THEORY OF COMPUTATION Calculations on Strings - 17

Prof. Dan A. Simovici

UMB

1 / 31

 200

 $A \equiv 1 + 4 \pmod{4} \Rightarrow A \equiv 1 + 4 \equiv 1 + \cdots \equiv 1$

 L_{Outline} L_{Outline} L_{Outline}

1 [Recapitulation](#page-2-0)

2 [Numerical representation of Strings \(Words\)](#page-6-0)

3 [A List of Primitive Recursive Functions](#page-20-0)

KO KARK KEK KEK EL YAN 2 / 31

We seek to extend computations from numbers to words on certain alphabets.

- An *alphabet* is a finite non-empty set of *symbols*.
- A word is an *n*-tuple of symbols $w = (a_1, a_2, \ldots, a_n)$ written as $a_1 a_2 \cdots a_n$. Here *n* is the *length* of *w* denoted by $n = |w|$.
- If $|A| = m$, there are m^n words of length n.
- \blacksquare There is a unique word of length 0 denoted by 0.

L [Recapitulation](#page-2-0)

- The set of words over the alphabet A is denoted by A^* .
- A *language* over the alphabet A is any subset of A^* .
- \blacksquare We do not distinguish between the symbol a and the word a.
- If u, v are words, we write uv for the word obtained by placing v after u.

Example

If
$$
A = \{a, b, c\}
$$
, $u = bab$, $v = caba$, then

 $uv = babcaba$ and $vu = cababab$.

We have $u0 = 0u = u$ for every $u \in A^*$.

L [Recapitulation](#page-2-0)

- The set of words over the alphabet A is denoted by A^* .
- A *language* over the alphabet A is any subset of A^* .
- \blacksquare We do not distinguish between the symbol a and the word a.
- If u, v are words, we write uv for the word obtained by placing v after u.

Example

If
$$
A = \{a, b, c\}
$$
, $u = bab$, $v = caba$, then

 $uv = h$ ahcaba and $vu =$ cababab.

 L [Recapitulation](#page-2-0)

Word product is *associative*, that is,

$$
u(vw)=(uv)w
$$

for $u, v, w \in A^*$. If either $uv = uw$ or $vu = wu$, then $v = w$. If u is a word and $n > 0$ we write

$$
u^n = \underbrace{uu\cdots u}_{n}
$$

6 / 31

KO KARK KEK KEK EL YAN

and $u^0 = \lambda$.

Let $A = \{s_1, \ldots, s_n\}$ be an alphabet that consists of *n* symbols and let

$$
w = s_{i_k} s_{i_{k-1}} \cdots s_{i_1} s_{i_0}
$$

be a word in A^* . The integer associated with w is

$$
x=i_k\cdot n^k+i_{k-1}\cdot n^{k-1}+\cdots+i_1\cdot n+i_0.
$$

The integer associated with the null word 0 (the word without symbols) is 0.

Example

Let $A = \{s_1, s_2, s_3\}$ be an alphabet that consists of 3 symbols. The number associated with the word $s_2s_1s_1s_3s_1$ is

$$
x = 2 \cdot 3^4 + 1 \cdot 3^3 + 1 \cdot 3^2 + 3 \cdot 3^1 + 1
$$

= 2 \cdot 81 + 1 \cdot 27 + 1 \cdot 9 + 3 \cdot 3 + 1 = 208.

When an alphabet, say $A = \{a, b, c\}$ is used, we assume that the symbols a, b, c correspond to s_1, s_2, s_3 . Then, the number that represents the word $w = baacb$ (which corresponds to $s_2s_1s_1s_3s_2$) is

$$
2 \cdot 3^4 + 1 \cdot 3^3 + 1 \cdot 3^2 + 3 \cdot 3^1 + 2 = 209.
$$

The representation of a word by a number is unique. This follows from the fact that we can retrieve the subscripts of the symbols from the numerical equivalent of the word. Recall that :

- R(x, y) is the remainder when x is divided by y.
- $y|x|$ is the predicate which is TRUE when y is a divisor of x.

Define the primitive recursive functions

$$
R^{+}(x,y) = \begin{cases} R(x,y) & \text{if } \sim (y|x) \\ y & \text{otherwise,} \end{cases}
$$

$$
Q^{+}(x,y) = \begin{cases} \lfloor x/y \rfloor & \text{if } \sim (y|x) \\ \lfloor x/y \rfloor - 1 & \text{otherwise.} \end{cases}
$$

Theorem

We have

$$
x = Q^+(x, y) \cdot y + R^+(x, y)
$$

and $0 < R^+(x, y) \le y$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @ 11 / 31

Proof

The equality clearly holds as long as y is not a divisor of x . If y divides x we have:

$$
\frac{x}{y} = \left\lfloor \frac{x}{y} \right\rfloor = \left(\left\lfloor \frac{x}{y} \right\rfloor - 1 \right) + \frac{y}{y} = Q^+(x, y) + \frac{R^+(x, y)}{y}.
$$

This differs from ordinary division with reminders in that the "remainders" are permitted to take values between 1 and γ rather than between 0 and $y - 1$.

Now, let
$$
u_0 = x
$$
 and $u_{m+1} = Q^+(u_m, n)$
Since we have

$$
u_0 = i_k \cdot n^k + i_{k-1} \cdot n^{k-1} + \dots + i_1 \cdot n + i_0
$$

\n
$$
u_1 = i_k \cdot n^{k-1} + i_{k-1} \cdot n^{k-2} + \dots + i_1
$$

\n
$$
\vdots
$$

\n
$$
u_k = i_k,
$$

13 / 31

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

it follows that $i_m = R^+(u_m, n)$ for $0 \leqslant m \leqslant k$.

To summarize the previous cases for computing $R^+(x,y)$ and $Q^+(x, y)$ we write:

Example

Let $S = \{s_1, s_2, s_3\}$ be an alphabet. Let us determine the word that has the numerical equivalent 208. We have $u_0 = 208$.

$$
i_0 = R^+(208,3) = 1 \text{ since } \sim 3|208 \text{ and } u_1 = |208/3| = 69
$$

\n
$$
i_1 = R^+(69,3) = 3 \text{ since } 3|69 \text{ and } u_2 = |69/3| \div 1 = 22
$$

\n
$$
i_2 = R^+(22,3) = 1 \text{ since } \sim 3|22 \text{ and } u_3 = |22/3| = 7
$$

\n
$$
i_3 = R^+(7,3) = 1 \text{ since } \sim 3|7 \text{ and } u_4 = |7/3| = 2
$$

\n
$$
i_4 = R^+(2,3) = 2
$$

15 / 31

KO KARK KEK KEK EL YAN

Thus, the word we sought is $x = s_2s_1s_1s_3s_1$.

To compute u_{m+1} as $u_{m+1} = Q^+(u_m, n)$ we use the function $g(m, n, x) = u_m$. This function is primitive recursive because

$$
g(0, n, x) = x,g(m+1, n, x) = Q^{+}(g(m, n, x), n).
$$

If we let $h(m, n, x) = R^+(g(m, n, x), n)$, then h is also primitive recursive and $i_m = h(m, n, x)$ for $0 \le m \le k$.

Definition

Given the alphabet A that consists of s_1, \ldots, s_n in this order, the word $w = s_{i_k} s_{i_{k-1}} \cdots s_{i_1} s_{i_0}$ is the base *n* notation for the number x , where

$$
x=i_k\cdot n^k+i_{k-1}\cdot n^{k-1}+\cdots+i_1\cdot n+i_0.
$$

Note that 0 is the base n notation for the null string for every n. This allows us to introduce the notion of m-ary partial function on A^* with values in A^* as being partially computable, or when is total, of being computable.

Subsets of A^* are languages over the alphabet A . By associating numbers with the words of A^* we can talk about recursive sets or r.e.sets.

Let A be an alphabet with $|A| = n$, say $A = \{s_1, \ldots, s_n\}$.

Definition

For $m \geqslant 1$ let

$$
CONCAT_n^{(m)}:(A^*)^m\longrightarrow A*
$$

be the function such that for u_1,\ldots,u_m , $\mathsf{CONCAT}_n^{(m)}(u_1,\ldots,u_m)$ is the string obtained by placing the strings u_1, \ldots, u_m one after another.

We have:

$$
CONCATn(11)(u) = u,
$$

\n
$$
CONCATn(m+1)(u1,..., um, um+1) = zum+1,
$$

\nwhere $z = CONCATn(m)(u1,..., um).$

The superscript is usually omitted so can write:

$$
\mathsf{CONCAT}(s_2s_1, s_1s_1s_2) = s_2s_1s_1s_1s_2.
$$

A harmless ambiguity is to consider CONCAT as defining functions on \mathbb{N}^2 with values in \mathbb{N} . This would allow us to treat some of these functions as primitive recursive.

Note that:

- the string s_2s_1 in base 2 is $2\cdot 2^1+1=5;$
- the string $s_1s_1s_2$ in base 2 is $1 \cdot 2^2 + 1 \cdot 2^1 + 2 = 8$;
- the string $s_2s_1s_1s_2$ in base 2 is $2 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 2 = 48.$

This allows us to write

$$
CONCAT_2(5,8) = 48.
$$

20 / 31

KO KAP KEKKEK E YAN

Example

The length function $f(u) = |u|$ defined on A^* and taking values in N.

For each x, the number $\sum_{j=0}^{\mathsf{x}} n^j$ has the base n representation s_1^{x+1} ; hence, this number is the smallest number whose base n representation contains $x + 1$ symbols.

Example

The function CONCAT_n (u, v) is primitive recursive because

$$
CONCAT_n(u, v) = u \cdot n^{|v|} + v.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @ 22 / 31

Example

The function $\mathsf{CONCAT}_n^{(m)}(u,v)$ is primitive recursive for each $m, n \geq 1$. This follows from

$$
CONCAT_n^{(1)}(u) = u,
$$

\n
$$
CONCAT_n^{(m+1)}(u_1, \ldots, u_m, u_{m+1}) = zu_{m+1},
$$

\nwhere $z = CONCAT_n^{(m)}(u_1, \ldots, u_m)$.

23 / 31

Example

The function $RTEND_n(w)$ which gives the rightmost symbol of a non-empty word w is primitive recursive because

$$
\mathsf{RTEND}_n(w) = h(0, n, w),
$$

where $h(0, n, x) = R^+(g(0, n, x), n)$, previously defined.

Example

The function $LTEND_n(w)$ which gives the leftmost symbol of a non-empty word w is primitive recursive because

$$
LTEND_n(w) = h(|w|-1, n, w).
$$

Example

The function $\text{RTRUNC}_n(w)$ which gives the result of removing the rightmost symbol from a given non-empty word is primitive recursive because

$$
RTRUNC_n(w) = g(1, n, w).
$$

An alternative notation for RTRUNC_n(w) is w⁻.

Example

The function $LTRUNC_n(w)$ which gives the result of removing the leftmost symbol from a given non-empty word is primitive recursive because

$$
LTRUNC_n(w) = w - i_k \cdot n^k.
$$

Next, we discuss a pair of functions UPCHANGE $_{n,\ell}$ and DOWNCHANGE $_{n,\ell}$ that can be used to change base. Let A be an alphabet with n symbols and A' be an alphabet with ℓ symbols, where $1 \leqslant n < \ell$. A string that belongs to A^* also belongs to $(A')^*$. If $x \in \mathbb{N}$ and $w \in A^*$ is the word that represents x in basis n, then UPCHANGE $n_{\ell}(x)$ is the number which w represents in basis ℓ .

Theorem

Let $0 < n < \ell$. Then the function UPCHANGE_{n. ℓ} and $DOWNCHANGE_{n,\ell}$ are computable.

> メロトメ 御 トメ 君 トメ 君 トッ 君 OQ 29 / 31

Proof.

The next program computes UPCHANGE n, ℓ by extracting the symbols of a word that the given number represents in basis n and uses them to compute the number that the given word represents in basis ℓ:

$$
[A] \quad \text{IF } X = 0 \text{ GOTO } E
$$
\n
$$
Z \leftarrow \text{LTEND}_n(X)
$$
\n
$$
X \leftarrow \text{LTRUNC}_n(X)
$$
\n
$$
Y \leftarrow \ell \cdot Y + Z
$$
\n
$$
\text{GOTO } A
$$

30 / 31

 Ω

K ロ ▶ K 御 ▶ K ヨ ▶ K ヨ ▶

Proof cont'd

For DOWNCHANGE $_{n,\ell}$ the program will extract the symbols of the word that the given number represents in the base ℓ . These symbols will be added only if they belong to the smaller alphabet:

$$
[A] \quad \text{IF } X = 0 \text{ GOTO } E
$$
\n
$$
Z \leftarrow \text{LTEMD}(X)
$$
\n
$$
X \leftarrow \text{LTRUNC}(X)
$$
\n
$$
\text{IF } Z > n \text{ GOTO } A
$$
\n
$$
Y \leftarrow n \cdot Y + Z
$$
\n
$$
\text{GOTO } A
$$