THEORY OF COMPUTATION A Language for String Computations - 18

Prof. Dan A. Simovici

UMB

イロト イボト イヨト 一日

1/64

1 Macros for Use in S_n

- 2 Two Important Examples
- **3** The Languages S and S_n
- 4 Post-Turing Programs
- **5** Simulation of S_n in \mathcal{T}
- **6** Simulating Instructions in S_n by Post-Turing Programs
- **7** Simulation of \mathcal{S} in \mathcal{T}

We introduce for each n > 0 a programming language S_n designed for string calculations on an alphabet with n symbols.

The instructions of S_n are:

$V \leftarrow \sigma V$	place symbol σ at the left of V	
$V \leftarrow V^-$	delete the final symbol of the string	
	that is the value of V ; if the	
	value is 0 leave it unchanged	
$V \leftarrow V$	do nothing instruction	
IF V ENDS σ GOTO L	if the value of V	
	ends in σ then execute the first instruction with label L ; otherwise proceed with next instruction	

Example

Suppose that the alphabet A consists of the symbols s_1, s_2, s_3 and $x = s_3 s_2 s_2 s_1$ is a string of length 4 on the alphabel V. The effect of the above instructions applied to x is shown below:

Instr.	Effect
$x \leftarrow s_2 x$	<i>s</i> ₂ <i>s</i> ₃ <i>s</i> ₂ <i>s</i> ₂ <i>s</i> ₁
$x \leftarrow x^-$	<i>s</i> ₃ <i>s</i> ₂ <i>s</i> ₂
$x \leftarrow x$	<i>s</i> ₃ <i>s</i> ₂ <i>s</i> ₂ <i>s</i> ₁
IF $x \text{ ENDS } s_2 \text{ GOTO } L$	no effect
IF $x \text{ ENDS } s_1 \text{ GOTO } L$	jump to <i>L</i>

Also the instructions of S_n refer to strings, we can also think of them as referring to numbers that the strings represent.

Example

The numerical effect of $X \leftarrow s_i X$ in the *n*-symbol alphabet $\{s_1, \ldots, s_n\}$ is to replace numerical value x by $i \cdot n^{|x|} + x$.

The macro

IF $V \neq 0$ GOTO L

has the expression

IF V ENDS s_1 GOTO L IF V ENDS s_2 GOTO L

IF V ENDS sn GOTO L

イロン 不同 とくほど 不良 とうほ

7/64

The macro $V \leftarrow 0$ has the expansion

$$\begin{array}{ll} [A] & V \leftarrow V^- \\ & \mathsf{IF} & V \neq 0 \text{ GOTO } A \end{array}$$

The macro

GOTO L

has the expansion

$$Z \leftarrow 0$$

 $Z \leftarrow s_1 Z$
IF Z ENDS s_1 GOTO L

<ロト < 回 ト < 画 ト < 画 ト < 画 ト ミ の < で 9/64

The block of instructions

IF V ENDS s_1 GOTO B_1 IF V ENDS s_2 GOTO B_2 : IF V ENDS s_n GOTO B_n

is abbreviated as

IF V ENDS s_i GOTO $B_i(1 \leq i \leq n)$

The macro $V' \leftarrow V$ for non-destructive copying of V into V' has the expansion:

$$Z \leftarrow 0$$

$$V' \leftarrow 0$$
[A] IF V ENDS s_i GOTO B_i(1 ≤ i ≤ n)
GOTO C
[B_i] $V \leftarrow V^-$ (This group of 4 repeated for 1 ≤ i ≤ n)
 $V' \leftarrow s_i V'$
 $Z \leftarrow s_i Z$
GOTO A(end group)
[C] IF Z ENDS s_i GOTO D_i(1 ≤ i ≤ n)
GOTO E
[D_i] $Z \leftarrow Z^-$
 $V \leftarrow s_i V$
GOTO C

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ● ● ● ●

The function x + 1 is computable in S_n , as shown by the following flowchart.

Example

Start with the string $s = s_2 s_1 s_1 s_3$. The numerical values is 208. Strings produced by the algorithm are:

X	Y
$s_2 s_1 s_1 s_3$	<i>s</i> ₁
$s_2 s_1 s_1$	<i>s</i> ₂ <i>s</i> ₁
<i>s</i> ₂ <i>s</i> ₁	<i>s</i> ₁ <i>s</i> ₂ <i>s</i> ₁
<i>s</i> ₂	<i>s</i> ₂ <i>s</i> ₁ <i>s</i> ₂ <i>s</i> ₁
0	

The initial value of X is $2 \cdot 3^3 + 1 \cdot 3^2 + 1 \cdot 3 + 3 = 69$; the final value of Y is $2 \cdot 3^3 + 1 \cdot 3^2 + 2 \cdot 3 + 1 = 70$.

The previous flowchart corresponds to the program

$$\begin{array}{ll} [B] & \text{ IF } X \text{ ENDS } s_1 \text{ GOTO } A_i (1 \leqslant i \leqslant n) \\ & Y \leftarrow s_1 Y \\ & \text{ GOTO } E \end{array}$$

$$\begin{array}{ll} [A_i] & X \leftarrow X^- \text{ (This group of 3 repeated for } 1 \leqslant i \leqslant n) \\ & Y \leftarrow s_{i+1}Y \\ & \text{GOTO } C \end{array}$$

$$\begin{array}{ll} [A_n] & X \leftarrow X^- \\ & Y \leftarrow s_1 Y \\ & \text{GOTO } B \end{array}$$

$$\begin{array}{ll} [C] & \text{IF } X \text{ ENDS } s_i \text{ GOTO } D_i (1 \leqslant i \leqslant n) \\ & \text{GOTO } E \end{array}$$

15 / 64

Example

Let $s = s_3s_2s_1s_1$ having the numerical equivalent $3 \cdot 3^3 + 2 \cdot 3^2 + 1 \cdot 3^1 + 1 = 103.$

The successive values of X and Y are:

X	Y
<i>s</i> ₃ <i>s</i> ₂ <i>s</i> ₁ <i>s</i> ₁	0
<i>s</i> ₃ <i>s</i> ₂ <i>s</i> ₁	<i>s</i> ₃ (carry is propagated)
<i>s</i> ₃ <i>s</i> ₂	<i>s</i> ₃ <i>s</i> ₃
s 3	<i>s</i> ₁ <i>s</i> ₃ <i>s</i> ₃ (carry is absorbed)
0	<i>s</i> ₃ <i>s</i> ₁ <i>s</i> ₃ <i>s</i> ₃

The numerical equivalent of $s_3s_1s_3s_3$ is 102.

The previous flowchart corresponds to the program

- $\begin{array}{l} [A_i] & X \leftarrow X^- \text{ (This group of 3 repeated for } 1 \leqslant i \leqslant n) \\ & Y \leftarrow s_{i-1}Y \\ & \text{GOTO } C \end{array}$
- $\begin{array}{ll} [A_1] & X \leftarrow X^- \\ & \mathsf{IF} \ X \neq 0 \ \mathsf{GOTO} \ C_2 \\ & \mathsf{GOTO} \ E \end{array}$
- $\begin{bmatrix} C_2 \end{bmatrix} \quad \begin{array}{c} Y \leftarrow s_n Y \\ \text{GOTO } B \end{array}$
- [C] IF X ENDS s_i GOTO D_i (This group of 2 repeated for $1 \leq i \leq n$) GOTO E

・ロ ・ < 回 ト < 言 ト < 言 ト 言 の Q ペ
17 / 64

L The Languages S and S_n

In either S or S_n computations are really dealing with numbers and strings on an *n* letter alphabets are objects being used to represent numbers in the base *n*.

Theorem

A function f is partially computable if and only if it is partially computable in S_1 .

 \square The Languages S and S_n

Proof.

Note that the languages S and S_1 are the same. Indeed, the effect of the S_1 instructions

 $V \leftarrow s_1 V$ and $V \leftarrow V^-$

is identical to the effect of the ${\mathcal S}$ instructions

 $V \leftarrow V + 1$ and $V \leftarrow V - 1$.

The condition V ENDS s_1 in S_1 is equivalent to $V \neq 0$ in S.

Thus, the results involving S_n can be specialized to n = 1 to give results about S.

 \square The Languages S and S_n

Theorem

If a function is partially computable, then it also partially computable in S_n for each n.

Proof.

Suppose f is computed by \mathcal{P} in \mathcal{S} . \mathcal{P} is translated into a program in \mathcal{S}_n by replacing instructions in \mathcal{P} by a macro in \mathcal{S}_n :

- $V \leftarrow V + 1$ is replaced by the macro $V \leftarrow V + 1$ in S_n ;
- $V \leftarrow V 1$ is replaced by the macro $V \leftarrow V \doteq 1$ in S_n ;
- IF $V \neq 0$ GOTO L by the macro IF $V \neq 0$ GOTO L in S_n .

イロト イボト イヨト 一日

 ${\cal T}$ is another programming language for string manipulation named the Post-Turing language.

- there is a unique variable and its content is placed on a tape;
- the tape is divided into cells; each cell is able to contain a symbol of the alphabet A = {s₁,..., s_n};
- there is a special symbol s₀ (also denoted by B and referred to as blank);
- only one symbol is observed at any given time.

- All but a finite number of cells contain B. The content of the tape is shown by exhibiting a finite portion of the tape containing the non-blank symbols.
- At any given moment only one tape symbol is being scanned by a head. This is indicated by an arrow.
- The head can move one square to the left or to the right of the square that is currently scanned.

This is indicated by writing

*a*₂ *B a*₃ *a*₁ ↑

There are four types of instructions in the Post-Turing Language:

$PRINT\sigma$	replace the symbol on the square being scanned by σ	
IF σ GOTO L	goto the first instruction labeled L if the	
	symbol currently scanned is σ ; otherwise	
	continue to the next instruction.	
RIGHT	scan the square to the right of the current square.	
LEFT	scan the square to the left of the current square.	

To compute a partial function $f(x_1, \ldots, x_m)$ of *m* variables we start with the initial tape configuration

$$B x_1 B x_2 \cdots x_m$$

The inputs are separated by single blanks, and the symbol initially scanned is the blank immediately at left of x_1 .

Example

If n = 1, the alphabet is $\{s_1\}$. We want to compute a function $f(x_1, x_2)$ and the initial values are $x_1 = s_1s_1$, $x_2 = s_1$. Then, the initial configuration is:

 $\begin{array}{c} B \ s_1 \ s_1 \ B \ s_1 \end{array} \\ \uparrow$

<ロ><一><一><一><一><一><一><一</td>26/64

Example

n = 2, $x_1 = s_1 s_2$, $x_2 = s_2 s_1$. The initial configuration is

 $\begin{array}{c} B \ s_1 \ s_2 \ B \ s_2 \ s_1 \\ \uparrow \end{array}$

Example

Suppose n = 2, $x_1 = 0$, $x_2 = s_1s_1$, $x_3 = s_2$. The tape configuration is $\begin{array}{c} B \ B \ s_1 \ s_1 \ B \ s_2 \\ \uparrow \end{array}$

28 / 64

Example

For n = 2, $x_1 = s_1s_2$, $x_2 = s_2s_1$, $x_3 = 0$ the tape configuration is initially $\begin{array}{c} B \ s_1 \ s_2 \ B \ s_2 \ s_1 \ B \\ \uparrow \end{array}$

The number of arguments placed on tape must be provided externally.

An example of a Post-Turing program that begins with the input x and outputs s_2s_1x is

↑

	PRINT <i>s</i> 1 LEFT PRINT <i>s</i> 2 LEFT
The program starts with	<i>B x</i> ↑
and ends with	B s ₂ s ₁ x

Example

Suppose now that the alphabet is $\{s_1, s_2, s_3\}$ and let $x \in \{s_1, s_2, s_3\}^*$. Beginning with

B x ↑

the program needs to halt with the tape configuration

 $B \times s_1 s_1$ \uparrow

The computation proceeds by first moving right until the blank to the right of x is located. Then, s_1 is printed twice and then the computation moves to the left until first B is located.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Example cont'd

Example

[A] RIGHT IF s1 GOTO A IF s2 GOTO A IF s3 GOTO A PRINT₅₁ RIGHT PRINT₅₁ [C]LEFT IF s1 GOTO C IF s2 GOTO C IF s3 GOTO C

Example

The alphabet is $\{s_1, s_2\}$ and the next program aims to erase all occurrences of s_2 in the input string (that is, replace s_2 by B). For the purpose of reading output values from the tape, additional Bs are ignored.

Example cont'd

Example

 $\begin{bmatrix} C \end{bmatrix} \quad \begin{array}{l} \mathsf{RIGHT} \\ \mathsf{IF} \ B \ \mathsf{GOTO} \ E \\ \mathsf{IF} \ s_2 \ \mathsf{GOTO} \ A \\ \mathsf{IF} \ s_1 \ \mathsf{GOTO} \ C \\ \begin{bmatrix} A \end{bmatrix} \quad \begin{array}{l} \mathsf{PRINTB} \\ \mathsf{IF} \ B \ \mathsf{GOTO} \ C \\ \end{array}$

The function computed by this program satisfies

$$\begin{array}{rcl} f(s_2s_1s_2) &=& s_1, \\ f(s_1s_2s_1) &=& s_1s_1. \end{array}$$

3

イロト 不同 とくほ とくほとう

Example

```
The previous program achieves the following computation:

B \ s_1 \ s_2 \ s_1

\uparrow

B \ s_1 \ B \ s_1

B \ s_1 \ \ s_1
```

Exercise in class!

The next program uses three symbols: s_1 from the input alphabet $\{s_1\}$, B, and a marker symbol M. Beginning with the tape B u \uparrow where u is a string in $\{s_1\}^*$, the program terminates with a tape B u B u \uparrow

Definition

A program \mathcal{P} in \mathcal{T} computes a function $f(x_1, \ldots, x_m)$ on the alphabet $\{s_1, \ldots, s_n\}$ if when started with a tape configuration

 $\begin{array}{c} B x_1 B \cdots B x_m \\ \uparrow \end{array}$

it eventually halts if and only if $f(x_1, \ldots, x_m)$ is defined and if, on halting, the string $f(x_1, \ldots, x_m)$ can be read off the tape by ignoring all symbols other than s_1, \ldots, s_n .

Note that in the final configuration all markers and blanks are ignored.

A program \mathcal{P} computes f strictly if two additional conditions are met:

- no instruction in \mathcal{P} mentiones other symbol than $s_0 = B, s_1, \ldots, s_n$, and
- whenever \mathcal{P} halts, the tape configuration is

where $y = f(x_1, ..., x_m)$.

Thus, when \mathcal{P} computes f strictly, the output y is available in a consecutive block of cells.

Theorem

If $f(x_1, ..., x_m)$ is a partially computable function in S_n , then there is a Post-Turing program that computes f strictly.

Proof.

Let \mathcal{P} be a program in \mathcal{S}_n that computes f using $\ell = m + 1 + k$ variables that include the input variables X_1, \ldots, X_m , the output variable Y, and the local variables Z_1, \ldots, Z_k .

 \square Simulation of S_n in \mathcal{T}

Proof cont'd

Proof.

Let \mathcal{Q} be a Post-Turing program that simulates \mathcal{P} step by step. We must allocate space on the tape to accommodate the values of the ℓ variables. At the beginning of each simulated step the tape configuration is

$$B x_1 B x_2 B \cdots B x_m B z_1 B \cdots z_k B y$$

$$\uparrow$$

where $x_1, \ldots, x_m, z_1, \ldots, z_k, y$ are the current values of $X_1, \ldots, X_m, Z_1, \ldots, Z_k, Y$.

 \square Simulation of S_n in \mathcal{T}

Proof cont'd

Note that the initial tape configuration

$$\overset{B \times_1 B \times_2 B \cdots B \times_m}{\uparrow},$$

is already in correct form because the remaining variables are initialized to 0.

Next, we show how to program the effect of each instruction in ${\mathcal S}$ in ${\mathcal T}.$

Proof cont'd

We discuss a number of macros in \mathcal{T} :

- GOTO L
- RIGHT TO NEXT BLANK
- LEFT TO NEXT BLANK
- MOVE BLOCK RIGHT
- ERASE A BLOCK

 \square Simulation of S_n in T

The T macro GOTO L has the expansion

IF s₀ GOTO L IF s₁ GOTO L : IF s_n GOTO L \square Simulation of S_n in \mathcal{T}

Proof cont'd

The ${\mathcal T}$ macro RIGHT TO NEXT BLANK has the expansion

[A] RIGHT IF *B* GOTO *E* GOTO *A*

Similarly, LEFT TO NEXT BLANK has the expansion

[A] LEFT IF *B* GOTO *E* GOTO *A*

44 / 64

イロン 不同 とくほど 不良 とうほ

Proof cont'd

The macro MOVE BLOCK RIGHT has the expansion

45 / 64

The macro ERASE A BLOCK causes the head to move to the right with everything erased between the square at which it begins and the first blank to the right. It expansion is

[A] RIGHT IF B GOTO E PRINTB GOTO A

Convention: a non-negative number between brakets after the name of a macro indicates that the macro is repeated that number of times.

 \square Simulating Instructions in S_n by Post-Turing Programs

Simulation rules:

- every simulation of an instruction of S_n begins and ends on the first blank;
- the value of V_i is written between the i^{th} blank and the $i + 1^{\text{st}}$ blank;
- if V_i is 0 we have two consecutive blanks: the *i*th blank and the *i* + 1st blank.

Simulating Instructions in S_n by Post-Turing Programs

Simulation of $V_j \leftarrow s_i V_j$:

To place s_i at the left of the j^{th} variable on the tape, the values of $V_j, V_{j+1}, \ldots, V_\ell$ must be all moved one square to the right tp make room.

After s_i was inserted, the head must go back at the left of the value of V_1 to be ready for the next simulated instruction.

```
RIGHT TO NEXT BLANK [\ell]
MOVE BLOCK RIGHT [\ell - j + 1]
RIGHT
PRINTs_i
LEFT TO NEXT BLANK [j]
```

Simulating Instructions in S_n by Post-Turing Programs

Simulation of $V_j \leftarrow V_j^-$: difficulty is that if the value is 0 we need to leave it unchanged. By moving one square to the left we find two consecutive blanks.

RIGHT TO THE NEXT BLANK [j]LEFT IF *B* GOTO *C* MOVE BLOCK RIGHT [j]RIGHT GOTO *E* [*C*] LEFT TO NEXT BLANK [j - 1]

イロン 不同 とくほど 不良 とうほ

Simulating Instructions in S_n by Post-Turing Programs

Finally, to simulate

IF V_j ENDS s_i GOTO L

we use

RIGHT TO NEXT BLANK [*j*] LEFT IF *s*_i GOTO *C* GOTO *D* [*C*] LEFT TO NEXT BLANK [*j*] GOTO *L* [*D*] RIGHT LEFT TO NEXT BLANK [*j*] \square Simulating Instructions in S_n by Post-Turing Programs

When simulation ends the tape configuration is

$$\cdots B B B x_1 \cdots x_n B z_1 B \cdots z_k y B B \cdots$$

At the end of the computation we need to have the tape configuration

To reach this configuration we put at the end of the Post-Turing program the following:

```
ERASE A BLOCK [\ell - 1]
```

Thus, the program computes the function f stricly.

(ロ) (同) (三) (三) (三) (0) (0)

Consider the following statements:

- **1** f is partially computable;
- **2** f is partially computable in S_n ;
- $\mathbf{3}$ f is stricly computed by a Post-Turing Program;
- 4 f is computed by a Post-Turing program.

So far we proved the implications

$$(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4).$$

We are about to prove (4) \Rightarrow (1) thereby showing that all statements are equivalent.

Theorem

If there is a Post-Turing that computes the partial function $f(x_1, \ldots, x_m)$ then f is partially computable.

Proof.

Let \mathcal{P} be a Post-Turing program that computes f. We need tp construct a program \mathcal{Q} in the language \mathcal{S} that computes f. \mathcal{Q} consists of three sections: BEGINNING MIDDLE END

- BEGINNIG arranges the input in Q in the appropriate format for MIDDLE.
- MIDDLE simulates \mathcal{P} in a step-by-step manner.
- END extracts the output.

The Post-Turing program makes use of B and perhaps some additional symbols s_{n+1}, \ldots, s_r in this order:

$$s_1,\ldots,s_n,s_{n+1},\ldots,s_r,B$$

Note that the blank represents the number r + 1, so blank will represent the number r + 1. For this reason, we will write B as s_{r+1} .

- Q simulates P by using the numbers that strings on this alphabet represent in base r + 1 as codes for corresponding strings.
- The tape configuration at a stage of *P* is tracked by *Q* using three numbers *L*, *H*, and *R*:
 - the value of *H* is the numerical value of the symbol currently scanned
 - the value of L is the numerical value in base r + 1 of a string w such that the content of the tape at the left of the head is ... B B w;
 - the value of R is the numerical value in base r + 1 of a string z such that the content of the tape at the right of the head is z B B ····.

Example

```
For the tape configuration
```

$$\cdots B B B B s_2 s_1 B s_3 s_1 s_2 B B \cdots$$

$$\uparrow$$

with r = 3 and the base 4, we have

$$H = 3,$$

$$L = 2 \cdot 4^{2} + 1 \cdot 4 + 4 = 40$$

$$R = 1 \cdot 4 + 2 = 6.$$

<ロ><日><日><日><日><日><日><日><日><日><日><日><日</td>58/64

- An instruction PRINT*i* is simulated by $H \leftarrow i$.
- An instruction IF s_i GOTO L is simulated by

IF H = i GOTO L

An instruction RIGHT is simulated by

$$L \leftarrow \text{CONCAT}_{r+1}(L, H)$$

$$H \leftarrow \text{LTEND}_{r+1}(R)$$

$$R \leftarrow \text{LTRUNC}_{r+1}(R)$$

IF $R \neq 0$ GOTO E

$$R \leftarrow r + 1$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ● ● ● ●

60 / 64

An instruction LEFT is simulated by

$$R \leftarrow \text{CONCAT}_{r+1}(H, R)$$
$$H \leftarrow \text{RTEND}_{r+1}(L)$$
$$L \leftarrow \text{RTRUNC}_{r+1}(L)$$
$$\text{IF } L \neq 0 \text{ GOTO } E$$
$$L \leftarrow r+1$$

The section MIDDLE of \mathcal{Q} can be obtained by replacing each instruction by its simulation.

The BEGINNING and END section must deal with the fact that f is a function of m arguments on $\{s_1, \ldots, s_n\}^*$.

- Initial values of *X*₁,..., *X_m* for *Q* are numbers that represent the input strings in base *n*.
- The BEGINNING section calculates the initial values of L, H, R that correspond to the tape configuration

$$\begin{array}{c} B x_1 B x_2 B \cdots B x_m \\ \uparrow \end{array}$$

where the numbers x_1, \ldots, x_m are represented in base n notation.

 ${igstaclup}$ Simulation of ${\mathcal S}$ in ${\mathcal T}$

the BEGINNING section is:

$$L \leftarrow r + 1$$

$$H \leftarrow r + 1$$

$$Z_1 \leftarrow \mathsf{UPCHANGE}_{n,r+1}(X_1)$$

$$Z_2 \leftarrow \mathsf{UPCHANGE}_{n,r+1}(X_2)$$

$$\vdots$$

$$Z_m \leftarrow \mathsf{UPCHANGE}_{n,r+1}(X_m)$$

$$R \leftarrow \mathsf{CONCAT}_{r+1}(Z_1, r + 1, Z_2, r + 1, \dots, r + 1, Z_m)$$

The END section consists of:

$$Z \leftarrow \text{CONCAT}_{r+1}(L, H, R)$$
$$Y \leftarrow \text{DOWNCHANGE}_{n,r+1}(Z).$$

This concludes the description of the program Q.