
THEORY OF COMPUTATION The Recursion Theorem - 15

THEORY OF COMPUTATION
The Recursion Theorem - 15

Prof. Dan A. Simovici

UMB

1 / 26



THEORY OF COMPUTATION The Recursion Theorem - 15

Outline

1 The Recursion Theorem

2 The Fixed Point Theorem

2 / 26



THEORY OF COMPUTATION The Recursion Theorem - 15

The Recursion Theorem

In proving that HALT(x , y) is not computable we used a program
P:

[A] IF HALT(X ,X ) GOTO A

Assuming that #(P) = y , we obtained the contradictory
statement:

HALT(y , y) if and only if ∼ HALT(y , y).

This involved considering the behavior of a program on its own
description (something called self-referrence).

3 / 26



THEORY OF COMPUTATION The Recursion Theorem - 15

The Recursion Theorem

Theorem

The Recursion Theorem: Let g(z , x1, . . . , xm) be a partially
computable function of m + 1 variables. There exists a number e
such that

g(e, x1, . . . , xm) = Φe(x1, . . . , xm).

4 / 26



THEORY OF COMPUTATION The Recursion Theorem - 15

The Recursion Theorem

Discussion: Let e be the number of a program P, e = #(P) so
that

ψ
(m)
P (x1, . . . , xm) = Φ

(m)
e (x1, . . . , xm) = g(e, x1, . . . , xm).

This means that P is a program that gets access to its own
number e and computes g(e, x1, . . . , xm).
This means that P must somehow compute its own number e
because e does not appear among the arguments of P.

5 / 26



THEORY OF COMPUTATION The Recursion Theorem - 15

The Recursion Theorem

Proof.

Consider the partially computable function:

g(S1
m(v , v), x1, . . . , xm),

where S1
m(v , v) is the function that occurs in the smn Theorem.

There is a number z0 such that

g(S1
m(v , v), x1, . . . , xm) = Φ(m+1)(x1, . . . , xm, v , z0)

= Φ(m)(x1, . . . , xm, S
1
m(v , z0))

by the smn Theorem. Setting v = z0 and e = S1
m(z0, z0) we have

g(e, x1, . . . , xm) = Φ(m)(x1, . . . , xm, e) = Φ
(m)
e (x1, . . . , xm).

6 / 26



THEORY OF COMPUTATION The Recursion Theorem - 15

The Recursion Theorem

An alternative, self-referential proof that HALT(x , y) is not
computable:
If HALT(x , y) were computable, then the function

f (x , y) =

{
↑ if HALT(y , x)

0 otherwise

would be partially computable. Then, the recursion theorem would
imply the existence of a number e such that

Φe(y) = f (e, y) =

{
↑ if HALT(y , e)

0 otherwise.

The last equality means that

∼ HALT(y , e)⇔ HALT(y , e).

7 / 26



THEORY OF COMPUTATION The Recursion Theorem - 15

The Recursion Theorem

The self-reference occurs when Φe computes e, tests HALT(y , e)
and then does the opposite of what HALT(y , e) says it does.

8 / 26



THEORY OF COMPUTATION The Recursion Theorem - 15

The Recursion Theorem

One of the applications of the recursion theorem is to allow us to
write definitions of functions that involve the program used to
compute the function as a part of its definition.

Corollary

There is a number e such that for all x we have

Φe(x) = e.

Proof.

Consider the computable function g(z , x) = u21(z , x) = z .
Applying the recursion theorem we obtain the existence of a
number e such that Φe(x) = g(e, x) = e.

9 / 26



THEORY OF COMPUTATION The Recursion Theorem - 15

The Recursion Theorem

The program with number e consumes its input x and outputs a
copy of itself. This program can be regarded as a “self-reproducing
organism”.

10 / 26



THEORY OF COMPUTATION The Recursion Theorem - 15

The Recursion Theorem

Example

Let g(x , y) be a computable function. Define the partially
computable function f as

f (x , t) =

{
k if t = 0,

g(t ·− 1,Φx(t ·− 1)) otherwise.

By the Recursion Theorem there is a program numbered e such
that

Φe(t) = f (e, t) =

{
k if t = 0,

g(t ·− 1,Φe(t ·− 1)) otherwise.

11 / 26



THEORY OF COMPUTATION The Recursion Theorem - 15

The Recursion Theorem

Example cont’d

Example

The function Φe is a total, and therefore, a computable function
that satisfies the equations

Φe(0) = k, and Φe(t + 1) = g(t,Φe(t)),

that is, Φe is obtained from g by primitive recursion. This is
another justification of the correctness of definitions by primitive
recursion.

12 / 26



THEORY OF COMPUTATION The Recursion Theorem - 15

The Recursion Theorem

The recursion theorem can be used to justify other recursive
definition schemes.

Example

Do partially computable functions f and g that satisfy the
equations

f (0) = 1,

f (t + 1) = g(2t) + 1,

g(0) = 3,

g(2t + 2) = f (t) + 2.

exist?

13 / 26



THEORY OF COMPUTATION The Recursion Theorem - 15

The Recursion Theorem

Define the partially computable function F (z , t) as

F (z , x)

=


1 if x = ⟨0, 0⟩
Φz(⟨1, 2(r(x) ·− 1)⟩) + 1 if (∃y)⩽x(x = ⟨0, y + 1⟩).
3 if x = ⟨1, 0⟩
Φz(⟨0, ⌊(r(x) ·− 2)/2⌋⟩) + 2 if (∃y)⩽x(x = ⟨1, 2y + 2⟩).

14 / 26



THEORY OF COMPUTATION The Recursion Theorem - 15

The Recursion Theorem

By the Recursion Theorem there exists a number e such that
Φe(x) = F (e, x), which means that

Φe(x)

=


1 if x = ⟨0, 0⟩
Φe(⟨1, 2(r(x) ·− 1)⟩) + 1 if (∃y)⩽x(x = ⟨0, y + 1⟩).
3 if x = ⟨1, 0⟩
Φe(⟨0, ⌊(r(x) ·− 2)/2⌋⟩) + 2 if (∃y)⩽x(x = ⟨1, 2y + 2⟩).

(1)

15 / 26



THEORY OF COMPUTATION The Recursion Theorem - 15

The Recursion Theorem

Example cont’d

Define
f (x) = Φe(⟨0, x⟩) and g(x) = Φe(⟨1, x⟩),

or
f (x) = Φe(2x) and g(x) = Φe(4x + 1).

Then, Equation 1 amounts to

f (0) = Φe(⟨0, 0⟩) = 1
g(0) = Φe(⟨1, 0⟩) = 3
f (t + 1) = Φe(⟨0, t + 1⟩) = Φe(⟨1, 2t⟩+ 1) = g(2t) + 1
g(2t + 2) = Φe(⟨1, 2t + 2⟩) = Φe(⟨0, t⟩) + 2 = f (t) + 2.

16 / 26



THEORY OF COMPUTATION The Recursion Theorem - 15

The Fixed Point Theorem

Theorem

Fixed Point Theorem: Let f (z) be a computable function. Then,
there is a number e such that Φf (e)(x) = Φe(x) for all x .

Note that e is not quite a fixed point in a mathematical sense. A
number t would be a fixed point of t if we would have f (t) = t.
This theorem says that for every computable function f there is a
number of a program e that computes the same function as the
program with number f (e).

17 / 26



THEORY OF COMPUTATION The Recursion Theorem - 15

The Fixed Point Theorem

Proof.

Let g(z , x) = Φf (z)(x) be a partially computable function. By the
recursion theorem, there is a number e such that

Φe(x) = g(e, x) = Φf (e)(x).

18 / 26



THEORY OF COMPUTATION The Recursion Theorem - 15

The Fixed Point Theorem

Example

Let P(x) be a computable predicate, let g(x) be a computable
function and let while(n) = #(Qn), where Qn is the program:

X2 ← n
Y ← X

[A] IF ∼ P(Y ) GOTO E
Y ← ΦX2(g(Y ))

The function while is clearly computable (and, in fact is primitive
recursive). By the fixed point theorem, there is a number e such
that Φe(x) = Φwhile(e)(x).

19 / 26



THEORY OF COMPUTATION The Recursion Theorem - 15

The Fixed Point Theorem

Example cont’d

Example

The construction of while(e) implies

Φe(x) = Φwhile(e)(x) =

{
x if ∼ P(x),

Φe(g(x)) otherwise.

Moreover,

Φe(g(x)) = Φwhile(e)(g(x)) =

{
g(x) if ∼ P(g(x)),

Φe(g(g(x))) otherwise.

20 / 26



THEORY OF COMPUTATION The Recursion Theorem - 15

The Fixed Point Theorem

Example cont’d

Example

Thus, we have:

Φe(x) = Φwhile(e)(x) =


x if ∼ P(x)

g(x) if P(x)& ∼ P(g(x)),

Φe(g(g(x))) otherwise.

21 / 26



THEORY OF COMPUTATION The Recursion Theorem - 15

The Fixed Point Theorem

Example cont’d

Example

Continuing in this fashion we get

Φe(x) = Φwhile(e)(x) =


x if ∼ P(x)

g(x) if P(x)& ∼ P(g(x)),

g(g(x)) if P(x)&P(g(x))& ∼ P(g(g(x))
...&

In other words, the program whose number is e behaves like the
program

Y ← X
while P(Y ) do
Y ← g(Y )

end
22 / 26



THEORY OF COMPUTATION The Recursion Theorem - 15

The Fixed Point Theorem

Yet another proof of Rice’s Theorem

Suppose that RΓ were recursive. Let PΓ be the characteristic
function of RΓ, that is,

PΓ(t) =

{
1 if t ∈ RΓ

0 otherwise.

Define h(t, x) as

h(t, x) =

{
g(x) if t ∈ RΓ,

f (x) otherwise,

where, as before, f ∈ Γ and g ̸∈ Γ.

23 / 26



THEORY OF COMPUTATION The Recursion Theorem - 15

The Fixed Point Theorem

Then, since

h(t, x) = g(x) · PΓ(t) + f (x) · α(PΓ(t))

if follows that h(t, x) is partially computable. By the recursion
theorem, there is a number e such that

Φe(x) = h(e, x) =

{
g(x) if Φe ∈ Γ

f (x) otherwise.

24 / 26



THEORY OF COMPUTATION The Recursion Theorem - 15

The Fixed Point Theorem

Since f ∈ Γ and g ̸∈ Γ we have:

e ∈ RΓ ⇒ Φe(x) = g(x)

⇒ Φe ̸∈ Γ

⇒ e ̸∈ RΓ.

25 / 26



THEORY OF COMPUTATION The Recursion Theorem - 15

The Fixed Point Theorem

Likewise,

e ̸∈ RΓ ⇒ Φe(x) = f (x)

⇒ Φe ∈ Γ

⇒ e ∈ RΓ,

so either case leads to a contradiction.

26 / 26


	Outline
	The Recursion Theorem
	The Fixed Point Theorem

