
THEORY OF COMPUTATION Calculations on Strings - 17

THEORY OF COMPUTATION
Calculations on Strings - 17

Prof. Dan A. Simovici

UMB

1 / 31



THEORY OF COMPUTATION Calculations on Strings - 17

Outline

1 Recapitulation

2 Numerical representation of Strings (Words)

3 A List of Primitive Recursive Functions

2 / 31



THEORY OF COMPUTATION Calculations on Strings - 17

Recapitulation

We seek to extend computations from numbers to words on certain
alphabets.

An alphabet is a finite non-empty set of symbols.

A word is an n-tuple of symbols w = (a1, a2, . . . , an) written
as a1a2 · · · an. Here n is the length of w denoted by n = |w |.
If |A| = m, there are mn words of length n.

There is a unique word of length 0 denoted by 0.

3 / 31



THEORY OF COMPUTATION Calculations on Strings - 17

Recapitulation

The set of words over the alphabet A is denoted by A∗.

A language over the alphabet A is any subset of A∗.

We do not distinguish between the symbol a and the word a.

If u, v are words, we write uv for the word obtained by
placing v after u.

Example

If A = {a, b, c}, u = bab, v = caba, then

uv = babcaba and vu = cababab.

We have u0 = 0u = u for every u ∈ A∗.

4 / 31



THEORY OF COMPUTATION Calculations on Strings - 17

Recapitulation

The set of words over the alphabet A is denoted by A∗.

A language over the alphabet A is any subset of A∗.

We do not distinguish between the symbol a and the word a.

If u, v are words, we write uv for the word obtained by
placing v after u.

Example

If A = {a, b, c}, u = bab, v = caba, then

uv = babcaba and vu = cababab.

5 / 31



THEORY OF COMPUTATION Calculations on Strings - 17

Recapitulation

Word product is associative, that is,

u(vw) = (uv)w

for u, v ,w ∈ A∗.
If either uv = uw or vu = wu, then v = w .
If u is a word and n > 0 we write

un = uu · · · u︸ ︷︷ ︸
n

and u0 = λ.

6 / 31



THEORY OF COMPUTATION Calculations on Strings - 17

Numerical representation of Strings (Words)

Let A = {s1, . . . , sn} be an alphabet that consists of n symbols and
let

w = sik sik−1
· · · si1si0

be a word in A∗. The integer associated with w is

x = ik · nk + ik−1 · nk−1 + · · ·+ i1 · n + i0.

The integer associated with the null word 0 (the word without
symbols) is 0.

7 / 31



THEORY OF COMPUTATION Calculations on Strings - 17

Numerical representation of Strings (Words)

Example

Let A = {s1, s2, s3} be an alphabet that consists of 3 symbols.
The number associated with the word s2s1s1s3s1 is

x = 2 · 34 + 1 · 33 + 1 · 32 + 3 · 31 + 1

= 2 · 81 + 1 · 27 + 1 · 9 + 3 · 3 + 1 = 208.

8 / 31



THEORY OF COMPUTATION Calculations on Strings - 17

Numerical representation of Strings (Words)

When an alphabet, say A = {a, b, c} is used, we assume that the
symbols a, b, c correspond to s1, s2, s3. Then, the number that
represents the word w = baacb (which corresponds to s2s1s1s3s2) is

2 · 34 + 1 · 33 + 1 · 32 + 3 · 31 + 2 = 209.

9 / 31



THEORY OF COMPUTATION Calculations on Strings - 17

Numerical representation of Strings (Words)

The representation of a word by a number is unique. This follows
from the fact that we can retrieve the subscripts of the symbols
from the numerical equivalent of the word.
Recall that :

R(x , y) is the remainder when x is divided by y .

y |x is the predicate which is TRUE when y is a divisor of x .

10 / 31



THEORY OF COMPUTATION Calculations on Strings - 17

Numerical representation of Strings (Words)

Define the primitive recursive functions

R+(x , y) =

{
R(x , y) if ∼ (y |x)
y otherwise,

Q+(x , y) =

{
⌊x/y⌋ if ∼ (y |x)
⌊x/y⌋ ·− 1 otherwise.

Theorem

We have
x = Q+(x , y) · y + R+(x , y)

and 0 < R+(x , y) ⩽ y .

11 / 31



THEORY OF COMPUTATION Calculations on Strings - 17

Numerical representation of Strings (Words)

Proof

The equality clearly holds as long as y is not a divisor of x .
If y divides x we have:

x

y
=

⌊
x

y

⌋
=

(⌊
x

y

⌋
·− 1

)
+

y

y
= Q+(x , y) +

R+(x , y)

y
.

This differs from ordinary division with reminders in that the
“remainders” are permitted to take values between 1 and y rather
than between 0 and y − 1.

12 / 31



THEORY OF COMPUTATION Calculations on Strings - 17

Numerical representation of Strings (Words)

Now, let u0 = x and um+1 = Q+(um, n)
Since we have

u0 = ik · nk + ik−1 · nk−1 + · · ·+ i1 · n + i0

u1 = ik · nk−1 + ik−1 · nk−2 + · · ·+ i1
...

uk = ik ,

it follows that im = R+(um, n) for 0 ⩽ m ⩽ k .

13 / 31



THEORY OF COMPUTATION Calculations on Strings - 17

Numerical representation of Strings (Words)

To summarize the previous cases for computing R+(x , y) and
Q+(x , y) we write:

y divides x y does not divide x

R+(x , y) = y R+(x , y) = R(x , y)
Q+(x , y) = ⌊x/y⌋ ·− 1 Q+(x , y) = ⌊x/y⌋.

14 / 31



THEORY OF COMPUTATION Calculations on Strings - 17

Numerical representation of Strings (Words)

Example

Let S = {s1, s2, s3} be an alphabet. Let us determine the word
that has the numerical equivalent 208. We have u0 = 208.

i0 = R+(208, 3) = 1 since ∼ 3|208 and u1 = ⌊208/3⌋ = 69

i1 = R+(69, 3) = 3 since 3|69 and u2 = ⌊69/3⌋ ·− 1 = 22

i2 = R+(22, 3) = 1 since ∼ 3|22 and u3 = ⌊22/3⌋ = 7

i3 = R+(7, 3) = 1 since ∼ 3|7 and u4 = ⌊7/3⌋ = 2

i4 = R+(2, 3) = 2

Thus, the word we sought is x = s2s1s1s3s1.

15 / 31



THEORY OF COMPUTATION Calculations on Strings - 17

Numerical representation of Strings (Words)

To compute um+1 as um+1 = Q+(um, n) we use the function
g(m, n, x) = um. This function is primitive recursive because

g(0, n, x) = x ,

g(m + 1, n, x) = Q+(g(m, n, x), n).

If we let h(m, n, x) = R+(g(m, n, x), n), then h is also primitive
recursive and im = h(m, n, x) for 0 ⩽ m ⩽ k.

16 / 31



THEORY OF COMPUTATION Calculations on Strings - 17

Numerical representation of Strings (Words)

Definition

Given the alphabet A that consists of s1, . . . , sn in this order, the
word w = sik sik−1

· · · si1si0 is the base n notation for the number x ,
where

x = ik · nk + ik−1 · nk−1 + · · ·+ i1 · n + i0.

Note that 0 is the base n notation for the null string for every n.
This allows us to introduce the notion of m-ary partial function on
A∗ with values in A∗ as being partially computable, or when is
total, of being computable.

17 / 31



THEORY OF COMPUTATION Calculations on Strings - 17

Numerical representation of Strings (Words)

Subsets of A∗ are languages over the alphabet A. By associating
numbers with the words of A∗ we can talk about recursive sets or
r .e.sets.
Let A be an alphabet with |A| = n, say A = {s1, . . . , sn}.

Definition

For m ⩾ 1 let
CONCAT

(m)
n : (A∗)m −→ A∗

be the function such that for u1, . . . , um, CONCAT
(m)
n (u1, . . . , um)

is the string obtained by placing the strings u1, . . . , um one after
another.
We have:

CONCAT
(1)
n (u) = u,

CONCAT
(m+1)
n (u1, . . . , um, um+1) = zum+1,

where z = CONCAT
(m)
n (u1, . . . , um). 18 / 31



THEORY OF COMPUTATION Calculations on Strings - 17

Numerical representation of Strings (Words)

The superscript is usually omitted so can write:

CONCAT(s2s1, s1s1s2) = s2s1s1s1s2.

19 / 31



THEORY OF COMPUTATION Calculations on Strings - 17

Numerical representation of Strings (Words)

A harmless ambiguity is to consider CONCAT as defining functions
on N2 with values in N. This would allow us to treat some of these
functions as primitive recursive.
Note that:

the string s2s1 in base 2 is 2 · 21 + 1 = 5;

the string s1s1s2 in base 2 is 1 · 22 + 1 · 21 + 2 = 8;

the string s2s1s1s1s2 in base 2 is
2 · 24 + 1 · 23 + 1 · 22 + 1 · 21 + 2 = 48.

This allows us to write

CONCAT2(5, 8) = 48.

20 / 31



THEORY OF COMPUTATION Calculations on Strings - 17

A List of Primitive Recursive Functions

Example

The length function f (u) = |u| defined on A∗ and taking values in
N.
For each x , the number

∑x
j=0 n

j has the base n representation

sx+1
1 ; hence, this number is the smallest number whose base n
representation contains x + 1 symbols.

21 / 31



THEORY OF COMPUTATION Calculations on Strings - 17

A List of Primitive Recursive Functions

Example

The function CONCATn(u, v) is primitive recursive because

CONCATn(u, v) = u · n|v | + v .

22 / 31



THEORY OF COMPUTATION Calculations on Strings - 17

A List of Primitive Recursive Functions

Example

The function CONCAT
(m)
n (u, v) is primitive recursive for each

m, n ⩾ 1. This follows from

CONCAT
(1)
n (u) = u,

CONCAT
(m+1)
n (u1, . . . , um, um+1) = zum+1,

where z = CONCAT
(m)
n (u1, . . . , um).

23 / 31



THEORY OF COMPUTATION Calculations on Strings - 17

A List of Primitive Recursive Functions

Example

The function RTENDn(w) which gives the rightmost symbol of a
non-empty word w is primitive recursive because

RTENDn(w) = h(0, n,w),

where h(0, n, x) = R+(g(0, n, x), n), previously defined.

24 / 31



THEORY OF COMPUTATION Calculations on Strings - 17

A List of Primitive Recursive Functions

Example

The function LTENDn(w) which gives the leftmost symbol of a
non-empty word w is primitive recursive because

LTENDn(w) = h(|w | − 1, n,w).

25 / 31



THEORY OF COMPUTATION Calculations on Strings - 17

A List of Primitive Recursive Functions

Example

The function RTRUNCn(w) which gives the result of removing the
rightmost symbol from a given non-empty word is primitive
recursive because

RTRUNCn(w) = g(1, n,w).

An alternative notation for RTRUNCn(w) is w−.

26 / 31



THEORY OF COMPUTATION Calculations on Strings - 17

A List of Primitive Recursive Functions

Example

The function LTRUNCn(w) which gives the result of removing the
leftmost symbol from a given non-empty word is primitive recursive
because

LTRUNCn(w) = w − ik · nk .

27 / 31



THEORY OF COMPUTATION Calculations on Strings - 17

A List of Primitive Recursive Functions

Next, we discuss a pair of functions UPCHANGEn,ℓ and
DOWNCHANGEn,ℓ that can be used to change base.
Let A be an alphabet with n symbols and A′ be an alphabet with ℓ
symbols, where 1 ⩽ n < ℓ. A string that belongs to A∗ also
belongs to (A′)∗.
If x ∈ N and w ∈ A∗ is the word that represents x in basis n, then
UPCHANGEn,ℓ(x) is the number which w represents in basis ℓ.

28 / 31



THEORY OF COMPUTATION Calculations on Strings - 17

A List of Primitive Recursive Functions

Theorem

Let 0 < n < ℓ. Then the function UPCHANGEn,ℓ and
DOWNCHANGEn,ℓ are computable.

29 / 31



THEORY OF COMPUTATION Calculations on Strings - 17

A List of Primitive Recursive Functions

Proof.

The next program computes UPCHANGEn,ℓ by extracting the
symbols of a word that the given number represents in basis n and
uses them to compute the number that the given word represents
in basis ℓ:

[A] IF X = 0 GOTO E
Z ← LTENDn(X )
X ← LTRUNCn(X )
Y ← ℓ · Y + Z
GOTO A

30 / 31



THEORY OF COMPUTATION Calculations on Strings - 17

A List of Primitive Recursive Functions

Proof cont’d

For DOWNCHANGEn,ℓ the program will extract the symbols of
the word that the given number represents in the base ℓ. These
symbols will be added only if they belong to the smaller alphabet:

[A] IF X = 0 GOTO E
Z ← LTEND(X )
X ← LTRUNC(X )
IF Z > n GOTO A
Y ← n · Y + Z
GOTO A

31 / 31


	Outline
	Recapitulation
	Numerical representation of Strings (Words)
	A List of Primitive Recursive Functions

