THEORY OF COMPUTATION Calculations on Strings - 17

Prof. Dan A. Simovici

UMB

1/31

Outline

1 Recapitulation

2 Numerical representation of Strings (Words)

3 A List of Primitive Recursive Functions

<ロト <回 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 2/31

We seek to extend computations from numbers to words on certain alphabets.

- An *alphabet* is a finite non-empty set of *symbols*.
- A *word* is an *n*-tuple of symbols $w = (a_1, a_2, ..., a_n)$ written as $a_1a_2 \cdots a_n$. Here *n* is the *length* of *w* denoted by n = |w|.
- If |A| = m, there are m^n words of length n.
- There is a unique word of length 0 denoted by 0.

Recapitulation

- The set of words over the alphabet A is denoted by A^* .
- A *language* over the alphabet A is any subset of A^* .
- We do not distinguish between the symbol *a* and the word *a*.
- If u, v are words, we write uv for the word obtained by placing v after u.

Example

If
$$A = \{a, b, c\}, u = bab, v = caba$$
, then

uv = babcaba and vu = cababab.

We have u0 = 0u = u for every $u \in A^*$.

Recapitulation

- The set of words over the alphabet A is denoted by A^* .
- A *language* over the alphabet A is any subset of A^* .
- We do not distinguish between the symbol *a* and the word *a*.
- If u, v are words, we write uv for the word obtained by placing v after u.

Example

If
$$A = \{a, b, c\}, u = bab, v = caba$$
, then

uv = babcaba and vu = cababab.

Recapitulation

Word product is associative, that is,

$$u(vw) = (uv)w$$

for $u, v, w \in A^*$. If either uv = uw or vu = wu, then v = w. If u is a word and n > 0 we write

$$u^n = \underbrace{uu \cdots u}_n$$

(日)(周)((日)(日))(日)

6/31

and $u^0 = \lambda$.

-Numerical representation of Strings (Words)

Let $A = \{s_1, \ldots, s_n\}$ be an alphabet that consists of n symbols and let

$$w = s_{i_k} s_{i_{k-1}} \cdots s_{i_1} s_{i_0}$$

be a word in A^* . The integer associated with w is

$$x = i_k \cdot n^k + i_{k-1} \cdot n^{k-1} + \dots + i_1 \cdot n + i_0.$$

The integer associated with the null word 0 (the word without symbols) is 0.

Numerical representation of Strings (Words)

Example

Let $A = \{s_1, s_2, s_3\}$ be an alphabet that consists of 3 symbols. The number associated with the word $s_2s_1s_1s_3s_1$ is

$$x = 2 \cdot 3^4 + 1 \cdot 3^3 + 1 \cdot 3^2 + 3 \cdot 3^1 + 1$$

= 2 \cdot 81 + 1 \cdot 27 + 1 \cdot 9 + 3 \cdot 3 + 1 = 208

Numerical representation of Strings (Words)

When an alphabet, say $A = \{a, b, c\}$ is used, we assume that the symbols a, b, c correspond to s_1, s_2, s_3 . Then, the number that represents the word w = baacb (which corresponds to $s_2s_1s_1s_3s_2$) is

$$2 \cdot 3^4 + 1 \cdot 3^3 + 1 \cdot 3^2 + 3 \cdot 3^1 + 2 = 209.$$

-Numerical representation of Strings (Words)

The representation of a word by a number is unique. This follows from the fact that we can retrieve the subscripts of the symbols from the numerical equivalent of the word. Recall that :

- R(x, y) is the remainder when x is divided by y.
- y|x is the predicate which is TRUE when y is a divisor of x.

—Numerical representation of Strings (Words)

Define the primitive recursive functions

$$R^{+}(x,y) = \begin{cases} R(x,y) & \text{if } \sim (y|x) \\ y & \text{otherwise,} \end{cases}$$
$$Q^{+}(x,y) = \begin{cases} \lfloor x/y \rfloor & \text{if } \sim (y|x) \\ \lfloor x/y \rfloor - 1 & \text{otherwise.} \end{cases}$$

Theorem

We have

$$x = Q^+(x, y) \cdot y + R^+(x, y)$$

and $0 < R^+(x, y) \leq y$.

-Numerical representation of Strings (Words)

Proof

The equality clearly holds as long as y is not a divisor of x. If y divides x we have:

$$\frac{x}{y} = \left\lfloor \frac{x}{y} \right\rfloor = \left(\left\lfloor \frac{x}{y} \right\rfloor \div 1 \right) + \frac{y}{y} = Q^+(x,y) + \frac{R^+(x,y)}{y}.$$

This differs from ordinary division with reminders in that the "remainders" are permitted to take values between 1 and y rather than between 0 and y - 1.

Numerical representation of Strings (Words)

Now, let
$$u_0 = x$$
 and $u_{m+1} = Q^+(u_m, n)$
Since we have

$$u_{0} = i_{k} \cdot n^{k} + i_{k-1} \cdot n^{k-1} + \dots + i_{1} \cdot n + i_{0}$$

$$u_{1} = i_{k} \cdot n^{k-1} + i_{k-1} \cdot n^{k-2} + \dots + i_{1}$$

$$\vdots$$

$$u_{k} = i_{k},$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ●

13/31

it follows that $i_m = R^+(u_m, n)$ for $0 \leq m \leq k$.

Numerical representation of Strings (Words)

To summarize the previous cases for computing $R^+(x, y)$ and $Q^+(x, y)$ we write:

y divides x	y does not divide x
$R^+(x,y) = y$	$R^+(x,y) = R(x,y)$
$Q^+(x,y) = \lfloor x/y \rfloor \div 1$	$Q^+(x,y) = \lfloor x/y \rfloor.$

-Numerical representation of Strings (Words)

Example

Let $S = \{s_1, s_2, s_3\}$ be an alphabet. Let us determine the word that has the numerical equivalent 208. We have $u_0 = 208$.

$$\begin{array}{rcl} i_0 &=& R^+(208,3) = 1 \text{ since } \sim 3|208 \text{ and } u_1 = \lfloor 208/3 \rfloor = 69 \\ i_1 &=& R^+(69,3) = 3 \text{ since } 3|69 \text{ and } u_2 = \lfloor 69/3 \rfloor \div 1 = 22 \\ i_2 &=& R^+(22,3) = 1 \text{ since } \sim 3|22 \text{ and } u_3 = \lfloor 22/3 \rfloor = 7 \\ i_3 &=& R^+(7,3) = 1 \text{ since } \sim 3|7 \text{ and } u_4 = \lfloor 7/3 \rfloor = 2 \\ i_4 &=& R^+(2,3) = 2 \end{array}$$

Thus, the word we sought is $x = s_2 s_1 s_1 s_3 s_1$.

 Numerical representation of Strings (Words)

To compute u_{m+1} as $u_{m+1} = Q^+(u_m, n)$ we use the function $g(m, n, x) = u_m$. This function is primitive recursive because

$$g(0, n, x) = x,$$

 $g(m+1, n, x) = Q^+(g(m, n, x), n).$

If we let $h(m, n, x) = R^+(g(m, n, x), n)$, then h is also primitive recursive and $i_m = h(m, n, x)$ for $0 \le m \le k$.

-Numerical representation of Strings (Words)

Definition

Given the alphabet A that consists of s_1, \ldots, s_n in this order, the word $w = s_{i_k} s_{i_{k-1}} \cdots s_{i_1} s_{i_0}$ is the base *n* notation for the number *x*, where

$$x = i_k \cdot n^k + i_{k-1} \cdot n^{k-1} + \dots + i_1 \cdot n + i_0.$$

Note that 0 is the base *n* notation for the null string for every *n*. This allows us to introduce the notion of *m*-ary partial function on A^* with values in A^* as being partially computable, or when is total, of being computable.

-Numerical representation of Strings (Words)

Subsets of A^* are languages over the alphabet A. By associating numbers with the words of A^* we can talk about recursive sets or *r.e.sets*.

Let A be an alphabet with |A| = n, say $A = \{s_1, \ldots, s_n\}$.

Definition

For $m \ge 1$ let

$$\operatorname{CONCAT}_n^{(m)} : (A^*)^m \longrightarrow A^*$$

be the function such that for u_1, \ldots, u_m , CONCAT^(m)_n (u_1, \ldots, u_m) is the string obtained by placing the strings u_1, \ldots, u_m one after another.

We have:

$$CONCAT_n^{(1)}(u) = u,$$

$$CONCAT_n^{(m+1)}(u_1, \dots, u_m, u_{m+1}) = zu_{m+1},$$
where $z = CONCAT_n^{(m)}(u_1, \dots, u_m).$

18 / 31

—Numerical representation of Strings (Words)

The superscript is usually omitted so can write:

$$CONCAT(s_2s_1, s_1s_1s_2) = s_2s_1s_1s_1s_2.$$

└─Numerical representation of Strings (Words)

A harmless ambiguity is to consider CONCAT as defining functions on \mathbb{N}^2 with values in \mathbb{N} . This would allow us to treat some of these functions as primitive recursive.

Note that:

- the string s_2s_1 in base 2 is $2 \cdot 2^1 + 1 = 5$;
- the string $s_1s_1s_2$ in base 2 is $1 \cdot 2^2 + 1 \cdot 2^1 + 2 = 8$;
- the string $s_2s_1s_1s_1s_2$ in base 2 is $2 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 2 = 48.$

This allows us to write

$$CONCAT_2(5, 8) = 48.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 つへの

Example

The length function f(u) = |u| defined on A^* and taking values in \mathbb{N} .

For each x, the number $\sum_{j=0}^{x} n^{j}$ has the base *n* representation s_{1}^{x+1} ; hence, this number is the smallest number whose base *n* representation contains x + 1 symbols.

Example

The function $\text{CONCAT}_n(u, v)$ is primitive recursive because

$$\text{CONCAT}_n(u, v) = u \cdot n^{|v|} + v.$$

Example

The function $\text{CONCAT}_n^{(m)}(u, v)$ is primitive recursive for each $m, n \ge 1$. This follows from

$$CONCAT_n^{(1)}(u) = u,$$

$$CONCAT_n^{(m+1)}(u_1, \dots, u_m, u_{m+1}) = zu_{m+1},$$
where $z = CONCAT_n^{(m)}(u_1, \dots, u_m).$

Example

The function $\text{RTEND}_n(w)$ which gives the rightmost symbol of a non-empty word w is primitive recursive because

$$\mathsf{RTEND}_n(w) = h(0, n, w),$$

where $h(0, n, x) = R^+(g(0, n, x), n)$, previously defined.

Example

The function $LTEND_n(w)$ which gives the leftmost symbol of a non-empty word w is primitive recursive because

LTEND_n(w) =
$$h(|w| - 1, n, w)$$
.

Example

The function $\text{RTRUNC}_n(w)$ which gives the result of removing the rightmost symbol from a given non-empty word is primitive recursive because

$$\mathsf{RTRUNC}_n(w) = g(1, n, w).$$

An alternative notation for $\text{RTRUNC}_n(w)$ is w^- .

Example

The function $LTRUNC_n(w)$ which gives the result of removing the leftmost symbol from a given non-empty word is primitive recursive because

$$LTRUNC_n(w) = w - i_k \cdot n^k$$
.

Next, we discuss a pair of functions UPCHANGE_{n,ℓ} and DOWNCHANGE_{n,ℓ} that can be used to change base. Let *A* be an alphabet with *n* symbols and *A'* be an alphabet with ℓ symbols, where $1 \le n < \ell$. A string that belongs to *A*^{*} also belongs to $(A')^*$. If $x \in \mathbb{N}$ and $w \in A^*$ is the word that represents *x* in basis *n*, then UPCHANGE_{n,ℓ}(*x*) is the number which *w* represents in basis ℓ .

Theorem

Let $0 < n < \ell$. Then the function UPCHANGE_{n, ℓ} and DOWNCHANGE_{n, ℓ} are computable.

Proof.

The next program computes UPCHANGE_{*n*, ℓ} by extracting the symbols of a word that the given number represents in basis *n* and uses them to compute the number that the given word represents in basis ℓ :

$$[A] IF X = 0 GOTO E$$
$$Z \leftarrow LTEND_n(X)$$
$$X \leftarrow LTRUNC_n(X)$$
$$Y \leftarrow \ell \cdot Y + Z$$
$$GOTO A$$

Proof cont'd

For DOWNCHANGE_{*n*, ℓ} the program will extract the symbols of the word that the given number represents in the base ℓ . These symbols will be added only if they belong to the smaller alphabet:

$$\begin{array}{ll} [A] & \text{IF } X = 0 \text{ GOTO } E \\ & Z \leftarrow \text{LTEND}(X) \\ & X \leftarrow \text{LTRUNC}(X) \\ & \text{IF } Z > n \text{ GOTO } A \\ & Y \leftarrow n \cdot Y + Z \\ & \text{GOTO } A \end{array}$$

イロト 不同 とうほう 不同 とう