THEORY OF COMPUTATION Unsolvable Word Problems - 23

Prof. Dan A. Simovici

UMB

1 / 21

 QQQ

 $A \equiv 1 + \sqrt{2} \Rightarrow A \equiv 1 + \sqrt{2} \Rightarrow \quad \equiv 1$

 L_{Outline} L_{Outline} L_{Outline}

1 [Unsolvable Word Problems](#page-2-0)

Definition

The word problem for a semi-Thue process Π is the determination if for any pair u, v of words on the alphabet of Π we have $u \stackrel{*}{\Rightarrow} v$.

Recall that a TM M defines two semi-Thue systems:

 $\mathbf{E}(\mathcal{M})$ that has productions associated with the quadruples of a TM M aims to simulate the effect of quadruples on Post words.

and $\Omega(\mathcal{M})$ that consists of the inverses of all productions of $\Sigma(M)$.

Theorem

There is a Turing machine M such that the word problem is unsolvable for both $\Sigma(\mathcal{M})$ and $\Omega(\mathcal{M})$.

Proof.

We saw that there exists a deterministic TM M that accepts a non-recursive language. Suppose that the word problem for $\Sigma(\mathcal{M})$ were solvable. Then there would be an algorithm for testing given words u, v to determine whether

$$
u \stackrel{*}{\Rightarrow} v.
$$

By a previous theorem, we could use this algorithm to determine whether M will accept a given word u by testing whether

$$
hq_1s_0uh \overset{*}{\Rightarrow} hq_0h.
$$

 Ω 5 / 21

Proof cont'd

We would thus have an algorithm for testing a given word *to see* whether M will accept it. But such an algorithm cannot exist since the language accepted by M is not a recursive set. Finally, an algorithm that solved the word problem for $\Omega(\mathcal{M})$ would also solve the word problem for $\Sigma(\mathcal{M})$ because

$$
u \overset{*}{\Rightarrow} v \text{ if and only if } u \overset{*}{\Rightarrow} v.
$$

6 / 21

メロメ 大御 メメモメ 大臣メー 差

Definition

A semi-Thue process is called a Thue process if the inverse of each production in the process is also in the process.

If a Thue process contains both $x \to y$ and $y \to x$ we write $x \Leftrightarrow y$. Also, recall that

$$
\Theta(\mathcal{M})=\Sigma(\mathcal{M})\cup \Omega(\mathcal{M}).
$$

Thus, $\Theta(\mathcal{M})$ is a Thue process.

Theorem

Post's Lemma: Let M be a deterministic TM. Let u be a word on the alphabet of M such that

$$
hq_1s_0uh \overset{*}{\Rightarrow} hq_0h.
$$

Then, we have

$$
hq_1s_0uh \overset{*}{\Rightarrow} hq_0h.
$$

8 / 21

 Ω

4 ロ > 4 何 > 4 ミ > 4 ミ > - ミ

Recall that a Post word is a word of the form $h uq_i v h$.

Proof

Let the sequence

$$
hq_1s_0uh=w_1, w_2,\ldots, w_\ell=hq_0h
$$

be a derivation in $\Theta(\mathcal{M})$. Since w_1 is a Post word, and each production of $\Theta(\mathcal{M})$ transforms Post words into Post words, we can conclude that the entire derivation consists of Post words. We need to eliminate the production of $\Omega(\mathcal{M})$ from this derivation. Assume that the last time in the derivation that a production of $\Omega(\mathcal{M})$ was used in getting from w_i to w_{i+1}, that is,

$$
w_i \Rightarrow_{\Omega(\mathcal{M})} w_{i+1} \Rightarrow_{\Sigma(\mathcal{M})} \cdots \stackrel{*}{\Rightarrow}_{\Sigma(\mathcal{M})} = w_{\ell} = hq_0h.
$$

9 / 21

Proof cont'd

Since $\Omega(\mathcal{M})$ consists of inverses of productions of $\Sigma(\mathcal{M})$, we must have w_{i+1} \Rightarrow w_i . Moreover, we must have $i+1<\ell$ because no production of $\Sigma(\mathcal{M})$ can be applied to $w_{\ell} = hq_0h$. Since w_{i+1} is a Post word and

$$
w_{i+1} \Rightarrow_{\Sigma(\mathcal{M})} w_i \text{ and } w_{i+1} \Rightarrow_{\Sigma(\mathcal{M})} w_{i+2},
$$

it follows that $w_{i+2} = w_i$. Thus, the transition from w_i to w_{i+1} and back to $w_{i+2} = w_i$ is unnecessary, that is, the sequence

$$
w_1, w_2, \ldots, w_i, w_{i+3}, \ldots, w_\ell
$$

is a derivation in $\Theta(\mathcal{M})$. We have shown that any derivation that uses a production from $\Omega(M)$ can be shortened. Continuing this way we reach a derivation using only $\Sigma(\mathcal{M})$.

Theorem

(The Post-Markov Theorem) If the deterministic TM M accepts a non-recursive set, then the word problem for the Thue process $\Theta(\mathcal{M})$ is unsolvable.

Proof.

 M accepts u if and only if

$$
hq_1s_0uh \overset{*}{\Rightarrow} hq_0h
$$

if and only if

$$
hq_1s_0uh \overset{*}{\Rightarrow} hq_0h.
$$

Hence, an algorithm for solving the word problem for $\Theta(\mathcal{M})$ could be used to determine whether or not M will accept u, which is impossible.

Theorem

There is a semi-Thue process on the alphabet $\{a, b\}$ whose word problem is unsolvable. Moreover, for each production $x \rightarrow y$ of this semi-Thue process we have $x \neq 0$ and $y \neq 0$.

Proof

Let Π be a semi-Thue process on the alphabet $A = \{a_1, \ldots, a_n\}$. The production of Π are $x_i \rightarrow y_i$ for $1 \leq i \leq m$. We assume that $x_i \neq 0$ and $y_i \neq 0$ for each i, $1 \leq i \leq m$. This is OK because this condition is satisfied by the productions of $\Sigma(\mathcal{M})$.

Proof cont'd

Denote a word $ba^j b$ that consists of j a(s) between two b(s) as a'_j . If $w \neq 0$ and $w = a_{j_1}a_{j_2}\cdots a_{j_k}$, then we can encode w as a word w' in $\{a, b\}^*$ defined as

$$
w'=a'_{j_1}a'_{j_2}\cdots a'_{j_k}.
$$

14 / 21

KO KARK KEK KEK EL YAN

In addition, $0' = 0$.

Proof cont'd

For example, if $w = a_2 a_1 a_3$, then

 $w' = baabbabbaaab$.

Proof cont'd

Consider the semi-Thue process Π' on the alphabet $\{a, b\}$ whose productions are $x'_i \rightarrow y'_i$. Claim 1: If $u \Rightarrow v$, then we have $u' \Rightarrow v'$. Indeed, if $u = rx_i s$ and $v = ry_i s$, we have $u' = r'x_i' s'$ and $v' = r'y'_j s'$, so $u' \Rightarrow v'$.

> イロト イ団 トイヨト イヨト 一番 16 / 21

Proof cont'd

Claim 2: If $u' \Rightarrow w$ then for some $v \in A^*$ we have $w = v'$ and $u \Rightarrow v.$ We have $u' = px'_i q$ and $w = py'_i q$. Since $x_i \neq 0$, y_i begins and ends with a b . Hence, each of p and q either begins and ends with a *b* or is 0, so that $p = r'$, $q = s'$. Then, $u = rx_i s$. Let $v = ry_i s$. Then $w = v'$ and $u \Rightarrow v$.

Claim 3: We have
$$
u \stackrel{*}{\Rightarrow} v
$$
 if and only if $u' \stackrel{*}{\Rightarrow} v'$.
If

$$
u=u_1 \Rightarrow u_2 \Rightarrow \cdots \Rightarrow u_n=v,
$$

then by Claim 1,

$$
u' = u'_1 \Rightarrow u'_2 \Rightarrow \cdots \Rightarrow u'_n = v'.
$$

$$
\Box \rightarrow \Box \Box \rightarrow \Box \Box \rightarrow \Box \Box \rightarrow \Box \Box \Box \Box
$$
\n
$$
18/21
$$

 \mathcal{A}

Claim 3 continued: Conversely, if

$$
u' = u'_1 \Rightarrow u'_2 \Rightarrow \cdots \Rightarrow u'_n = v',
$$

then by Claim 2, for each w_i there is a string $u_i \in A^*$ such that $w_i = u'_i$. Thus,

$$
u' = u'_1 \Rightarrow u'_2 \Rightarrow \cdots \Rightarrow u'_n = v'.
$$

By applying again Claim 2, we have:

$$
u=u_1 \Rightarrow u_2 \Rightarrow \cdots \Rightarrow u_n=v,
$$

19 / 21

KORKA BRASH ST AND

so that $u \stackrel{*}{\Rightarrow} v$.

Proof cont'd;

By Claim 3, if the word problem were solvable for Π′ , the word problem for Π would also be solvable. Hence, the word problem for Π ′ is unsolvable.

If the semi-Thue process on the alphabet $\{a, b\}$ is actually a Thue process, then Π' will be a Thue process on $\{a, b\}$. Thus, we have:

Theorem

There is a Thue process on the alphabet $\{a, b\}$ whose word problem is unsolvable. Moreover, for each production $x \rightarrow y$ of this Thue process, $x, y \neq 0$.