THEORY OF COMPUTATION Recursively Enumerable Sets - 13 part 4

Prof. Dan A. Simovici

UMB

1 / 26

 $2Q$

4 ロ > 4 何 > 4 ミ > 4 ミ > - ミ

 L_{Outline} L_{Outline} L_{Outline}

1 [Diagonalization and Reducibility in the Theory of Computation](#page-2-0)

 S programs can be encoded as numbers, hence every one-argument function computed by an S program appears in the list

> $\psi_{{\cal P}_0}^{(1)}$ $\psi_{{\cal P}_0}^{(1)},\psi_{{\cal P}_1}^{(1)},\ldots$

The proof of the fact that $HALT(x, y)$ is not computable is actually a proof by diagonalization. Recall that

$$
\mathsf{HALT}(x, y) \Leftrightarrow \psi_{\mathcal{P}}^{(1)}(x) \downarrow, \text{ where } \#(\mathcal{P}) = y
$$

is not computable.

Suppose that HALT (x, y) were computable by a program P with $#(\mathcal{P}) = y$, that is,

HALT(x, y) = TRUE if
$$
\psi_{\mathcal{P}}^{(1)}(x) \downarrow
$$
,

and

HALT(x, y) = FALSE if
$$
\psi_{\mathcal{P}}^{(1)}(x) \uparrow
$$
.

4 / 26

 QQ

メロトメ 御 トメ 君 トメ 君 トー 君

The set of S programs is countable, so we can arrange it in a list:

 P_0, P_1, \ldots

Consider a list of all one-variable functions computed by these programs $\psi_{{\cal P}_\alpha}^{(1)}$ $(\mathcal{P}_\mathrm{p}_\mathrm{p}, \psi^{(1)}_{\mathcal{P}_\mathrm{1}}, \dots$ and construct the array:

Each row represents one computable function. Recall that we considered the program \mathcal{P} :

$$
[A] \quad \text{IF HALT}(X, X) \quad \text{GOTO A}
$$

that computed $\psi_{\cal P}^{(1)}$ $\mathcal{P}^{(1)}(x)$. We claim that there is no row in the previous table that corresponds to $\mathcal P$. Note that

$$
\psi_{\mathcal{P}}^{(1)}(x) \downarrow
$$
 if and only if $\psi_{\mathcal{P}_x}^{(1)}(x) \uparrow$.

Thus, the row that would correspond to $\psi_{\cal P}^{(1)}$ will differ from the row that corresponds to P_x in the diagonal entry. This makes impossible for $\mathcal P$ to correspond to a row in this table!

Let $TOT = \{z \in \mathbb{N} \mid (\forall x)\Phi(x, z) \downarrow\}$. In other words, TOT is the set of program codes z that compute total functions.

Theorem

The set TOT is not re.

Proof.

Suppose TOT were r.e. Since TOT $\neq \emptyset$, there exists a computable function g such that $TOT = {g(0), g(1), g(2), \ldots}$. Define $h(x) = \Phi(x, g(x)) + 1.$ Since $g(x)$ is the number of a program that computes a total function, $\Phi(x, g(x)) \downarrow$ for all x. In particular, $h(x) \downarrow$ for all x. Suppose that h is computed by P with $p = #(\mathcal{P})$. Then, $p \in \text{TOT}$, so $p = g(i)$ for some *i*. Then,

$$
h(i) = \Phi(i, g(i)) + 1 = \Phi(i, p) + 1 = h(i) + 1,
$$

which is a contradiction.

[THEORY OF COMPUTATION Recursively Enumerable Sets - 13 part 4](#page-0-0)

[Diagonalization and Reducibility in the Theory of Computation](#page-2-0)

Definition

Let A, B be sets. The set A is many-one reducible to B , written $A \leq m B$ if there exists a computable function f such that

$$
A = \{x \in \mathbb{N} \mid f(x) \in B\}.
$$

If $A \leq m B$, testing membership in A is no harder than testing membership in B because to test if $x \in A$, compute $f(x)$ and test whether $f(x) \in B$.

Theorem

Suppose $A \leq m B$. If B is recursive, then A is recursive. If B is r.e., then A is r.e.

Proof.

Part 1: Since $A \leq m B$ there exists f such that $A = \{x \mid f(x) \in B\}$. If P_B is the characteristic predicate of B, then $A = \{x \mid P_B(f(x)) = 1\}$, which show that $P_{\Delta}(x) = P_{\Delta}(f(x))$. Thus, if B is recursive, then P_{Δ} is computable so A is recursive.

Proof.

Part 2: Suppose B is r.e. Then,

$$
B = \{x \in \mathbb{N} \mid g(x) \downarrow\}
$$

for some partially computable function g . Therefore,

$$
A = \{x \in \mathbb{N} \mid g(f(x)) \downarrow \}.
$$

12 / 26

KO KARK KEK KEK EL YAN

Since $g(f(x))$ is partially computable, A is r.e.

Example

The set

$$
K_0 = \{x \in \mathbb{N} \mid \Phi_{r(x)}(\ell(x)) \downarrow\} = \{\langle x, y \rangle \mid \Phi_y(x) \downarrow\}
$$

is r.e. but it is not recursive. K_0 is clearly r.e. We will prove that $K \leq m K_0$ which should imply that K_0 is not recursive.

Example cont'd

Example

Facts:

■ $x \in K$ if and only if $\langle x, x \rangle \in K_0$.

 $f(x) = \langle x, x \rangle$ is computable.

Claim: if A is r.e. then $A \leq m K_0$:

 $A = \{x \in \mathbb{N} \mid g(x) \downarrow\}$ for some partially computable g $= \{x \in \mathbb{N} \mid \Phi(x, z_0) \downarrow\}$ for some z_0 $= \{x \in \mathbb{N} \mid \langle x, z_0 \rangle \in \mathcal{K}_0\}.$

In particular, $K \leq m K_0$.

Definition

A set A is m -complete if

 \blacksquare A is r.e., and

2 for every r.e. set B we have $B \leq m A$.

Example

The set K_0 is *m*-complete.

Theorem

If
$$
A \leq_m B
$$
 and $B \leq_m C$, then $A \leq_m C$.

Proof.

Let

$$
A = \{x \in \mathbb{N} \mid f(x) \in B\}, \text{ and}
$$

$$
B = \{x \in \mathbb{N} \mid g(x) \in C\}.
$$

17 / 26

 \Box

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Then, $A = \{x \in \mathbb{N} \mid g(f(x)) \in C\}.$

Corollary

If A is m-complete, B is r.e. and $A \leq m B$, then B is m-complete.

Proof.

If C is r.e., then $C \leq m A$ and $A \leq m B$, so $C \leq m B$, so B is m-complete.

Note: testing membership in an *m*-complete set is at least as difficult as testing membership in any r.e. set.

Theorem

The set K is m-complete.

Proof.

We will show that $K_0 \leq m K$. To this end, we start with a pair $\langle n, q \rangle$ and transform it into a number $f(\langle n, q \rangle)$ of a program such that

$$
\Phi_q(n) \downarrow \text{ if and only if } \Phi_{f(\langle n,q \rangle)}(f(\langle n,q \rangle)) \downarrow.
$$

In other words, $\langle n, q \rangle \in K_0$ if and only if $f(\langle n, q \rangle) \in K$.

Proof cont'd

Proof:

Let ${\mathcal P}$ be the ${\mathcal S}$ program $Y \leftarrow \Phi^{(1)}(\ell(X_2),r(X_2))$ and let $p = \#(\mathcal{P}).$ Then, $\psi_{\mathcal{P}}(x_1, x_2) = \Phi^{(1)}(\ell(x_2), r(x_2))$, and

$$
\psi_{\mathcal{P}}(x_1,x_2)=\Phi^{(2)}(x_1,x_2,\rho)=\Phi^{(1)}(x_1,S_1^1(x_2,\rho))
$$

for all values of x_1 . This holds for all values of x_1 , so in particular,

$$
\Phi^{(1)}(n,q)=\Phi^{(1)}_{S_1^1(\langle n,q\rangle,p)}(S_1^1(\langle n,q\rangle,p)).
$$

KORK 4 BRADE DE VOLC 20 / 26

Therefore, $\Phi^{(1)}(n,q) \downarrow$ if and only if $\Phi^{(1)}_{S^1_1(\langle n,q \rangle,p)}(S^1_1(\langle n,q \rangle,p)) \downarrow$, so $\langle n, q \rangle \in K_0$ if and only if $S_1^1(\langle n, q \rangle, p) \in K$.

With p held constant, $S_1^1(x, p)$ is a computable unary function. Thus, $K_0 \leq m K$.

Definition

 $A \equiv_m B$ means that $A \leq_m B$ and $B \leq_m A$.

 $A \equiv_m B$ means that testing membership in A has the same difficulty as testing membership in B. We proved that both K and K_0 are m-complete and that $K \equiv_m K_0$.

Definition

Let

$$
EMPTY = \{x \in \mathbb{N} \mid W_x = \emptyset\}.
$$

Theorem

The set EMPTY is not r.e.

メロトメ 伊 メモトメモト ニヨーのダウ 23 / 26

Proof.

We show that $\overline{K} \leq m$ EMPTY. Since \overline{K} is not r.e, it will follow that FMPTY is not re-Let P be the S program $Y \leftarrow \Phi(X_2, X_2)$ with $p = \#(\mathcal{P})$. P does not use X_1 , so

$$
\psi_{\mathcal{P}}^{(2)}(x, z) \downarrow
$$
 if and only if $\Phi(z, z) \downarrow$.

By the smn theorem

$$
\psi_{\mathcal{P}}^{(2)}(x,z)=\Phi^{(2)}(z,z,p)=\Phi^{(1)}(x_1,S_1^1(x_2,p)).
$$

24 / 26

メロメ 大御 メメモメ 大臣メー 差

Proof cont'd

Proof.

For any z we have

$$
z \in \overline{K} \Leftrightarrow \Phi(z, z) \uparrow
$$

\n
$$
\Leftrightarrow \psi_{\mathcal{P}}^{(2)}(x, z) \uparrow \text{ for all } x
$$

\n
$$
\Leftrightarrow \Phi^{(1)}(x, S_1^1(z, p)) \uparrow \text{ for all } x
$$

\n
$$
\Leftrightarrow W_{S_1^1(z, p)} = \emptyset
$$

\n
$$
\Leftrightarrow S_1^1(z, p) \in \text{EMPTY}.
$$

Since $f(z) = S_1^1(z, p)$ is computable, we have $\overline{K} \leqslant_m$ EMPTY.

 \Box

[THEORY OF COMPUTATION Recursively Enumerable Sets - 13 part 4](#page-0-0)

