THEORY OF COMPUTATION More about Turing machines - 20

Prof. Dan A. Simovici

UMB

1 / 18

 QQ

4 ロ > 4 何 > 4 ミ > 4 ミ > - ミ

 L_{Outline} L_{Outline} L_{Outline}

1 [A Universal Turing Machine](#page-2-0)

2 [Languages Accepted by Turing Machines](#page-5-0)

3 [An Anecdote – Why You Should Care about Computability](#page-16-0)

 \Box [A Universal Turing Machine](#page-2-0)

Recall the universal partially computable function $\Phi(x, z)$. For a fixed z, $\Phi(x, z)$ is the unary partial function Φ_z computed by the program P with $\#(\mathcal{P}) = z$.

Definition

The TM (in either quadruples of quintuple form) that computed Φ is the universal TM.

 \Box [A Universal Turing Machine](#page-2-0)

Let $g(x)$ be a partially computable function of one variable and let $z_0 = \#(\mathcal{P})$ be the number of a program that computes g. Then, if M begins with a configuration

$$
\underset{q_1}{B \times Bz_0}
$$

where x and z_0 are written as blocks of 1s, then M will compute $\Phi(x, z_0)$. Thus, M can be used to compute any partially computable function of one variable.

 \Box [A Universal Turing Machine](#page-2-0)

 M provides a model of an all-purpose computer where the data and program are stored together in a single memory. z_0 is the coded version of a program to compute g and x is the

input to that program.

Turing anticipated this idea in 1936!

Definition

Given a TM with alphabet $A = \{s_1, \ldots, s_n\}$, a word $u \in A^*$ is accepted by M if when M begins with the configuration $50 u$ ↑ q_1

it will eventually halt. The set of all words $u \in A^*$ that $\mathcal M$ accepts is called the language accepted by M .

Theorem

A language L is accepted by some TM M if and only if L is recursively enumerable.

Proof.

Let L be the language accepted by a TM M with alphabet A, and let $g(x)$ by the unary function on A^* that $\mathcal M$ computes. Then, g is a partially computable function and

$$
L = \{x \in A^* \mid g(x) \downarrow\},\
$$

which shows that L is r.e. Conversely, if L is r.e., there is a partially computable function g such that $L = \{x \in A^* \mid g(x) \downarrow\}$. If M is a TM that computes g strictly, then M accepts L .

Theorem

Let A and \tilde{A} be two alphabets such that $A \subseteq \tilde{A}$. The set $\tilde{A}^{*} - A^{*}$ is recursively enumerable.

Proof.

Define the TM ${\cal M}$ that halts on all words in \tilde{A}^*-A^* . In other words, the machine halts if and only if its tape does not contain any symbol of A; otherwise, that is, the machine encounters a symbol of A, the machine cycles indefinitely. Such a machine is defined by the quadruples

$$
qs'Rq
$$

for every symbol $s' \in \tilde{A} - A$ and

qssq

fo[r](#page-7-0) every [s](#page-4-0)[y](#page-5-0)[m](#page-15-0)[b](#page-16-0)[o](#page-4-0)[l](#page-5-0) $s \in A$ $s \in A$. Thus, when M enc[ou](#page-7-0)n[te](#page-9-0)r[s a](#page-8-0) symbol [of](#page-16-0) A it enters an infinite cycle.

Theorem

Let A and \tilde{A} be two alphabets such that $A \subseteq \tilde{A}$, and let L be such that $L \subseteq A^*$. Then, L is a r.e. set on the alphabet A if and only if L is an r.e. on A .

Proof.

Let L be a r.e. set on alphabet A and let M be a TM on alphabet A that accepts L.

We may assume that M begins by moving right until if finds a blank and then returns to its initial position.

Let \tilde{M} be the TM obtained from M by adding the quadruples qssq for each symbol $s \in \tilde{A} - A$ and each state q of M. Thus, $\tilde{\mathcal{M}}$ enters an infinite loop if it encounters a symbol in $A - A$. Since $\mathcal M$ has the alphabet A and accepts the language L , it follows that L is a r.e. language on \tilde{A} .

Proof cont'd

Conversely, let L be language over alphabet A that is a r.e. as a language over \tilde{A} , and let M be a TM with alphabet \tilde{A} that accepts L.

Let $g(x)$ be the function on A^* that M computes. The symbols in \tilde{A} – A serve as markers.

Since $L \subseteq A^*$ we have:

$$
L = \{x \in A^* \mid g(x) \downarrow\}.
$$

Since $g(x)$ is partially computable, it follows that L is a r.e. language over A.

Corollary

Let A and \tilde{A} be two alphabets such that $A \subseteq \tilde{A}$, and let L be such that $L \subseteq A^*$. Then, L is a recursive language on A if and only if L is a recursive language on \tilde{A} .

Proof.

Suppose that L is a recursive language on A . Then, both L and $A^* - L$ are r.e. languages over A and, therefore, they are r.e. languages over \ddot{A} . Since $\tilde{\cal A}^*-{\cal L}= (\tilde{\cal A}^*-{\cal A}^*)\cup ({\cal A}^*-{\cal L})$, and $\tilde{\cal A}^*-{\cal A}^*$ is r.e. by the Theorem on Slide [9,](#page-8-1) it follows that \tilde{A}^* is r.e. Therefore, L is a recursive language on \ddot{A} .

Proof cont'd

Conversely, let L be a recursive language on \tilde{A} . Then both L and $\tilde{A}^* - L$ are r.e. languages on \tilde{A} , and therefore, L is a r.e. language over A. Since $A^* - L = (\tilde{A}^* - L) \cap A^*$, and A^* is obviously r.e. (as a language on A and therefore on \widetilde{A}) it follows that $A^* - L$ is a r.e. language on \tilde{A} and hence on A. Thus, L is a recursive language on \mathcal{A}_{\cdot}

Theorem

A set U of numbers is r.e. if and only if there is a TM M with alphabet $\{1\}$ that accepts 1^{\times} if and only if $x \in U$.

Proof.

This follows immediately from the previous theorem.

[An Anecdote – Why You Should Care about Computability](#page-16-0)

Example

Let F be a set of program codes

$$
F = \{x \mid \Phi_x(y) = 0 \text{ for finitely many } y\}.
$$

The set of ys such that $\Phi_x(y) = 0$ is called here the support of Φ_x . The set F is non trivial since some but not all functions have finite support. It is also an index set since if $\Phi_a = \Phi_b$, then $a \in F$ if and only $b \in F$.

Let d be such that $\Phi_d(y) \uparrow$ for all y. Clearly, $d \in F$ because the support of Φ_d is empty, and therefore, finite. There are computable extensions of Φ_d such that these extensions are 0 for infinitely many y. Thus, F is not r.e. by the second Rice theorem. So what?

[An Anecdote – Why You Should Care about Computability](#page-16-0)

The observation of the previous slide is essential for machine learning (my research field).

It implies that there are no algorithms to learn functions in F from the values of the inputs in the finite support. One cannot get around this learning limitation by enumerating functions having finite supports until you find a function that matches the given function. Thus, enumeration fails in machine learning! This makes ML interesting and challenging!