THEORY OF COMPUTATION Recursively Enumerable Sets - 13 part 4

Prof. Dan A. Simovici

UMB

1 Diagonalization and Reducibility in the Theory of Computation

2 Reducibility

 ${\cal S}$ programs can be encoded as numbers, hence every one-argument function computed by an ${\cal S}$ program appears in the list

$$\psi_{\mathcal{P}_0}^{(1)}, \psi_{\mathcal{P}_1}^{(1)}, \dots$$

The proof of the fact that HALT(x, y) is not computable is actually a proof by diagonalization. Recall that

$$\mathsf{HALT}(x,y) \Leftrightarrow \psi^{(1)}_{\mathcal{P}}(x) \downarrow, \text{ where } \#(\mathcal{P}) = y$$

is not computable.

Suppose that $\mathsf{HALT}(x,y)$ were computable by a program $\mathcal P$ with $\#(\mathcal P)=y$, that is,

$$HALT(x, y) = TRUE \text{ if } \psi_{\mathcal{P}}^{(1)}(x) \downarrow,$$

and

$$\mathsf{HALT}(x,y) = \mathsf{FALSE} \text{ if } \psi^{(1)}_{\mathcal{P}}(x) \uparrow.$$

The set of S programs is countable, so we can arrange it in a list:

$$\mathcal{P}_0, \mathcal{P}_1, \dots$$

Consider a list of all one-variable functions computed by these programs $\psi^{(1)}_{\mathcal{P}_{\mathbf{n}}}, \psi^{(1)}_{\mathcal{P}_{\mathbf{1}}}, \dots$ and construct the array:

$$\psi_{\mathcal{P}_0}^{(1)}(0) \qquad \psi_{\mathcal{P}_0}^{(1)}(1) \qquad \psi_{\mathcal{P}_0}^{(1)}(2) \qquad \cdot$$

$$\psi_{\mathcal{P}_1}^{(1)}(0) \qquad \psi_{\mathcal{P}_1}^{(1)}(1) \qquad \psi_{\mathcal{P}_1}^{(1)}(2) \qquad \cdots$$

$$\psi_{\mathcal{P}_2}^{(1)}(0) \quad \psi_{\mathcal{P}_2}^{(1)}(1) \quad \psi_{\mathcal{P}_2}^{(1)}(2) \quad \cdots$$

Each row represents one computable function. Recall that we considered the program \mathcal{P} :

[A] IF
$$HALT(X, X)$$
 GOTO A

that computed $\psi_{\mathcal{P}}^{(1)}(x)$. We claim that there is no row in the previous table that corresponds to \mathcal{P} . Note that

$$\psi_{\mathcal{P}}^{(1)}(x)\downarrow$$
 if and only if $\psi_{\mathcal{P}_x}^{(1)}(x)\uparrow$.

Thus, the row that would correspond to $\psi_{\mathcal{P}}^{(1)}$ will differ from the row that corresponds to \mathcal{P}_{x} in the diagonal entry. This makes impossible for \mathcal{P} to correspond to a row in this table!

Let $\mathsf{TOT} = \{z \in \mathbb{N} \mid (\forall x) \Phi(x, z) \downarrow \}$. In other words, TOT is the set of program codes z that compute total functions.

Theorem

The set TOT is not r.e.

Proof.

Suppose TOT were r.e. Since TOT $\neq \emptyset$, there exists a computable function g such that TOT $= \{g(0), g(1), g(2), \ldots\}$. Define $h(x) = \Phi(x, g(x)) + 1$.

Since g(x) is the number of a program that computes a total function, $\Phi(x,g(x))\downarrow$ for all x. In particular, $h(x)\downarrow$ for all x. Suppose that h is computed by $\mathcal P$ with $p=\#(\mathcal P)$. Then, $p\in\mathsf{TOT}$, so p=g(i) for some i. Then,

$$h(i) = \Phi(i, g(i)) + 1 = \Phi(i, p) + 1 = h(i) + 1,$$

which is a contradiction.

Definition

Let A, B be sets. The set A is many-one reducible to B, written $A \leq_m B$ if there exists a computable function f such that

$$A = \{x \in \mathbb{N} \mid f(x) \in B\}.$$

If $A \leq_m B$, testing membership in A is no harder than testing membership in B because to test if $x \in A$, compute f(x) and test whether $f(x) \in B$.

Reducibility

Theorem

Suppose $A \leq_m B$.

If B is recursive, then A is recursive.

If B is r.e., then A is r.e.

Proof.

Part 1: Since $A \leq_m B$ there exists f such that $A = \{x \mid f(x) \in B\}$. If P_B is the characteristic predicate of B, then $A = \{x \mid P_B(f(x)) = 1\}$, which show that $P_A(x) = P_B(f(x))$. Thus, if B is recursive, then P_A is computable so A is recursive.

Proof.

Part 2: Suppose *B* is r.e. Then,

$$B = \{x \in \mathbb{N} \mid g(x) \downarrow \}$$

for some partially computable function g. Therefore,

$$A = \{x \in \mathbb{N} \mid g(f(x)) \downarrow \}.$$

Since g(f(x)) is partially computable, A is r.e.

Example

The set

$$K_0 = \{x \in \mathbb{N} \mid \Phi_{r(x)}(\ell(x)) \downarrow\} = \{\langle x, y \rangle \mid \Phi_y(x) \downarrow\}$$

is r.e. but it is not recursive. K_0 is clearly r.e. We will prove that $K \leq_m K_0$ which should imply that K_0 is not recursive.

Example cont'd

Example

Facts:

- $x \in K$ if and only if $\langle x, x \rangle \in K_0$.
- $f(x) = \langle x, x \rangle$ is computable.

Claim: if A is r.e. then $A \leq_m K_0$:

$$A = \{x \in \mathbb{N} \mid g(x) \downarrow \} \text{ for some partially computable } g$$
$$= \{x \in \mathbb{N} \mid \Phi(x, z_0) \downarrow \} \text{ for some } z_0$$
$$= \{x \in \mathbb{N} \mid \langle x, z_0 \rangle \in K_0 \}.$$

In particular, $K \leq_m K_0$.

Definition

A set A is m-complete if

- 1 A is r.e., and
- 2 for every r.e. set B we have $B \leq_m A$.

Example

The set K_0 is m-complete.

Theorem

If $A \leq_m B$ and $B \leq_m C$, then $A \leq_m C$.

Proof.

Let

$$A = \{x \in \mathbb{N} \mid f(x) \in B\}, \text{ and } B = \{x \in \mathbb{N} \mid g(x) \in C\}.$$

Then,
$$A = \{x \in \mathbb{N} \mid g(f(x)) \in C\}.$$

Corollary

If A is m-complete, B is r.e. and $A \leq_m B$, then B is m-complete.

Proof.

If C is r.e., then $C \leq_m A$ and $A \leq_m B$, so $C \leq_m B$, so B is m-complete.

Note: testing membership in an *m*-complete set is at least as difficult as testing membership in any r.e. set.

Theorem

The set K is m-complete.

Proof.

We will show that $K_0 \leqslant_m K$. To this end, we start with a pair $\langle n,q \rangle$ and transform it into a number $f(\langle n,q \rangle)$ of a program such that

$$\Phi_q(\textit{n}) \downarrow \text{ if and only if } \Phi_{f(\left\langle \textit{n},\textit{q}\right\rangle)}(f(\left\langle \textit{n},\textit{q}\right\rangle)) \downarrow.$$

In other words, $\langle n, q \rangle \in K_0$ if and only if $f(\langle n, q \rangle) \in K$.

Proof cont'd

Proof:

Let \mathcal{P} be the \mathcal{S} program $Y \leftarrow \Phi^{(1)}(\ell(X_2), r(X_2))$ and let $p = \#(\mathcal{P})$.

Then, $\psi_{\mathcal{P}}(x_1, x_2) = \Phi^{(1)}(\ell(x_2), r(x_2))$, and

$$\psi_{\mathcal{P}}(x_1, x_2) = \Phi^{(2)}(x_1, x_2, p) = \Phi^{(1)}(x_1, S_1^1(x_2, p))$$

for all values of x_1 . This holds for all values of x_1 , so in particular,

$$\Phi^{(1)}(n,q) = \Phi^{(1)}_{S_1^1(\langle n,q\rangle,p)}(S_1^1(\langle n,q\rangle,p)).$$

Therefore, $\Phi^{(1)}(n,q)\downarrow$ if and only if $\Phi^{(1)}_{S^1_1(\langle n,q\rangle,p)}(S^1_1(\langle n,q\rangle,p))\downarrow$, so

$$\langle n,q \rangle \in \mathcal{K}_0$$
 if and only if $S^1_1(\langle n,q \rangle,p) \in \mathcal{K}.$

With p held constant, $S_1^1(x,p)$ is a computable unary function. Thus, $K_0 \leqslant_m K$.

Definition

 $A \equiv_m B$ means that $A \leqslant_m B$ and $B \leqslant_m A$.

 $A \equiv_m B$ means that testing membership in A has the same difficulty as testing membership in B.

We proved that both K and K_0 are m-complete and that $K \equiv_m K_0$.

Definition

Let

$$\mathsf{EMPTY} = \{x \in \mathbb{N} \mid W_x = \emptyset\}.$$

Theorem

The set EMPTY is not r.e.

Proof.

We show that $\overline{K} \leq_m \mathsf{EMPTY}$. Since \overline{K} is not r.e, it will follow that EMPTY is not r.e.

Let $\mathcal P$ be the $\mathcal S$ program $Y \leftarrow \Phi(X_2, X_2)$ with $p = \#(\mathcal P)$. $\mathcal P$ does not use X_1 , so

$$\psi^{(2)}_{\mathcal{P}}(x,z)\downarrow$$
 if and only if $\Phi(z,z)\downarrow$.

By the smn theorem

$$\psi_{\mathcal{P}}^{(2)}(x,z) = \Phi^{(2)}(z,z,p) = \Phi^{(1)}(x_1,S_1^1(x_2,p)).$$

Proof cont'd

Proof.

For any z we have

$$z \in \overline{K} \Leftrightarrow \Phi(z,z) \uparrow$$
 $\Leftrightarrow \psi_{\mathcal{P}}^{(2)}(x,z) \uparrow \text{ for all } x$
 $\Leftrightarrow \Phi^{(1)}(x,S_1^1(z,p)) \uparrow \text{ for all } x$
 $\Leftrightarrow W_{S_1^1(z,p)} = \emptyset$
 $\Leftrightarrow S_1^1(z,p) \in \text{EMPTY}.$

Since $f(z) = S_1^1(z, p)$ is computable, we have $\overline{K} \leqslant_m \mathsf{EMPTY}$.

