
THEORY OF COMPUTATION A Language for String Computations - 18

THEORY OF COMPUTATION
A Language for String Computations - 18

Prof. Dan A. Simovici

UMB

1 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Outline

1 Macros for Use in Sn

2 Two Important Examples

3 The Languages S and Sn

4 Post-Turing Programs

5 Simulation of Sn in T

6 Simulating Instructions in Sn by Post-Turing Programs

7 Simulation of S in T

2 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Outline

We introduce for each n > 0 a programming language Sn designed
for string calculations on an alphabet with n symbols.

3 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Outline

The instructions of Sn are:

V ← σV place symbol σ at the left of V

V ← V− delete the final symbol of the string
that is the value of V ; if the
value is 0 leave it unchanged

V ← V do nothing instruction

IF V ENDS σ GOTO L if the value of V
ends in σ then execute the first instruction
with label L; otherwise proceed with
next instruction

4 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Outline

Example

Suppose that the alphabet A consists of the symbols s1, s2, s3 and
x = s3s2s2s1 is a string of length 4 on the alphabel V . The effect
of the above instructions applied to x is shown below:

Instr. Effect
x ← s2x s2s3s2s2s1
x ← x− s3s2s2
x ← x s3s2s2s1
IF x ENDS s2 GOTO L no effect
IF x ENDS s1 GOTO L jump toL

5 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Outline

Also the instructions of Sn refer to strings, we can also think of
them as referring to numbers that the strings represent.

Example

The numerical effect of X ← siX in the n-symbol alphabet
{s1, . . . , sn} is to replace numerical value x by i · n|x | + x .

6 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Macros for Use in Sn

The macro
IF V ̸= 0 GOTO L

has the expression

IF V ENDS s1 GOTO L
IF V ENDS s2 GOTO L
...
IF V ENDS sn GOTO L

7 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Macros for Use in Sn

The macro V ← 0 has the expansion

[A] V ← V−

IF V ̸= 0 GOTO A

8 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Macros for Use in Sn

The macro
GOTO L

has the expansion

Z ← 0
Z ← s1Z
IF Z ENDS s1 GOTO L

9 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Macros for Use in Sn

The block of instructions

IF V ENDS s1 GOTO B1

IF V ENDS s2 GOTO B2

...
IF V ENDS sn GOTO Bn

is abbreviated as

IF V ENDS si GOTO Bi (1 ⩽ i ⩽ n)

10 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Macros for Use in Sn

The macro V ′ ← V for non-destructive copying of V into V ′ has
the expansion:

Z ← 0
V ′ ← 0

[A] IF V ENDS si GOTO Bi (1 ⩽ i ⩽ n)
GOTO C

[Bi] V ← V−(This group of 4 repeated for 1 ⩽ i ⩽ n)
V ′ ← siV

′

Z ← siZ
GOTO A(end group)

[C] IF Z ENDS si GOTO Di (1 ⩽ i ⩽ n)
GOTO E

[Di] Z ← Z−

V ← siV
GOTO C

11 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Two Important Examples

The function x + 1 is computable in Sn, as shown by the following
flowchart.

begin TEST X

6

?

-

Y ← s1Y

X ← X−

Y ← s1Y

x ends in sn

- END

END

x = 0

6
Carry

propagates

x ends in si

where i < n

X ← X−

Y ← si+1Y

?

TEST X

x = 0

X ← X−

Y ← siY

6

?x ends si for 1 ⩽ i ⩽ n

-

-

12 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Two Important Examples

Example

Start with the string s = s2s1s1s3. The numerical values is 208.
Strings produced by the algorithm are:

X Y

s2s1s1s3 s1
s2s1s1 s2s1
s2s1 s1s2s1
s2 s2s1s2s1
0

The initial value of X is 2 · 33 + 1 · 32 + 1 · 3 + 3 = 69; the final
value of Y is 2 · 33 + 1 · 32 + 2 · 3 + 1 = 70.

13 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Two Important Examples

The previous flowchart corresponds to the program

[B] IF X ENDS s1 GOTO Ai (1 ⩽ i ⩽ n)
Y ← s1Y
GOTO E

[Ai] X ← X− (This group of 3 repeated for 1 ⩽ i ⩽ n)
Y ← si+1Y
GOTO C

[An] X ← X−

Y ← s1Y
GOTO B

[C] IF X ENDS si GOTO Di (1 ⩽ i ⩽ n)
GOTO E

[Di] X ← X− (This group of 3 repeated for 1 ⩽ i ⩽ n)
Y ← siY
GOTO C

14 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Two Important Examples

The function x ·− 1 is computed by the following flowchart:

BEGIN - TEST X

6

6
Y ← snY X = 0 ?� -

no yes

END

-

-

END

END

x = 0

X ← X−

X ← X−

Y ← si−1Y

Carry is absorbed

TEST X

?

?
x = 0

?

X ← X−

Y ← siY

x ends in si

�6

-
6

x ends in s1

x ends in si , i > 1

carry is propagated

?

15 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Two Important Examples

Example

Let s = s3s2s1s1 having the numerical equivalent
3 · 33 + 2 · 32 + 1 · 31 + 1 = 103.
The successive values of X and Y are:

X Y

s3s2s1s1 0
s3s2s1 s3(carry is propagated)
s3s2 s3s3
s3 s1s3s3(carry is absorbed)
0 s3s1s3s3

The numerical equivalent of s3s1s3s3 is 102.

16 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Two Important Examples

The previous flowchart corresponds to the program

[B] IF X ENDS si GOTO A (This is repeated for 1 ⩽ i ⩽ n)
GOTO E

[Ai] X ← X− (This group of 3 repeated for 1 ⩽ i ⩽ n)
Y ← si−1Y
GOTO C

[A1] X ← X−

IF X ̸= 0 GOTO C2
GOTO E

[C2] Y ← snY
GOTO B

[C] IF X ENDS si GOTO Di (This group of 2 repeated for 1 ⩽ i ⩽ n)
GOTO E

[Di] X ← X− (This group of 3 repeated for 1 ⩽ i ⩽ n)
Y ← siY
GOTO C

17 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

The Languages S and Sn

In either S or Sn computations are really dealing with numbers and
strings on an n letter alphabets are objects being used to represent
numbers in the base n.

Theorem

A function f is partially computable if and only if it is partially
computable in S1.

18 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

The Languages S and Sn

Proof.

Note that the languages S and S1 are the same. Indeed, the effect
of the S1 instructions

V ← s1V and V ← V−

is identical to the effect of the S instructions

V ← V + 1 and V ← V − 1.

The condition V ENDS s1 in S1 is equivalent to V ̸= 0 in S.

Thus, the results involving Sn can be specialized to n = 1 to give
results about S.

19 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

The Languages S and Sn

Theorem

If a function is partially computable, then it also partially
computable in Sn for each n.

Proof.

Suppose f is computed by P in S. P is translated into a program
in Sn by replacing instructions in P by a macro in Sn:

V ← V + 1 is replaced by the macro V ← V + 1 in Sn;
V ← V − 1 is replaced by the macro V ← V ·− 1 in Sn;
IF V ̸= 0 GOTO L by the macro IF V ̸= 0 GOTO L in Sn.

20 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Post-Turing Programs

T is another programming language for string manipulation named
the Post-Turing language.

there is a unique variable and its content is placed on a tape;

the tape is divided into cells; each cell is able to contain a
symbol of the alphabet A = {s1, . . . , sn};
there is a special symbol s0 (also denoted by B and referred to
as blank);

only one symbol is observed at any given time.

21 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Post-Turing Programs

All but a finite number of cells contain B. The content of the
tape is shown by exhibiting a finite portion of the tape
containing the non-blank symbols.

At any given moment only one tape symbol is being scanned
by a head. This is indicated by an arrow.

The head can move one square to the left or to the right of
the square that is currently scanned.

22 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Post-Turing Programs

· · · B B a2 B a3 a1 B · · ·

This is indicated by writing

a2 B a3 a1
↑

23 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Post-Turing Programs

There are four types of instructions in the Post-Turing Language:

PRINTσ replace the symbol on the square being scanned by σ

IF σ GOTO L goto the first instruction labeled L if the
symbol currently scanned is σ; otherwise
continue to the next instruction.

RIGHT scan the square to the right of the current square.

LEFT scan the square to the left of the current square.

24 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Post-Turing Programs

To compute a partial function f (x1, . . . , xm) of m variables we start
with the initial tape configuration

B x1 B x2 · · · xm
↑

The inputs are separated by single blanks, and the symbol initially
scanned is the blank immediately at left of x1.

25 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Post-Turing Programs

Example

If n = 1, the alphabet is {s1}. We want to compute a function
f (x1, x2) and the initial values are x1 = s1s1, x2 = s1. Then, the
initial configuration is:

B s1 s1 B s1
↑

26 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Post-Turing Programs

Example

n = 2, x1 = s1s2, x2 = s2s1. The initial configuration is

B s1 s2 B s2 s1
↑

27 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Post-Turing Programs

Example

Suppose n = 2, x1 = 0, x2 = s1s1, x3 = s2. The tape configuration
is

B B s1 s1 B s2
↑

28 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Post-Turing Programs

Example

For n = 2, x1 = s1s2, x2 = s2s1, x3 = 0 the tape configuration is
initially

B s1 s2 B s2 s1 B
↑

The number of arguments placed on tape must be provided
externally.

29 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Post-Turing Programs

An example of a Post-Turing program that begins with the input x
and outputs s2s1x is

PRINTs1
LEFT
PRINTs2
LEFT

The program starts with
B x
↑

and ends with
B s2 s1 x
↑

30 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Post-Turing Programs

Example

Suppose now that the alphabet is {s1, s2, s3} and let
x ∈ {s1, s2, s3}∗. Beginning with

B x
↑

the program needs to halt with the tape configuration

B x s1 s1
↑

The computation proceeds by first moving right until the blank to
the right of x is located. Then, s1 is printed twice and then the
computation moves to the left until first B is located.

31 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Post-Turing Programs

Example cont’d

Example

[A] RIGHT
IF s1 GOTO A
IF s2 GOTO A
IF s3 GOTO A
PRINTs1
RIGHT
PRINTs1

[C] LEFT
IF s1 GOTO C
IF s2 GOTO C
IF s3 GOTO C

32 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Post-Turing Programs

Example

The alphabet is {s1, s2} and the next program aims to erase all
occurrences of s2 in the input string (that is, replace s2 by B).
For the purpose of reading output values from the tape, additional
Bs are ignored.

33 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Post-Turing Programs

Example cont’d

Example

[C] RIGHT
IF B GOTO E
IF s2 GOTO A
IF s1 GOTO C

[A] PRINTB
IF B GOTO C

The function computed by this program satisfies

f (s2s1s2) = s1,

f (s1s2s1) = s1s1.

34 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Post-Turing Programs

Example

The previous program achieves the following computation:
B s1 s2 s1
↑
B s1 s2 s1
↑

B s1 s2 s1
↑

B s1 B s1
↑

ending with Bs1Bs1B on the tape.

35 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Post-Turing Programs

Exercise in class!
The next program uses three symbols: s1 from the input alphabet
{s1}, B, and a marker symbol M. Beginning with the tape
B u
↑

where u is a string in {s1}∗, the program terminates with a tape
B u B u

↑

36 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Post-Turing Programs

Definition

A program P in T computes a function f (x1, . . . , xm) on the
alphabet {s1, . . . , sn} if when started with a tape configuration

B x1 B · · · B xm
↑

it eventually halts if and only if f (x1, . . . , xm) is defined and if, on
halting, the string f (x1, . . . , xm) can be read off the tape by
ignoring all symbols other than s1, . . . , sn.

Note that in the final configuration all markers and blanks are
ignored.

37 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Post-Turing Programs

A program P computes f strictly if two additional conditions are
met:

no instruction in P mentiones other symbol than
s0 = B, s1, . . . , sn, and

whenever P halts, the tape configuration is

· · · B B y B · · ·
↑

where y = f (x1, . . . , xm).

Thus, when P computes f strictly, the output y is available in a
consecutive block of cells.

38 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Simulation of Sn in T

Theorem

If f (x1, . . . , xm) is a partially computable function in Sn, then there
is a Post-Turing program that computes f strictly.

Proof.

Let P be a program in Sn that computes f using ℓ = m + 1 + k
variables that include the input variables X1, . . . ,Xm, the output
variable Y , and the local variables Z1, . . . ,Zk .

39 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Simulation of Sn in T

Proof cont’d

Proof.

Let Q be a Post-Turing program that simulates P step by step.
We must allocate space on the tape to accommodate the values of
the ℓ variables. At the begining of each simulated step the tape
configuration is

B x1 B x2 B · · ·B xm B z1 B · · · zk B y
↑ ,

where x1, . . . xm, z1, . . . , zk , y are the current values of
X1, . . . ,Xm,Z1, . . . ,Zk ,Y .

40 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Simulation of Sn in T

Proof cont’d

Note that the initial tape configuration

B x1 B x2 B · · ·B xm
↑ ,

is already in correct form because the remaining variables are
initialized to 0.
Next, we show how to program the effect of each instruction in S
in T .

41 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Simulation of Sn in T

Proof cont’d

We discuss a number of macros in T :
GOTO L

RIGHT TO NEXT BLANK

LEFT TO NEXT BLANK

MOVE BLOCK RIGHT

ERASE A BLOCK

42 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Simulation of Sn in T

The T macro GOTO L has the expansion

IF s0 GOTO L
IF s1 GOTO L
...
IF sn GOTO L

43 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Simulation of Sn in T

Proof cont’d

The T macro RIGHT TO NEXT BLANK has the expansion

[A] RIGHT
IF B GOTO E
GOTO A

Similarly, LEFT TO NEXT BLANK has the expansion

[A] LEFT
IF B GOTO E
GOTO A

44 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Simulation of Sn in T

Proof cont’d

The macro MOVE BLOCK RIGHT has the expansion

[C] LEFT
IF s0 GOTO A0

IF s1 GOTO A1

...
IF sn GOTO An

[Ai] RIGHT (This group of 4
PRINTsi
LEFT
GOTO C repeated for 1 ⩽ i ⩽ n)

[A0] RIGHT
PRINTB
LEFT

B
↑

...
B B
↑

45 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Simulation of Sn in T

The macro ERASE A BLOCK causes the head to move to the
right with everything erased between the square at which it begins
and the first blank to the right. It expansion is

[A] RIGHT
IF B GOTO E
PRINTB
GOTO A

46 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Simulation of Sn in T

Convention: a non-negative number between brakets after the
name of a macro indicates that the macro is repeated that number
of times.

Example

RIGHT TO NEXT BLANK[3]

is short for
RIGHT TO NEXT BLANK
RIGHT TO NEXT BLANK
RIGHT TO NEXT BLANK

47 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Simulating Instructions in Sn by Post-Turing Programs

Simulation rules:

every simulation of an instruction of Sn begins and ends on
the first blank;

the value of Vi is written between the i th blank and the
i + 1st blank;

if Vi is 0 we have two consecutive blanks: the i th blank and
the i + 1st blank.

48 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Simulating Instructions in Sn by Post-Turing Programs

Simulation of Vj ← siVj :

To place si at the left of the
jth variable on the tape,
the values of Vj ,Vj+1, . . . ,Vℓ

must be all moved one square to
the right tp make room.

After si was inserted, the head
must go back at the left of the
value of V1 to be ready for the
next simulated instruction.

RIGHT TO NEXT BLANK [ℓ]
MOVE BLOCK RIGHT [ℓ− j + 1]
RIGHT
PRINTsi
LEFT TO NEXT BLANK [j]

49 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Simulating Instructions in Sn by Post-Turing Programs

Simulation of Vj ← V−
j : difficulty is that if the value is 0 we need

to leave it unchanged. By moving one square to the left we find
two consecutive blanks.

RIGHT TO THE NEXT BLANK [j]
LEFT
IF B GOTO C
MOVE BLOCK RIGHT [j]
RIGHT
GOTO E

[C] LEFT TO NEXT BLANK [j − 1]

50 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Simulating Instructions in Sn by Post-Turing Programs

Finally, to simulate

IF Vj ENDS si GOTO L

we use
RIGHT TO NEXT BLANK [j]
LEFT
IF si GOTO C
GOTO D

[C] LEFT TO NEXT BLANK [j]
GOTO L

[D] RIGHT
LEFT TO NEXT BLANK [j]

51 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Simulating Instructions in Sn by Post-Turing Programs

When simulation ends the tape configuration is

· · ·B B B x1 · · · xn B z1 B · · · zk y B B · · ·
↑

At the end of the computation we need to have the tape
configuration

· · ·B B B y B B B · · ·B B · · ·
↑

To reach this configuration we put at the end of the Post-Turing
program the following:

ERASE A BLOCK [ℓ− 1]

Thus, the program computes the function f stricly.

52 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Simulation of S in T

Consider the following statements:

1 f is partially computable;

2 f is partially computable in Sn;
3 f is stricly computed by a Post-Turing Program;

4 f is computed by a Post-Turing program.

So far we proved the implications

(1)⇒ (2)⇒ (3)⇒ (4).

We are about to prove (4)⇒ (1) thereby showing that all
statements are equivalent.

53 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Simulation of S in T

Theorem

If there is a Post-Turing that computes the partial function
f (x1, . . . , xm) then f is partially computable.

54 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Simulation of S in T

Proof.

Let P be a Post-Turing program that computes f . We need tp
construct a program Q in the language S that computes f . Q
consists of three sections:
BEGINNING
MIDDLE
END

BEGINNIG arranges the input in Q in the appropriate format
for MIDDLE.

MIDDLE simulates P in a step-by-step manner.

END extracts the output.

55 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Simulation of S in T

The Post-Turing program makes use of B and perhaps some
additional symbols sn+1, . . . , sr in this order:

s1, . . . , sn, sn+1, . . . , sr ,B

Note that the blank represents the number r + 1, so blank will
represent the number r + 1. For this reason, we will write B as
sr+1.

56 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Simulation of S in T

Q simulates P by using the numbers that strings on this
alphabet represent in base r + 1 as codes for corresponding
strings.

The tape configuration at a stage of P is tracked by Q using
three numbers L, H, and R:

the value of H is the numerical value of the symbol currently
scanned
the value of L is the numerical value in base r + 1 of a string
w such that the content of the tape at the left of the head is
· · ·B B w ;
the value of R is the numerical value in base r +1 of a string z
such that the content of the tape at the right of the head is
z B B · · · .

57 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Simulation of S in T

Example

For the tape configuration

· · ·B B B B s2 s1 B s3 s1 s2 B B · · ·
↑

with r = 3 and the base 4, we have

H = 3,

L = 2 · 42 + 1 · 4 + 4 = 40

R = 1 · 4 + 2 = 6.

58 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Simulation of S in T

An instruction PRINTi is simulated by H ← i .

An instruction IF si GOTO L is simulated by

IF H = i GOTO L

59 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Simulation of S in T

An instruction RIGHT is simulated by

L← CONCATr+1(L,H)
H ← LTENDr+1(R)
R ← LTRUNCr+1(R)
IF R ̸= 0 GOTO E
R ← r + 1

60 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Simulation of S in T

An instruction LEFT is simulated by

R ← CONCATr+1(H,R)
H ← RTENDr+1(L)
L← RTRUNCr+1(L)
IF L ̸= 0 GOTO E
L← r + 1

The section MIDDLE of Q can be obtained by replacing each
instruction by its simulation.

61 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Simulation of S in T

The BEGINNING and END section must deal with the fact that f
is a function of m arguments on {s1, . . . , sn}∗.

Initial values of X1, . . . ,Xm for Q are numbers that represent
the input strings in base n.

The BEGINNING section calculates the initial values of
L,H,R that correspond to the tape configuration

B x1 B x2 B · · ·B xm
↑

where the numbers x1, . . . , xm are represented in base n
notation.

62 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Simulation of S in T

the BEGINNING section is:

L← r + 1
H ← r + 1
Z1 ← UPCHANGEn,r+1(X1)
Z2 ← UPCHANGEn,r+1(X2)
...
Zm ← UPCHANGEn,r+1(Xm)
R ← CONCATr+1(Z1, r + 1,Z2, r + 1, . . . , r + 1.,Zm)

63 / 64

THEORY OF COMPUTATION A Language for String Computations - 18

Simulation of S in T

The END section consists of:

Z ← CONCATr+1(L,H,R)
Y ← DOWNCHANGEn,r+1(Z).

This concludes the description of the program Q.

64 / 64

	Outline
	Macros for Use in Sn
	Two Important Examples
	The Languages S and Sn
	Post-Turing Programs
	Simulation of Sn in T
	Simulating Instructions in Sn by Post-Turing Programs
	Simulation of S in T

