
THEORY OF COMPUTATION Recursively Enumerable Sets - 13 part 4

THEORY OF COMPUTATION
Recursively Enumerable Sets - 13 part 4

Prof. Dan A. Simovici

UMB

1 / 26

THEORY OF COMPUTATION Recursively Enumerable Sets - 13 part 4

Outline

1 Diagonalization and Reducibility in the Theory of Computation

2 Reducibility

2 / 26

THEORY OF COMPUTATION Recursively Enumerable Sets - 13 part 4

Diagonalization and Reducibility in the Theory of Computation

S programs can be encoded as numbers, hence every one-argument
function computed by an S program appears in the list

ψ
(1)
P0
, ψ

(1)
P1
, . . .

The proof of the fact that HALT(x , y) is not computable is
actually a proof by diagonalization. Recall that

HALT(x , y)⇔ ψ
(1)
P (x) ↓, where #(P) = y

is not computable.

3 / 26

THEORY OF COMPUTATION Recursively Enumerable Sets - 13 part 4

Diagonalization and Reducibility in the Theory of Computation

Suppose that HALT(x , y) were computable by a program P with
#(P) = y , that is,

HALT(x , y) = TRUE if ψ
(1)
P (x) ↓,

and
HALT(x , y) = FALSE if ψ

(1)
P (x) ↑ .

4 / 26

THEORY OF COMPUTATION Recursively Enumerable Sets - 13 part 4

Diagonalization and Reducibility in the Theory of Computation

The set of S programs is countable, so we can arrange it in a list:

P0,P1, . . .

Consider a list of all one-variable functions computed by these

programs ψ
(1)
P0
, ψ

(1)
P1
, . . . and construct the array:

ψ
(1)
P0

(0)

ψ
(1)
P1

(0)

ψ
(1)
P2

(0)

...

ψ
(1)
P0

(1)

ψ
(1)
P1

(1)

ψ
(1)
P2

(1)

...

ψ
(1)
P0

(2)

ψ
(1)
P1

(2)

ψ
(1)
P2

(2)

...

· · ·

· · ·

· · ·

5 / 26

THEORY OF COMPUTATION Recursively Enumerable Sets - 13 part 4

Diagonalization and Reducibility in the Theory of Computation

Each row represents one computable function.
Recall that we considered the program P:

[A] IF HALT(X ,X) GOTO A

that computed ψ
(1)
P (x). We claim that there is no row in the

previous table that corresponds to P. Note that

ψ
(1)
P (x) ↓ if and only if ψ

(1)
Px

(x) ↑ .

Thus, the row that would correspond to ψ
(1)
P will differ from the

row that corresponds to Px in the diagonal entry. This makes
impossible for P to correspond to a row in this table!

6 / 26

THEORY OF COMPUTATION Recursively Enumerable Sets - 13 part 4

Diagonalization and Reducibility in the Theory of Computation

Let TOT = {z ∈ N | (∀x)Φ(x , z) ↓}. In other words, TOT is the
set of program codes z that compute total functions.

Theorem

The set TOT is not r.e.

Proof.

Suppose TOT were r.e. Since TOT ̸= ∅, there exists a computable
function g such that TOT = {g(0), g(1), g(2), . . .}. Define
h(x) = Φ(x , g(x)) + 1.
Since g(x) is the number of a program that computes a total
function, Φ(x , g(x)) ↓ for all x . In particular, h(x) ↓ for all x .
Suppose that h is computed by P with p = #(P). Then,
p ∈ TOT, so p = g(i) for some i . Then,

h(i) = Φ(i , g(i)) + 1 = Φ(i , p) + 1 = h(i) + 1,

which is a contradiction.
7 / 26

THEORY OF COMPUTATION Recursively Enumerable Sets - 13 part 4

Diagonalization and Reducibility in the Theory of Computation

K

Recursive Enumerable Sets

Recursive Sets

K
TOT

8 / 26

THEORY OF COMPUTATION Recursively Enumerable Sets - 13 part 4

Reducibility

Definition

Let A,B be sets. The set A is many-one reducible to B, written
A ⩽m B if there exists a computable function f such that

A = {x ∈ N | f (x) ∈ B}.

If A ⩽m B, testing membership in A is no harder than testing
membership in B because to test if x ∈ A, compute f (x) and test
whether f (x) ∈ B.

9 / 26

THEORY OF COMPUTATION Recursively Enumerable Sets - 13 part 4

Reducibility

Theorem

Suppose A ⩽m B.
If B is recursive, then A is recursive.
If B is r.e., then A is r.e.

10 / 26

THEORY OF COMPUTATION Recursively Enumerable Sets - 13 part 4

Reducibility

Proof.

Part 1: Since A ⩽m B there exists f such that
A = {x | f (x) ∈ B}. If PB is the characteristic predicate of B,
then A = {x | PB(f (x)) = 1}, which show that
PA(x) = PB(f (x)). Thus, if B is recursive, then PA is computable
so A is recursive.

11 / 26

THEORY OF COMPUTATION Recursively Enumerable Sets - 13 part 4

Reducibility

Proof.

Part 2: Suppose B is r.e. Then,

B = {x ∈ N | g(x) ↓}

for some partially computable function g . Therefore,

A = {x ∈ N | g(f (x)) ↓}.

Since g(f (x)) is partially computable, A is r.e.

12 / 26

THEORY OF COMPUTATION Recursively Enumerable Sets - 13 part 4

Reducibility

Example

The set

K0 = {x ∈ N | Φr(x)(ℓ(x)) ↓} = {⟨x , y⟩ | Φy (x) ↓}

is r.e. but it is not recursive. K0 is clearly r.e. We will prove that
K ⩽m K0 which should imply that K0 is not recursive.

13 / 26

THEORY OF COMPUTATION Recursively Enumerable Sets - 13 part 4

Reducibility

Example cont’d

Example

Facts:

x ∈ K if and only if ⟨x , x⟩ ∈ K0.

f (x) = ⟨x , x⟩ is computable.

Claim: if A is r.e. then A ⩽m K0:

A = {x ∈ N | g(x) ↓} for some partially computable g

= {x ∈ N | Φ(x , z0) ↓} for some z0

= {x ∈ N | ⟨x , z0⟩ ∈ K0}.

In particular, K ⩽m K0.

14 / 26

THEORY OF COMPUTATION Recursively Enumerable Sets - 13 part 4

Reducibility

K

Recursive Enumerable Sets

Recursive Sets

K
TOT

K0

15 / 26

THEORY OF COMPUTATION Recursively Enumerable Sets - 13 part 4

Reducibility

Definition

A set A is m-complete if

1 A is r.e., and

2 for every r.e. set B we have B ⩽m A.

Example

The set K0 is m-complete.

16 / 26

THEORY OF COMPUTATION Recursively Enumerable Sets - 13 part 4

Reducibility

Theorem

If A ⩽m B and B ⩽m C, then A ⩽m C.

Proof.

Let

A = {x ∈ N | f (x) ∈ B}, and
B = {x ∈ N | g(x) ∈ C}.

Then, A = {x ∈ N | g(f (x)) ∈ C}.

17 / 26

THEORY OF COMPUTATION Recursively Enumerable Sets - 13 part 4

Reducibility

Corollary

If A is m-complete, B is r.e. and A ⩽m B, then B is m-complete.

Proof.

If C is r.e., then C ⩽m A and A ⩽m B, so C ⩽m B, so B is
m-complete.

Note: testing membership in an m-complete set is at least as
difficult as testing membership in any r.e. set.

18 / 26

THEORY OF COMPUTATION Recursively Enumerable Sets - 13 part 4

Reducibility

Theorem

The set K is m-complete.

Proof.

We will show that K0 ⩽m K . To this end, we start with a pair
⟨n, q⟩ and transform it into a number f (⟨n, q⟩) of a program such
that

Φq(n) ↓ if and only if Φ
f (⟨n,q⟩)(f (⟨n, q⟩)) ↓ .

In other words, ⟨n, q⟩ ∈ K0 if and only if f (⟨n, q⟩) ∈ K .

19 / 26

THEORY OF COMPUTATION Recursively Enumerable Sets - 13 part 4

Reducibility

Proof cont’d

Proof:
Let P be the S program Y ← Φ(1)(ℓ(X2), r(X2)) and let
p = #(P).
Then, ψP(x1, x2) = Φ(1)(ℓ(x2), r(x2)), and

ψP(x1, x2) = Φ(2)(x1, x2, p) = Φ(1)(x1,S
1
1 (x2, p))

for all values of x1. This holds for all values of x1, so in particular,

Φ(1)(n, q) = Φ
(1)

S1
1 (⟨n,q⟩,p)

(S1
1 (⟨n, q⟩, p)).

20 / 26

THEORY OF COMPUTATION Recursively Enumerable Sets - 13 part 4

Reducibility

Therefore, Φ(1)(n, q) ↓ if and only if Φ
(1)

S1
1 (⟨n,q⟩,p)

(S1
1 (⟨n, q⟩, p)) ↓,

so
⟨n, q⟩ ∈ K0 if and only if S1

1 (⟨n, q⟩, p) ∈ K .

With p held constant, S1
1 (x , p) is a computable unary function.

Thus, K0 ⩽m K .

21 / 26

THEORY OF COMPUTATION Recursively Enumerable Sets - 13 part 4

Reducibility

Definition

A ≡m B means that A ⩽m B and B ⩽m A.

A ≡m B means that testing membership in A has the same
difficulty as testing membership in B.
We proved that both K and K0 are m-complete and that K ≡m K0.

22 / 26

THEORY OF COMPUTATION Recursively Enumerable Sets - 13 part 4

Reducibility

Definition

Let
EMPTY = {x ∈ N | Wx = ∅}.

Theorem

The set EMPTY is not r.e.

23 / 26

THEORY OF COMPUTATION Recursively Enumerable Sets - 13 part 4

Reducibility

Proof.

We show that K ⩽m EMPTY. Since K is not r.e, it will follow
that EMPTY is not r.e.
Let P be the S program Y ← Φ(X2,X2) with p = #(P). P does
not use X1, so

ψ
(2)
P (x , z) ↓ if and only if Φ(z , z) ↓ .

By the smn theorem

ψ
(2)
P (x , z) = Φ(2)(z , z , p) = Φ(1)(x1,S

1
1 (x2, p)).

24 / 26

THEORY OF COMPUTATION Recursively Enumerable Sets - 13 part 4

Reducibility

Proof cont’d

Proof.

For any z we have

z ∈ K ⇔ Φ(z , z) ↑
⇔ ψ

(2)
P (x , z) ↑ for all x

⇔ Φ(1)(x , S1
1 (z , p)) ↑ for all x

⇔ WS1
1 (z,p)

= ∅

⇔ S1
1 (z , p) ∈ EMPTY.

Since f (z) = S1
1 (z , p) is computable, we have K ⩽m EMPTY.

25 / 26

THEORY OF COMPUTATION Recursively Enumerable Sets - 13 part 4

Reducibility

K

Recursive Enumerable Sets

Recursive Sets

K
TOT

K0

EMPTY

26 / 26

	Outline
	Diagonalization and Reducibility in the Theory of Computation
	Reducibility

