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A Universal Turing Machine

Recall the universal partially computable function Φ(x , z). For a
fixed z , Φ(x , z) is the unary partial function Φz computed by the
program P with #(P) = z .

Definition

The TM (in either quadruples of quintuple form) that computed Φ
is the universal TM.
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A Universal Turing Machine

Let g(x) be a partially computable function of one variable and let
z0 = #(P) be the number of a program that computes g . Then, if
M begins with a configuration

B xBz0
↑
q1

where x and z0 are written as blocks of 1s, then M will compute
Φ(x , z0). Thus, M can be used to compute any partially
computable function of one variable.
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A Universal Turing Machine

M provides a model of an all-purpose computer where the data
and program are stored together in a single memory.
z0 is the coded version of a program to compute g and x is the
input to that program.
Turing anticipated this idea in 1936!
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Languages Accepted by Turing Machines

Definition

Given a TM with alphabet A = {s1, . . . , sn}, a word u ∈ A∗ is
accepted by M if when M begins with the configuration

s0u
↑
q1

it will eventually halt. The set of all words u ∈ A∗ that M accepts
is called the language accepted by M.
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Languages Accepted by Turing Machines

Theorem

A language L is accepted by some TM M if and only if L is
recursively enumerable.

7 / 18



THEORY OF COMPUTATION More about Turing machines - 20

Languages Accepted by Turing Machines

Proof.

Let L be the language accepted by a TM M with alphabet A, and
let g(x) by the unary function on A∗ that M computes. Then, g
is a partially computable function and

L = {x ∈ A∗ | g(x) ↓},

which shows that L is r.e.
Conversely, if L is r.e., there is a partially computable function g
such that L = {x ∈ A∗ | g(x) ↓}. If M is a TM that computes g
strictly, then M accepts L.
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Languages Accepted by Turing Machines

Theorem

Let A and Ã be two alphabets such that A ⊆ Ã. The set Ã∗ − A∗

is recursively enumerable.

Proof.

Define the TM M that halts on all words in Ã∗ − A∗. In other
words, the machine halts if and only if its tape does not contain
any symbol of A; otherwise, that is, the machine encounters a
symbol of A, the machine cycles indefinitely. Such a machine is
defined by the quadruples

qs ′Rq

for every symbol s ′ ∈ Ã− A and

qssq

for every symbol s ∈ A. Thus, when M encounters a symbol of A
it enters an infinite cycle. 9 / 18
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Languages Accepted by Turing Machines

Theorem

Let A and Ã be two alphabets such that A ⊆ Ã, and let L be such
that L ⊆ A∗. Then, L is a r.e. set on the alphabet A if and only if
L is an r.e. on Ã.
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Languages Accepted by Turing Machines

Proof.

Let L be a r.e. set on alphabet A and let M be a TM on alphabet
A that accepts L.
We may assume that M begins by moving right until if finds a
blank and then returns to its initial position.
Let M̃ be the TM obtained from M by adding the quadruples
qssq for each symbol s ∈ Ã− A and each state q of M. Thus, M̃
enters an infinite loop if it encounters a symbol in Ã−A. Since M̃
has the alphabet Ã and accepts the language L, it follows that L is
a r.e. language on Ã.
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Languages Accepted by Turing Machines

Proof cont’d

Conversely, let L be language over alphabet A that is a r.e. as a
language over Ã, and let M be a TM with alphabet Ã that
accepts L.
Let g(x) be the function on A∗ that M computes. The symbols in
Ã− A serve as markers.
Since L ⊆ A∗ we have:

L = {x ∈ A∗ | g(x) ↓}.

Since g(x) is partially computable, it follows that L is a r.e.
language over A.
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Languages Accepted by Turing Machines

Corollary

Let A and Ã be two alphabets such that A ⊆ Ã, and let L be such
that L ⊆ A∗. Then, L is a recursive language on A if and only if L
is a recursive language on Ã.
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Languages Accepted by Turing Machines

Proof.

Suppose that L is a recursive language on A. Then, both L and
A∗ − L are r.e. languages over A and, therefore, they are r.e.
languages over Ã.
Since Ã∗ − L = (Ã∗ − A∗) ∪ (A∗ − L), and Ã∗ − A∗ is r.e. by the
Theorem on Slide 9, it follows that Ã∗ is r.e. Therefore, L is a
recursive language on Ã.
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Languages Accepted by Turing Machines

Proof cont’d

Conversely, let L be a recursive language on Ã. Then both L and
Ã∗ − L are r.e. languages on Ã, and therefore, L is a r.e. language
over A.
Since A∗ − L = (Ã∗ − L) ∩ A∗, and A∗ is obviously r.e. (as a
language on A and therefore on Ã) it follows that A∗ − L is a r.e.
language on Ã and hence on A. Thus, L is a recursive language on
A.
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Languages Accepted by Turing Machines

Theorem

A set U of numbers is r.e. if and only if there is a TM M with
alphabet {1} that accepts 1x if and only if x ∈ U.

Proof.

This follows immediately from the previous theorem.
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An Anecdote – Why You Should Care about Computability

Example

Let F be a set of program codes

F = {x | Φx(y) = 0 for finitely many y}.

The set of ys such that Φx(y) = 0 is called here the support of Φx .
The set F is non trivial since some but not all functions have finite
support. It is also an index set since if Φa = Φb, then a ∈ F if and
only b ∈ F .
Let d be such that Φd(y) ↑ for all y . Clearly, d ∈ F because the
support of Φd is empty, and therefore, finite. There are
computable extensions of Φd such that these extensions are 0 for
infinitely many y . Thus, F is not r.e. by the second Rice theorem.
So what?
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An Anecdote – Why You Should Care about Computability

The observation of the previous slide is essential for machine
learning (my research field).
It implies that there are no algorithms to learn functions in F from
the values of the inputs in the finite support. One cannot get
around this learning limitation by enumerating functions having
finite supports until you find a function that matches the given
function. Thus, enumeration fails in machine learning! This makes
ML interesting and challenging!
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