
THEORY OF COMPUTATION Programs and Computable Functions - 2

THEORY OF COMPUTATION
Programs and Computable Functions - 2

Prof. Dan A. Simovici

UMB

1 / 20



THEORY OF COMPUTATION Programs and Computable Functions - 2

Outline

1 A Programming Language

2 Working Informally with Programs

2 / 20



THEORY OF COMPUTATION Programs and Computable Functions - 2

A Programming Language

The Language S

We introduce a “programming language” S that will help us
formalize the notion of computable function. Main features of S
are:

variables assume only non-negative integer values 0, 1, 2, . . .;

the letters X1,X2, . . . denote input variables;

the letter Y is the output variable;

the letters Z1,Z2, . . . denote local variables.

We will often write X and Z instead of X1 and Z1, respectively.
Unlike proper programming languages there is no upper limit on
the values these variables may assume.

3 / 20



THEORY OF COMPUTATION Programs and Computable Functions - 2

A Programming Language

A program is a list of instructions that may or may not be labeled.
The beauty of S is that it consists only of four types of
instructions:

V ← V + 1 increase by 1 the value of V

V ← V − 1 decrease by 1 the value of V
if this value is positive; if the
value is 0 leave it unchanged

V ← V do nothing instruction

IF V 6= 0 GOTO L if value of V
is nonzero perform the instruction
with label L; otherwise proceed with
next instruction

4 / 20



THEORY OF COMPUTATION Programs and Computable Functions - 2

A Programming Language

Example

A very simple program is

X ← X + 1
X ← X + 1

The effect of this program is to increase the value of X by 2.

5 / 20



THEORY OF COMPUTATION Programs and Computable Functions - 2

A Programming Language

Labels and Variables

The labels of instructions in S can be chosen among

A1,B1,C1,D1,E1,A2,B2,C2,D2,E2,A3, . . .

and the subscript 1 may be omitted.
Instructions may or may not have labels. Label is written to the
left of the instruction in square brackets:

[B] Z ← Z − 1

The output variable Y and the local variables Zi have the value 0
initially.
Value of a variable Xi will be denoted by xi .

6 / 20



THEORY OF COMPUTATION Programs and Computable Functions - 2

Working Informally with Programs

Example

The program
[A] X ← X − 1

Y ← Y + 1
IF X 6= 0 GOTO A

computes the function defined by

f (x) =

{
1 if x = 0,

x otherwise.

7 / 20



THEORY OF COMPUTATION Programs and Computable Functions - 2

Working Informally with Programs

Example

In a program like

...
[A] · · ·

...
Z ← Z + 1
IF Z 6= 0 GOTO A
...

the effect is equivalent to an unconditional jump to the statement
labeled by A. The effect of these two lines involving Z is the same
as an unconditional jump GOTO A.

8 / 20



THEORY OF COMPUTATION Programs and Computable Functions - 2

Working Informally with Programs

Note that GOTO A is not among the four types of instruction of S.
We shall use GOTO A as an abbreviated form of the following
fragment code:

Z ← Z + 1
IF Z 6= 0 GOTO A

The label E is the exit label. Therefore, GOTO E triggers the end
of the program.

9 / 20



THEORY OF COMPUTATION Programs and Computable Functions - 2

Working Informally with Programs

Example

The next program copies the value of X into Y :

[A] IF X 6= 0 GOTO B
Z ← Z + 1
IF Z 6= 0 GOTO E

[B] X ← X − 1
Y ← Y + 1
Z ← Z + 1
IF Z 6= 0 GOTO A

This program computes the function f (x) = x .

10 / 20



THEORY OF COMPUTATION Programs and Computable Functions - 2

Working Informally with Programs

The previous program “destroys” the value of X . A variant that
preserves this value is given next.

[A] IF X 6= 0 GOTO B
GOTO C

[B] X ← X − 1
Y ← Y + 1
Z ← Z + 1
GOTO A

[C ] IF Z 6= 0 GOTO D
GOTO E

[D] Z ← Z − 1
X ← X + 1
GOTO C

11 / 20



THEORY OF COMPUTATION Programs and Computable Functions - 2

Working Informally with Programs

Note that:

in the first loop the program copies the value of X in both Y
and X ;

in the second loop the value of X is restored;

when the program ends both X and Y contain the original
value of X and Z = 0;

This program justifies the introduction of the macro V ← V ′.

12 / 20



THEORY OF COMPUTATION Programs and Computable Functions - 2

Working Informally with Programs

The program
[L] V ← V − 1

IF V 6= 0 GOTO L

sets the value of V to 0. It is abbreviated as the macro

V ← 0

If we want to expand the macro v ← 0, we need to take care that
the label L is different from any other label in the main program.

13 / 20



THEORY OF COMPUTATION Programs and Computable Functions - 2

Working Informally with Programs

A program that computes the function f (x1, x2) = x1 + x2 is

Y ← X1

Z ← X2

[B] IF Z 6= 0 GOTO A
GOTO E

[A] Z ← Z − 1
Y ← Y + 1
GOTO B

Note that Z is used to preserve the value of X2.

14 / 20



THEORY OF COMPUTATION Programs and Computable Functions - 2

Working Informally with Programs

A program that multiplies

The next program computes the function f (x1, x2) = x1x2:

Z2 ← X2

[B] IF Z2 6= 0 GOTO A
GOTO E

[A] Z2 ← Z2 − 1
Z1 ← X1 + Y
Y ← Z1

GOTO B

Note that Z1 ← X1 + Y is not permitted in S; this means that this
instruction must be replaced by a program that computes it. This
is called macro expansion.

15 / 20



THEORY OF COMPUTATION Programs and Computable Functions - 2

Working Informally with Programs

Macro expansion of Z1 ← X1 + Y

Z2 ← X2

[B] IF Z2 6= 0 GOTO A
GOTO E

[A] Z2 ← Z2 − 1
Z1 ← X1

X3 ← Y
[B2] IF Z3 6= 0 GOTO A2

GOTO E2

Z3 ← Z3 − 1
Z1 ← Z1 + 1
GOTO B2

[E2] Y ← Z1

GOTO B

16 / 20



THEORY OF COMPUTATION Programs and Computable Functions - 2

Working Informally with Programs

Note that

The local variable Z1 in the addition program on Slide 14 was
replaced by Z3 because Z1 is also used as a local variable in
the multiplication program.

The labels A,B,E are used in the multiplication program and,
therefore, cannot be used in the macro expansion. Instead, we
used A2,B2,C2.

GOTO E2 terminates the addition. Hence it is necessary that
the instruction immediately following the macro expansion be
labeled E2.

17 / 20



THEORY OF COMPUTATION Programs and Computable Functions - 2

Working Informally with Programs

Example

The next program computes a partial function, namely

g(x1, x2) =

{
x1 − x2 if x1 > x2,

↑ if x1 < x2,

The symbol “↑” means that the function is not defined (when
x1 < x2).

18 / 20



THEORY OF COMPUTATION Programs and Computable Functions - 2

Working Informally with Programs

Y ← X1

Z ← X2

[C ] IF Z 6= 0 GOTO A
GOTO E

[A] IF Y 6= 0 GOTO B
GOTO A

[B] Y ← Y − 1
Z ← Z − 1
GOTO C

19 / 20



THEORY OF COMPUTATION Programs and Computable Functions - 2

Working Informally with Programs

Y ← X1

Z ← X2

[C ] IF Z 6= 0 GOTO A
GOTO E

[A] IF Y 6= 0 GOTO B
GOTO A

[B] Y ← Y − 1
Z ← Z − 1
GOTO C

start with X1 = 5,X2 = 2,
set Y = 5 and Z = 2,
then Y = 4 and Z = 1,
then Y = 3 and Z = 0,
computation ends with Y = 3 = 5− 2

if X1 = m and X2 = n,m < n
then Y becomes 0and
program never terminates.

20 / 20


	Outline
	A Programming Language
	Working Informally with Programs

