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S programs can be encoded as numbers, hence every one-argument
function computed by an S program appears in the list

R

The proof of the fact that HALT(x, y) is not computable is
actually a proof by diagonalization. Recall that

HALT (x,y) < ¢8)(x) |, where #(P) = y

is not computable.
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Suppose that HALT(x, y) were computable by a program P with
#(P) =y, that is,

HALT (x,y) = TRUE if ¢)(x) |,

and
HALT (x,y) = FALSE if ) (x) 1.
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The set of S programs is countable, so we can arrange it in a list:
Po, P, - ..

Consider a Iist of aII one-variable functions computed by these
programs w ,wpl ,... and construct the array:

EHO EERIORRENE)

o9)0) PR v9)(2)

o900 B pHe
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Each row represents one computable function.
Recall that we considered the program P:

[A] IF HALT(X, X) GOTO A

that computed wg)(x). We claim that there is no row in the
previous table that corresponds to P. Note that

8 (x) L if and only if 1) (x) 1.
Thus, the row that would correspond to wg) will differ from the

row that corresponds to Py in the diagonal entry. This makes
impossible for P to correspond to a row in this table!
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Let TOT ={z e N | (Vx)®(x,z) |}. In other words, TOT is the
set of program codes z that compute total functions.

The set TOT is not r.e.

Proof.

Suppose TOT were r.e. Since TOT # (), there exists a computable
function g such that TOT = {g(0),g(1),&(2),...}. Define

h(x) = ®(x, g(x)) + 1.

Since g(x) is the number of a program that computes a total
function, ®(x, g(x)) { for all x. In particular, h(x) { for all x.
Suppose that h is computed by P with p = #(P). Then,

p € TOT, so p = g(i) for some i. Then,

h(i) = d(i,g(i)) + 1= (i, p) + 1 = h(i) + 1,

which is a contradiction. ]
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Definition

Let A, B be sets. The set A is many-one reducible to B, written
A <, B if there exists a computable function f such that

A={xeN | f(x) € B}.

If A<, B, testing membership in A is no harder than testing
membership in B because to test if x € A, compute f(x) and test
whether f(x) € B.
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Theorem

Suppose A <, B.
If B is recursive, then A is recursive.
If B is r.e., then A is r.e.
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Proof.
Part 1: Since A <, B there exists f such that

A= {x | f(x) € B}. If Pg is the characteristic predicate of B,
then A= {x | Pg(f(x)) =1}, which show that

Pa(x) = Pg(f(x)). Thus, if B is recursive, then P, is computable
so A is recursive. 0l
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Proof.
Part 2: Suppose B is r.e. Then,

B={xeN|g(x)}

for some partially computable function g. Therefore,

A={xeN | g(f(x) I}

Since g(f(x)) is partially computable, A is r.e. O
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The set

Ko ={x e N [ ®,((l(x)) 1} = {{x,x) | ®y(x) I}

is r.e. but it is not recursive. Kp is clearly r.e. We will prove that
K <, Ko which should imply that Ky is not recursive.
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Example cont'd

Facts:
m x € K if and only if (x,x) € Kp.

m f(x) = (x,x) is computable.
Claim: if Ais r.e. then A <, Ko:

A = {xeN | g(x){} for some partially computable g
{x € N | &(x,z) |} for some z
= {xeN| (x,z9) € Ko}.

In particular, K <., Kp.
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A set A is m-complete if
Aisr.e., and
for every r.e. set B we have B <, A.

The set Kp is m-complete.
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IfA<,, Band B<,, C, then A<, C.

Let
A = {xeN| f(x)e B}, and
B = {xeN| g(x)eC}.
Then, A= {x e N | g(f(x)) € C}. O
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Corollary

If A is m-complete, B is r.e. and A <, B, then B is m-complete.

If Cisre.,then C < ,Aand A<, B,so C <, B,soBis
m-complete. Ol

Note: testing membership in an m-complete set is at least as
difficult as testing membership in any r.e. set.
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The set K is m-complete.

Proof.

We will show that Ky <, K. To this end, we start with a pair
(n, g) and transform it into a number f({n, g)) of a program such
that

®q(n) | if and only if ¢f(<n7q>)(f(<n, 9)) .

In other words, (n, q) € Ko if and only if f((n,q)) € K. O
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Proof cont'd

Proof:
Let P be the S program Y «+ &M (£(Xy), r(X2)) and let

p = #(P).
Then, ¥p(x1, %) = ®(U(x2), r(x2)), and
Up(x1,x2) = P (x1, %0, p) = Y (xq, St (%2, p))

for all values of x;. This holds for all values of xj, so in particular,

oW (n,q) = g o (SH((a), p)).
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Therefore, ®(1(n, q) | if and only if ¢(5111)(<n’q>7p)(511((n, q),p)) 4,

(n,q) € Ko if and only if Si((n,q),p) € K.

SO

With p held constant, 511(x,p) is a computable unary function.
Thus, Ko <m K.
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Definition

A =, B means that A <,, B and B <, A.

A =, B means that testing membership in A has the same
difficulty as testing membership in B.
We proved that both K and Ky are m-complete and that K =, Kp.
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Let
EMPTY = {x e N | W, = 0}.

The set EMPTY is not r.e.
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Proof.

We show that K <,,, EMPTY. Since K is not r.e, it will follow
that EMPTY is not r.e.

Let P be the S program Y < (X, X2) with p = #(P). P does
not use Xi, so

(2)(x z) ] if and only if ®(z,2) | .

By the smn theorem

¥ (x, 2) = 0@z, 2,p) = ®M (1, S} (e, p)).
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Proof cont'd

For any z we have

zeK & (z,2)1
& pP(x,2) 1 forall x
& oW(x, Sl(z,p)) 1 forall x
<~ W511(z,p) =0

i3

Si(z,p) € EMPTY.

Since f(z) = Si(z, p) is computable, we have K <, EMPTY. [J
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