THEORY OF COMPUTATION The Recursion Theorem

THEORY OF COMPUTATION
The Recursion Theorem - 15

Prof. Dan A. Simovici

UMB

1/26

THEORY OF COMPUTATION The Recursion Theorem - 15
L outline

The Recursion Theorem

The Fixed Point Theorem

2/26

THEORY OF COMPUTATION The Recursion Theorem - 15

L_The Recursion Theorem

In proving that HALT(x, y) is not computable we used a program
P:
[A] IF HALT(X,X) GOTO A

Assuming that #(P) = y, we obtained the contradictory
statement:

HALT(y, y) if and only if ~ HALT(y,y).

This involved considering the behavior of a program on its own
description (something called self-referrence).

3/26

THEORY OF COMPUTATION The Recursion Theorem - 15
L_The Recursion Theorem

Theorem

The Recursion Theorem: Let g(z,x1,...,xm) be a partially
computable function of m + 1 variables. There exists a number e
such that

gle,xt, ..., xm) = Pe(xt, ...y Xm)-

4/26

THEORY OF COMPUTATION The Recursion Theorem - 15
L_The Recursion Theorem

Discussion: Let e be the number of a program P, e = #(P) so
that

@bgn)(xl, ceey Xm) = (D(em)(xl, cosXm) = gle, X1,y Xm)-

This means that P is a program that gets access to its own
number e and computes g(e, x1, ..., Xm)-

This means that P must somehow compute its own number e
because e does not appear among the arguments of P.

5/26

THEORY OF COMPUTATION The Recursion Theorem - 15
L_The Recursion Theorem

Proof.

Consider the partially computable function:

g(Sr]'h(v’ V)7X17 coco aXm),

where Sl (v,v) is the function that occurs in the smn Theorem.
There is a number zy such that

g(Sh(v,v), X1, .. xm) = ¢(m+1)(x1,...,xm,v,zo)
= O™ (xq,...,xm, SL(v, 20))

by the smn Theorem. Setting v = z5 and e = S} (29, z9) we have

gle,x1, ..., xm) = d)(m)(xl, ceeyXm, €) = Cng)(xl, N

6/26

THEORY OF COMPUTATION The Recursion Theorem - 15
L_The Recursion Theorem

An alternative, self-referential proof that HALT(x, y) is not
computable:
If HALT(x, y) were computable, then the function

F(x,y) 1+ if HALT(y, x)
X’ = .
Y 0 otherwise

would be partially computable. Then, the recursion theorem would
imply the existence of a number e such that

T if HALT(y, e)
0 otherwise.

Pe(y) =f(ey) = {

The last equality means that

~ HALT(y, e) < HALT(y, e).

7/26

THEORY OF COMPUTATION The Recursion Theorem - 15
L_The Recursion Theorem

The self-reference occurs when ®, computes e, tests HALT(y, e)
and then does the opposite of what HALT(y, e) says it does.

8/26

THEORY OF COMPUTATION The Recursion Theorem - 15
L_The Recursion Theorem

One of the applications of the recursion theorem is to allow us to
write definitions of functions that involve the program used to
compute the function as a part of its definition.

Corollary

There is a number e such that for all x we have

O (x) =e.

Consider the computable function g(z,x) = v?(z,x) = z.
Applying the recursion theorem we obtain the existence of a

number e such that ®.(x) = g(e, x) = e. O

9/26

THEORY OF COMPUTATION The Recursion Theorem - 15
L_The Recursion Theorem

The program with number e consumes its input x and outputs a
copy of itself. This program can be regarded as a “self-reproducing
organism”.

10/26

THEORY OF COMPUTATION The Recursion Theorem - 15
L_The Recursion Theorem

Let g(x, y) be a computable function. Define the partially
computable function f as

) if t =0,
X, t) = _
g(t = 1,0,(t - 1)) otherwise.

By the Recursion Theorem there is a program numbered e such
that

if t =0,

k
O (t) =f(e, t) = {g(t = 1,0.(t = 1)) otherwise.

11/26

THEORY OF COMPUTATION The Recursion Theorem - 15
L_The Recursion Theorem

Example cont'd

Example

The function ®, is a total, and therefore, a computable function
that satisfies the equations

®e(0) = k, and ®(t + 1) = g(t, Pe(t)),

that is, ®. is obtained from g by primitive recursion. This is
another justification of the correctness of definitions by primitive
recursion.

12/26

THEORY OF COMPUTATION The Recursion Theorem - 15
L_The Recursion Theorem

The recursion theorem can be used to justify other recursive
definition schemes.

Example

Do partially computable functions f and g that satisfy the

equations
f(0) = 1,
f(t+1) = g2t)+1,
g(0) = 3,
g(2t+2) = f(t)+2
exist?

13/26

THEORY OF COMPUTATION The Recursion Theorem - 15
L_The Recursion Theorem

Define the partially computable function F(z,t) as

F(z,x)

1

®,((1,2(r(x) = 1))) +1

3

®,((0, [(r(x) = 2)/2])) + 2

if x =(0,0)
if (Fy)<x(x = 0,y +1)).
if x =(1,0)

if (Fy)<x(x = (1,2y +2)).

14 /26

THEORY OF COMPUTATION The Recursion Theorem - 15
L_The Recursion Theorem

By the Recursion Theorem there exists a number e such that
®.(x) = F(e, x), which means that

d.(x)
1 if x =(0,0)
de((=1))+1 it (3y)<x(x = 0,y + 1)).
3 if x=(1,0)
®((0, [(r(x) =2)/2])) +2 if (By)ex(x = (1,2y +2)).

(1)

15/26

THEORY OF COMPUTATION The Recursion Theorem - 15
L_The Recursion Theorem

Example cont'd

Define
f(x) = ®((0,x)) and g(x) = Pe((1, x)),

f(x) = ®e(2x) and g(x) = P(4x + 1).

Then, Equation 1 amounts to

f(0) = 9.((0,0)) =1
g(0) = ®.((1,0)) =3
f(t+1)=0.((0,t +1)) = d((1,2t) + 1) = g(2t) + 1
g2t +2) = P ((1,2t + 2)) = ({0, 1)) +2 = f(t) + 2

16 /26

THEORY OF COMPUTATION The Recursion Theorem - 15
L The Fixed Point Theorem

Theorem

Fixed Point Theorem: Let f(z) be a computable function. Then,
there is a number e such that ®¢.)(x) = ®e(x) for all x.

Note that e is not quite a fixed point in a mathematical sense. A
number t would be a fixed point of t if we would have f(t) = t.
This theorem says that for every computable function f there is a
number of a program e that computes the same function as the
program with number f(e).

17/26

THEORY OF COMPUTATION The Recursion Theorem - 15
L The Fixed Point Theorem

Let g(z, x) = ®¢(,)(x) be a partially computable function. By the
recursion theorem, there is a number e such that

(De(X) = g(e,x) = (Df(e)(X).

18/26

THEORY OF COMPUTATION The Recursion Theorem - 15
L_The Fixed Point Theorem

Let P(x) be a computable predicate, let g(x) be a computable
function and let while(n) = #(Q,), where Q, is the program:

X2 < n
Y+ X

[A] IF ~ P(Y)GOTO E
Y+ &x,(g(Y))

The function while is clearly computable (and, in fact is primitive
recursive). By the fixed point theorem, there is a number e such
that cl>e(X) = cl>while(e)(x)'

19/26

THEORY OF COMPUTATION The Recursion Theorem - 15
L_The Fixed Point Theorem

Example cont'd

The construction of while(e) implies

X if ~ P(x),
®.(g(x)) otherwise.

<I>e(X) - <I>while(e)(X) = {

Moreover,

Pe(g(x)) = Puhite(e) (8(x)) = {g(x) if ~ P(g(x)),

de(g(g(x))) otherwise.

20/26

THEORY OF COMPUTATION The Recursion Theorem - 15
L The Fixed Point Theorem

Example cont'd

Thus, we have:

X if ~ P(x)
Pe(x) = (thile(e)(x) =4 &8(x) if P(x)& ~ P(g(x)),
®.(g(g(x))) otherwise.

21/26

THEORY OF COMPUTATION The Recursion Theorem - 15
L_The Fixed Point Theorem

Example cont'd

Continuing in this fashion we get

X if ~ P(x)

g(x) if P(x)& ~ P(g(x)),
Pe(x) = Punitee)(X) = | g(g(x)) i P()&P(g(x))& ~ P(g(g(x))

(&
In other words, the program whose number is e behaves like the
program
Y+ X
while P(Y) do
Y +g(Y)
end

22/26

THEORY OF COMPUTATION The Recursion Theorem - 15
L The Fixed Point Theorem

Yet another proof of Rice's Theorem

Suppose that R were recursive. Let Pr be the characteristic
function of Ry, that is,

1 ifteRr
Pr(t) =
r() {0 otherwise.

Define h(t,x) as

h(t X)_ g(X) if t € Rr,
"1 f(x) otherwise,

where, as before, f €[and g ¢ I'.

23/26

THEORY OF COMPUTATION The Recursion Theorem - 15
L_The Fixed Point Theorem

Then, since
h(t,x) = g(x) - Pr(t) + f(x) - a(Pr(t))

if follows that h(t, x) is partially computable. By the recursion
theorem, there is a number e such that

Pe(x) = h(e,x) = {f((j:)) :t:eervfisre.

24/26

THEORY OF COMPUTATION The Recursion Theorem - 15

L_The Fixed Point Theorem

Since f € I and g € I we have:

eeRr = O (x)=g(x)
= G gl
= € Q Rr.

25/26

THEORY OF COMPUTATION The Recursion Theorem - 15
L The Fixed Point Theorem

Likewise,

edRr = & (x)="(x)
= b, el
= ecR,

so either case leads to a contradiction.

26/26

	Outline
	The Recursion Theorem
	The Fixed Point Theorem

