if and only if B is countable.
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Corollary

Any subset of a countable set is countable.

Proof.

Assume B ⊆ A, where A is countable. If B = ∅, then it is clearly
countable. If B ̸= ∅, pick b ∈ B, and define f : A −→ B by

f (x) =

{
x if x ∈ B
b if x ̸∈ B.

The function f is clearly a surjection, so B is countable.
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Theorem

Let A0, . . . ,An−1 be n countable sets. The Cartesian product
A0 × · · · × An−1 is countable.
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Proof.

Since A0, . . . ,An−1 are countable sets, there exist injections
fi : Ai −→ N for 0 ⩽ i ⩽ n − 1. For
(a0, . . . , an−1) ∈ A0 × · · · × An−1, define

h(a0, . . . , an−1) = 2f0(a0) · 3f1(a1) · · · · · pfn−1(an−1)
n−1 ,

where pi−1 is the ith prime number for 0 ⩽ i ⩽ n − 1. Since each
natural number larger than one can be written uniquely as a
product powers of primes, h : A0 × · · · × An−1 −→ N is an
injection, so A0 × · · · × An−1 is countable.
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Example

Let D be a countable set. The set Seqn(D) = Dn is a countable
set for every n ∈ N.
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Theorem

The union of a countable collection of countable sets that are
pairwise disjoint, is a countable set.
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Proof.

Let K be a countable set, and let each {Ak | k ∈ K} be countable.
Then there are injections f : K −→ N and gk : Ak −→ N for each
k ∈ K . Assume that Ai ∩ Aj = ∅ for i ̸= j ∈ K . To show that

A =
⋃
k∈K

Ak is countable,

we define an injection h : A −→ N.
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Proof cont’d

Proof.

Let P = {p0, p1, . . .} be an enumeration of the prime numbers.
Since the sets Ak are pairwise disjoint, given any a ∈ A, there is a
unique k with a ∈ Ak . We use this fact to define

h(a) = p
gk (a)
f (k) .

It follows from the Fundamental Theorem of Arithmetic that h is
an injection, and thus A is countable.

26 / 40



THEORY OF COMPUTATION Recursively Enumerable Sets - 12 part 3

Outline

Corollary

The union of a countable collection of countable sets is a
countable set.
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Proof.

Let L be a countable set, and let each {Al | l ∈ L} be countable.
Form sets A′

l = Al × {l}. These are clearly pairwise disjoint, so

A′ =
⋃
l∈L

A′
l is countable.

Let
A =

⋃
l∈L

Al .

The projection u21 : A′ −→ A is a surjection, and thus A is
countable.
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Example

We proved that if D is a countable set, Seqn(D) is countable.
Therefore, Seq(D) =

⋃
{Dn | n ∈ N} is countable as a union of a

countable collection of sets.
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The set N× N is countably infinite, so there exists a bijection
℘ : N× N −→ N. We saw that ⟨x , y⟩ is a pairing function, that is,
a bijection ⟨x , y⟩ : N× N −→ N. An alternative bijection is
suggested by the following picture:

0

1

2

3

...

0 1 2 3 · · ·

0 1

2

3

4

5

6

7

8

9

. .
.

. .
.

. .
.

. .
.

30 / 40



THEORY OF COMPUTATION Recursively Enumerable Sets - 12 part 3

Outline

Let Dm be the diagonal that contains all pairs (i , j) such that
i + j = m. It is clear that Dm contains m + 1 pairs.
Note that the pair (i , j) is located on the diagonal Di+j and that
this diagonal is preceded by the diagonals D0, . . . ,Di+j−1 that
have a total of 1 + 2+ · · ·+ (i + j) = (i + j)(i + j +1)/2 elements.
Thus, the pair (i , j) is enumerated on the place
(i + j)(i + j + 1)/2 + i and this shows that the mapping
h : N× N −→ N given by

℘(i , j) =
1

2
[(i + j)2 + 3i + j ]

is a bijection.
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It is important to realize that not all sets are countable. Consider
P(N), the power set of N. This certainly has at least as many
elements as N, since {k} is in P(N) for each k ∈ N. However, it
has so many more sets that it is not possible to count them all,
that is, to arrange all these sets in a list.

Theorem

The set P(N) is not countable.
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Proof.

Assume that P(N) were countable. Then there would be an
bijection f : N −→ P(N); i.e., for each n ∈ N, we would have a
distinct subset f (n) ⊆ N.
We show that the existence of this bijection leads to a
contradiction. Define the set D = {n | n ̸∈ f (n)}. Clearly, D ⊆ N,
so we must have D = f (k) for some k ∈ N. We must now have
one of two situations: either k ∈ D, or k ̸∈ D.
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First, suppose that k ∈ D. Then, by the definition of D, k ̸∈ f (k),
but f (k) = D, so we have that k ∈ D implies that k ̸∈ D; this
cannot be.
Suppose, on the other hand, that k ̸∈ D. Then, by the definition
of D, k ∈ f (k), and since f (k) = D, we have k ̸∈ D implies
k ∈ D. Again, this cannot be. Either way, we have a contradiction.
From this, we necessarily conclude that the assumed bijection f
cannot exist.
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An important way to regard this proof is the following. If there
were a bijection f : N −→ P(N), then we could have the following
list:

0 : a00 a01 a02 a03 a04 . . .
1 : a10 a11 a12 a13 a14 . . .
2 : a20 a21 a22 a23 a24 . . .
3 : a30 a31 a32 a33 a34 . . .
4 : a40 a41 a42 a43 a44 . . .
5 : a50 a51 a52 a53 a54 . . .

...
k : ak0 ak1 ak2 ak3 ak4 . . . akk

where

aij =

{
0 if j ̸∈ f (i)
1 if j ∈ f (i).
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The set D is formed by “going down the diagonal” and spoiling
the possibility that D = f (k), for each k.
At row k, we look at akk in column k. If this is 1, i.e., if k ∈ f (k),
then we make sure that the corresponding position for the set D
has a 0 in it by saying that k ̸∈ D.
On the other hand, if akk is a 0, i.e., k ̸∈ f (k), then we force the
corresponding position for the set D to be a 1 by putting k into D.
This guarantees that D ̸= f (k), because its characteristic functions
differs from that of f (k) in column k.
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0 : a00 a01 a02 a03 a04 . . .
1 : a10 a11 a12 a13 a14 . . .
2 : a20 a21 a22 a23 a24 . . .
3 : a30 a31 a32 a33 a34 . . .
4 : a40 a41 a42 a43 a44 . . .
5 : a50 a51 a52 a53 a54 . . .

...
k : ak0 ak1 ak2 ak3 ak4 . . . akk
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This proof technique, usually referred to as diagonalization, first
appeared in an 1891 paper of Georg Cantor (1845–1918); it has
found many applications in the theory of computation.
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Example

Let F2 be the set of all functions of the form f : N −→ {0, 1}.
Define the mapping ϕ : F2 −→ P(N) by
ϕ(f ) = {n ∈ N | f (n) = 1}. The function ϕ is a bijection.
Indeed, suppose that ϕ(f ) = ϕ(g), that is
{n ∈ N | f (n) = 1} = {n ∈ N | g(n) = 1}. This means that
f (n) = 1 if and only if g(n) = 1 for n ∈ N, so f = g , which means
that ϕ is an injection.
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Example cont’d

Example

To prove that ϕ is a bijection consider an arbitrary subset K of N.
Then, for its characteristic function fK (given by fK (n) = 1 if
n ∈ K and fK (n) = 0, otherwise) we have ϕ(fK ) = K , so ϕ is also
a surjection, and therefore, a bijection. Thus, we conclude that the
set F2 is not countable.
If F is the set of functions of the form f : N −→ N, then the
uncountability of F2 implies the uncountability of F .
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