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Two of Greatest Mathematicians/Computer Scientists

Alan Mathison Turing (23 June 1912–7 June 1954) was an English
mathematician, computer scientist, logician, cryptanalyst,
philosopher, and theoretical biologist.
Turing was highly influential in the development of theoretical
computer science, providing a formalisation of the concepts of
algorithm and computation with the Turing machine, which can be
considered a model of a general purpose computer.
During the Second World War, Turing worked for the Government
Code and Cypher School at Bletchley Park, Britain’s codebreaking
centre.
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Two of Greatest Mathematicians/Computer Scientists

Emile Post (11 February 1897–21 April, 1954) was a Polish born
American mathematician and logician. He is best known for his
work in the field that eventually became known as computability
theory.
In 1936, Post developed (independently of Alan Turing) a
mathematical model of computation that was essentially equivalent
to the Turing machine model. This model is sometimes called
Post’s machine or a Post-Turing machine. Post’s rewrite technique
is now ubiquitous in programming language specification and
design, and so with Church’s lambda calculus is a salient influence
of classical modern logic on practical computing.
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The Basic Model

A Turing machine (TM) consists of a tape and a memory device
that is capable of various internal states.
The current internal state plus the symbol on the square currently
scanned determine two things:

1 the next state, and

2 printing a symbol on the current cell, or moving one square at
the right or left.
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The Basic Model

Use of symbols in TMs:

q1, q2, . . . represent states;

s0, s1, s2, . . . are symbols that appear on the tape, where s0 is
the blank.
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The Basic Model

All but a finite number of cells contain B. The content of the
tape is shown by exhibiting a finite portion of the tape
containing the non-blank symbols.

At any given moment only one tape symbol is being scanned
by a head. The fact that the machine is in state qi is indicated
by an arrow and the symbol qi as shown in the next slide.

The head can move one square to the left or to the right of
the square that is currently scanned.
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The Basic Model

· · · B B a2 B a3 a1 B

qi

· · ·

This is indicated by writing

a2 B a3 a1
↑
qi
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The Basic Model

A quadruple is an expression of one of the following forms that
consist of four symbols:

qi sjskqℓ (in state qi scanning symbol sj the device will print sk
and go into state qℓ);

qi sjRqℓ (in state qi scanning symbol sj the device will move
one square to the right and go into state qℓ);

qi sjLqℓ (in state qi scanning symbol sj the device will move
one square to the left and go into state qℓ).
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The Basic Model

Definition

A deterministic Turing machine is a finite set of quadruples, no two
of which begin the same two symbols qi and sj . If this condition is
not satisfied we have a non-deterministic Turing machine.

Unless stated otherwise, we will use deterministic Turing machines,
referred to as Turing machines.
Deterministic Turing machines are capable of only one action at
any given moment: writing a new symbol on the tape or moving
the head left or right.
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The Basic Model

Workings of a TM:

a TM always begins in the state q1;

a TM will halt if it is in the state qi scanning sj and there is
no quadruple of the machine that begins with qi sj ;

a TM M computes a function f (x1, . . . , xm) in the same way
as a Post-Turing program computes a function.
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The Basic Model

Definition

A TM M computes strictly a function on A∗ if:

the alphabet of M is a subset of A;

the initial configuration is
B x
↑
q0

;

whenever M halts, the final configuration is
By
↑
qi
where y = f (x) contains no blanks.

12 / 35



THEORY OF COMPUTATION Turing machines - 19

The Basic Model

Example

With s0 = B and s1 = 1 consider the TM with alphabet {1}:

q1 B R q2
q2 1 R q2
q2 B 1 q3
q3 1 R q3
q3 B 1 q1
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The Basic Model

Example cont’d

The same machine can be presented in tabular form:

State
Symbol q1 q2 q3

B Rq2 1q3 1q1
1 Rq2 Rq3

In this TM we have the computation:
B 111
↑
q1

B 1 11
↑
q2

· · ·
B111B

↑
q2

B111 1
↑
q3

B1111B
↑
q3

B1111 1
↑
q1
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The Basic Model

Note that

the computation halts because there is no quadruple
beginning with q11;

the TM computes (but not strictly the function f (x) = x + 2
using the base 1 notation.

The steps of the computation are known as configurations.
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The Basic Model

An alternative representation of a TM is a state transition diagram.

q1

q2

q3EXIT

1 B/1

B/R

B/1

1/R

1/R
State

Symbol q1 q2 q3
B Rq2 1q3 1q1
1 Rq2 Rq3
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The Basic Model

Theorem

Any partial function that can be computed by a Post-Turing
program can be computed by a TM using the same alphabet.
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The Basic Model

Proof

Let P be a Post-Turing program that consists of instructions
I1, . . . , IK and let s0, s1, . . . , sn be a list that includes all symbols
mentioned in P.
The proof consists in constructing a TM M that simulates P.
M is in the state qi when P is about to execute instruction Ii .
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The Basic Model

if Ii is PRINT sk we place in M all of the quadruples
qi sj sk qi+1 for 0 ⩽ j ⩽ n;

if Ii is RIGHT we place in M all of the quadruples
qi sj R qi+1 for 0 ⩽ j ⩽ n;

if Ii is LEFT we place in M all of the quadruples qi sj L qi+1

for 0 ⩽ j ⩽ n;
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The Basic Model

if Ii is IF sk GOTO L let m be the least number such that Im
is labeled L if there is an instruction in P labeled L; otherwise
let m = K + 1; place in M the quadruple:

qi sk sk qm

as well as the quadruples:

qi sj sj qi+1

for j ∈ {0, 1, . . . , n} − {k}.
The actions of M correspond to the instructions of P, which
concludes the proof.
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The Basic Model

Theorem

Let f be an m-ary partially computable function on A∗ for an
alphabet A. Then there a Turing machine M that computes f
strictly.
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The Basic Model

A Special Case: Let A = {1}. If f (x1, . . . , xm) is a partially
computable function on N, there is a TM that computes f using
only the symbols B and 1. The initial configuration corresponds to
inputs x1, . . . , xm is

B 1x1 B · · · B 1xm
↑
q1

and the final configuration when f (x1, . . . , xm) ↓ is

B 1f (x1,...,xm)
↑

qK+1
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An Alternative Model for Turing Machines

We consider now Turing machines specified by quintuples instead
of quadruples.

Definition

A quintuple Turing machine M consists of a finite set of
quintuples that have one of two forms:

qi sj sk R qℓ
qi sj sk L qℓ,

such that no two quintuples begin with the same pair qi sj .
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An Alternative Model for Turing Machines

The first (second) quintuple means that when the machine is in
state qi scanning sj it will print sk and then move one square to
the right (left) and go into the state qℓ.
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An Alternative Model for Turing Machines

Theorem

Any partial function that can be computed by a TM can be
computed by a quintuple machine using the same alphabet.
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An Alternative Model for Turing Machines

Proof

Let M be a TM with states q1, . . . , qK and alphabet {s1, . . . , sn}.
We construct a quintuple TM M to simulate M. The states of
M are q1, . . . , qK , qK+1, . . . , q2K .

For each quadruple of M of the form

qi sj R qℓ

we place in M the quintuple

qi sj sj R qℓ.

Similarly, for each quadruple of M of the form

qi sj L qℓ

we place in M the quintuple

qi sj sj L qℓ
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An Alternative Model for Turing Machines

Proof cont’d

For each quadruple
qi sj sk qℓ

in M we place in M all quintuples of the form

qi sj sk R qK+ℓ.

Finally, we place in M all quintuples of the form

qK+ℓ sj sj L qℓ.
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An Alternative Model for Turing Machines

Quadruples requiring motion are simulated easily by
quintuples.

However, a quadruple that requires a print requires using a
quintuple which causes a motion after the print has taken
place. The final list of quintuples undoes the effect of the
unwanted motion. The extra states qK+1, . . . , q2K serve to
remember that we have gone a square too far to the left.
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An Alternative Model for Turing Machines

Theorem

Any partial function that can be computed by a quintuple TM can
be computed by a Post-Turing program using the same alphabet.
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An Alternative Model for Turing Machines

Proof:

Let M be a quintuple TM with states q1, . . . , qK and alphabet
{s1, . . . , sn}.
We associate with each state qi a label Ai and with each label qi sj
a label Bij . Each label Ai is to be placed next to the first
instruction in:

[Ai ] IF s0 GOTO Bi0

IF s1 GOTO Bi1
...
IF sn GOTO Bin
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An Alternative Model for Turing Machines

If M contains the quintuple

qi sj sk R qℓ

we introduce the block

[Bij ] PRINTsk
RIGHT
GOTO Aℓ

Similarly, if M contains the quintuple

qi sj sk L qℓ

we introduce the block

[Bij ] PRINTsk
LEFT
GOTO Aℓ
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An Alternative Model for Turing Machines

Finally, of there is no quintuple in M beginning with qi sj we
introduce the block

[Bij ] GOTO E
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An Alternative Model for Turing Machines

Concatenating all the above blocks results in a Post-Turing
program that simulates M. The order of the blocks is irrelevant
except that the block labeled A1 must begin the program. The full
program is listed on the next slide.
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An Alternative Model for Turing Machines

[A1] IF s0 GOTO B10
IF s1 GOTO B11
...
IF sn GOTO B1n
...

[AK ] IF s0 GOTO BK0
IF s1 GOTO BK1
...
IF sn GOTO BKn

[Bi1 j1
] PRINTsk1

LEFT
GOTO Aℓ1
...

[Bi2 j2
] PRINTsk2

LEFT
GOTO Aℓ2
...
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An Alternative Model for Turing Machines

Corollary

For a given partial function f the following are equivalent:

1 f can be computed by a Post-Turing program;

2 f can be computed by a Turing machine;

3 f can be computed by a quintuple Turing machine.
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