THEORY OF COMPUTATION Unsolvable Word Problems - 23

Prof. Dan A. Simovici

UMB

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○○

1/21

Outline

1 Unsolvable Word Problems

Definition

The word problem for a semi-Thue process Π is the determination if for any pair u, v of words on the alphabet of Π we have $u \stackrel{*}{\underset{\Pi}{\longrightarrow}} v$.

Recall that a TM \mathcal{M} defines two semi-Thue systems:

 Σ(M) that has productions associated with the quadruples of a TM M aims to simulate the effect of quadruples on Post words.

Quadruple	semi-Thue Production
$q_i s_j s_k q_\ell$	$q_i s_j o q_\ell s_k$
$q_i s_j R q_\ell$	$q_i s_j s_k o s_j q_\ell s_k, 0 \leqslant k \leqslant K$
	$q_i s_j h o s_j q_\ell s_0 h$
$q_i s_j L q_\ell$	$s_k q_i s_j ightarrow q_\ell s_k s_j, 0 \leqslant k \leqslant K$
	$hq_is_j ightarrow hq_\ell s_0s_j$

• and $\Omega(\mathcal{M})$ that consists of the inverses of all productions of $\Sigma(\mathcal{M})$.

Theorem

There is a Turing machine \mathcal{M} such that the word problem is unsolvable for both $\Sigma(\mathcal{M})$ and $\Omega(\mathcal{M})$.

Proof.

We saw that there exists a deterministic TM \mathcal{M} that accepts a non-recursive language. Suppose that the word problem for $\Sigma(\mathcal{M})$ were solvable. Then there would be an algorithm for testing given words u, v to determine whether

$$u \stackrel{*}{\Rightarrow} v$$

By a previous theorem, we could use this algorithm to determine whether \mathcal{M} will accept a given word u by testing whether

$$hq_1s_0uh \stackrel{*}{\underset{\Sigma(\mathcal{M})}{\Rightarrow}} hq_0h$$

প ় ়ে 5 / 21

Proof cont'd

We would thus have an algorithm for testing a given word u to see whether \mathcal{M} will accept it. But such an algorithm cannot exist since the language accepted by \mathcal{M} is not a recursive set. Finally, an algorithm that solved the word problem for $\Omega(\mathcal{M})$ would also solve the word problem for $\Sigma(\mathcal{M})$ because

$$u \stackrel{*}{\underset{\Sigma(\mathcal{M})}{\Rightarrow}} v$$
 if and only if $u \stackrel{*}{\underset{\Omega(\mathcal{M})}{\Rightarrow}} v$

Definition

A semi-Thue process is called a **Thue process** if the inverse of each production in the process is also in the process.

If a Thue process contains both $x \to y$ and $y \to x$ we write $x \Leftrightarrow y$. Also, recall that

$$\Theta(\mathcal{M}) = \Sigma(\mathcal{M}) \cup \Omega(\mathcal{M}).$$

Thus, $\Theta(\mathcal{M})$ is a Thue process.

Theorem

Post's Lemma: Let \mathcal{M} be a deterministic TM. Let u be a word on the alphabet of \mathcal{M} such that

$$hq_1s_0uh \stackrel{*}{\underset{\Theta(\mathcal{M})}{\Rightarrow}} hq_0h.$$

Then, we have

$$hq_1s_0uh \stackrel{*}{\underset{\Sigma(\mathcal{M})}{\Rightarrow}} hq_0h.$$

Recall that a Post word is a word of the form huq_ivh .

Proof

Let the sequence

$$hq_1s_0uh = w_1, w_2, \ldots, w_\ell = hq_0h$$

be a derivation in $\Theta(\mathcal{M})$. Since w_1 is a Post word, and each production of $\Theta(\mathcal{M})$ transforms Post words into Post words, we can conclude that the entire derivation consists of Post words. We need to eliminate the production of $\Omega(\mathcal{M})$ from this derivation. Assume that the last time in the derivation that a production of $\Omega(\mathcal{M})$ was used in getting from w_i to w_{i+1} , that is,

$$w_i \underset{\Omega(\mathcal{M})}{\Rightarrow} w_{i+1} \underset{\Sigma(\mathcal{M})}{\Rightarrow} \cdots \underset{\Sigma(\mathcal{M})}{\overset{*}{\Rightarrow}} = w_\ell = hq_0h.$$

9/21

(日) (四) (モ) (モ) (モ)

Proof cont'd

Since $\Omega(\mathcal{M})$ consists of inverses of productions of $\Sigma(\mathcal{M})$, we must have $w_{i+1} \Rightarrow w_i$. Moreover, we must have $i+1 < \ell$ because no production of $\Sigma(\mathcal{M})$ can be applied to $w_\ell = hq_0h$. Since w_{i+1} is a Post word and

$$w_{i+1} \stackrel{\Rightarrow}{\underset{\Sigma(\mathcal{M})}{\Rightarrow}} w_i \text{ and } w_{i+1} \stackrel{\Rightarrow}{\underset{\Sigma(\mathcal{M})}{\Rightarrow}} w_{i+2},$$

it follows that $w_{i+2} = w_i$. Thus, the transition from w_i to w_{i+1} and back to $w_{i+2} = w_i$ is unnecessary, that is, the sequence

$$W_1, W_2, \ldots, W_i, W_{i+3}, \ldots, W_{\ell}$$

is a derivation in $\Theta(\mathcal{M})$. We have shown that any derivation that uses a production from $\Omega(\mathcal{M})$ can be shortened. Continuing this way we reach a derivation using only $\Sigma(\mathcal{M})$.

Theorem

(The Post-Markov Theorem) If the deterministic TM \mathcal{M} accepts a non-recursive set, then the word problem for the Thue process $\Theta(\mathcal{M})$ is unsolvable.

Proof.

 $\mathcal M$ accepts u if and only if

$$hq_1s_0uh \stackrel{*}{\underset{\Sigma(\mathcal{M})}{\Rightarrow}} hq_0h$$

if and only if

$$hq_1s_0uh \stackrel{*}{\underset{\Theta(\mathcal{M})}{\Rightarrow}} hq_0h.$$

Hence, an algorithm for solving the word problem for $\Theta(\mathcal{M})$ could be used to determine whether or not \mathcal{M} will accept u, which is impossible.

Theorem

There is a semi-Thue process on the alphabet $\{a, b\}$ whose word problem is unsolvable. Moreover, for each production $x \rightarrow y$ of this semi-Thue process we have $x \neq 0$ and $y \neq 0$.

Proof

Let Π be a semi-Thue process on the alphabet $A = \{a_1, \ldots, a_n\}$. The production of Π are $x_i \to y_i$ for $1 \le i \le m$. We assume that $x_i \ne 0$ and $y_i \ne 0$ for each $i, 1 \le i \le m$. This is OK because this condition is satisfied by the productions of $\Sigma(\mathcal{M})$.

Proof cont'd

Denote a word $ba^{j}b$ that consists of j a(s) between two b(s) as a'_{j} . If $w \neq 0$ and $w = a_{j_1}a_{j_2}\cdots a_{j_k}$, then we can encode w as a word w' in $\{a, b\}^*$ defined as

$$w'=a'_{j_1}a'_{j_2}\cdots a'_{j_k}.$$

In addition, 0' = 0.

THEORY OF COMPUTATION Unsolvable Word Problems - 23

Unsolvable Word Problems

Proof cont'd

For example, if $w = a_2 a_1 a_3$, then

w' = baabbabbaaab.

Proof cont'd

Consider the semi-Thue process Π' on the alphabet $\{a, b\}$ whose productions are $x'_i \to y'_i$. Claim 1: If $u \Rightarrow v$, then we have $u' \Rightarrow v'$. Indeed, if $u = rx_is$ and $v = ry_is$, we have $u' = r'x'_is'$ and $v' = r'y'_is'$, so $u' \Rightarrow v'$.

Proof cont'd

Claim 2: If $u' \Rightarrow w$ then for some $v \in A^*$ we have w = v' and $u \Rightarrow v$. We have $u' = px'_i q$ and $w = py'_i q$. Since $x_i \neq 0$, y_i begins and ends with a *b*. Hence, each of *p* and *q* either begins and ends with a *b* or is 0, so that p = r', q = s'. Then, $u = rx_i s$. Let $v = ry_i s$. Then w = v' and $u \Rightarrow v$.

Claim 3: We have
$$u \stackrel{*}{\underset{\Pi}{\Rightarrow}} v$$
 if and only if $u' \stackrel{*}{\underset{\Pi'}{\Rightarrow}} v'$.
If

$$u = u_1 \Rightarrow u_2 \Rightarrow \cdots \Rightarrow u_n = v,$$

then by Claim 1,

$$u' = u'_1 \Rightarrow u'_2 \Rightarrow \cdots \Rightarrow u'_n = v'.$$

Claim 3 continued: Conversely, if

$$u' = u'_1 \stackrel{\Rightarrow}{\Rightarrow} u'_2 \stackrel{\Rightarrow}{\Rightarrow} \cdots \stackrel{\Rightarrow}{\Rightarrow} u'_n = v',$$

then by Claim 2, for each w_i there is a string $u_i \in A^*$ such that $w_i = u'_i$. Thus,

$$u' = u'_1 \Rightarrow u'_2 \Rightarrow \cdots \Rightarrow u'_n = v'.$$

By applying again Claim 2, we have:

$$u = u_1 \Rightarrow u_2 \Rightarrow \cdots \Rightarrow u_n = v,$$

so that $u \stackrel{*}{\Rightarrow} v$.

19 / 21

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● ○ の Q (0)

Proof cont'd;

By Claim 3, if the word problem were solvable for Π' , the word problem for Π would also be solvable. Hence, the word problem for Π' is unsolvable.

If the semi-Thue process on the alphabet $\{a, b\}$ is actually a Thue process, then Π' will be a Thue process on $\{a, b\}$. Thus, we have:

Theorem

There is a Thue process on the alphabet $\{a, b\}$ whose word problem is unsolvable. Moreover, for each production $x \rightarrow y$ of this Thue process, $x, y \neq 0$.