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Post’s Correspondence Problem

The Post Correspondence Problem can be viewed as a single player
game played with a special set of dominoes. There is an infinite
supply of dominoes of each kind.
To win a game is to reach a situation where the same word
appears on the top halves as one the bottom halves when we read
across from left to right.
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Post’s Correspondence Problem

Each domino has a word that appears on each half. A typical
domino is shown below;

baab

aba

A Post correspondence problem is a finite set of dominoes. Each
move consists in placing one of the dominoes of the system to the
right of the dominoes placed in the previous moves.
To win the game we need to reach a situation where the same
word appears on the top halves as well as on the bottom half of
the dominoes.
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Post’s Correspondence Problem

If we start with a set of three dominoes

aa

a

,
b

bb

,
bb

a

one could have the following game:

aa

a

bb

a

b

bb

b

bb
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Post’s Correspondence Problem

Note that:

one of the dominoes is used twice;

the word aabbbb appear both on the top half and the lower
half.

A Post correspondence system has a solution if and only if it is
possible to win the game defined by the system.
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Post’s Correspondence Problem

Theorem

There is no algorithm that can determine whether a Post
correspondence system has a solution.

Proof:
We know that there exists a semi-Thue process Π on {a, b} whose
word problem is unsolvable. For every production x → y we can
assume that x , y ̸= 0.
We add to the productions of Π the productions a → a and b → b

which have no effect on whether u
∗⇒
Π

v . However, it guarantees

that whenever u
∗⇒
Π

v , there is a derivation

u = u1 ⇒
Π

u2 ⇒
Π

· · · ⇒
Π

um = v

such that m is an odd number.
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Post’s Correspondence Problem

Proof cont’d:

Indeed, because of the added productions we have

ui ⇒
Π

ui

for every i so any step of the derivation can be repeated in order to
change the length of the derivation.
Let u, v ∈ {a, b}∗. We construct a Post correspondence problem
Πu,v which depends on Π, u, and v such that Πu,v has a solution if

and only if u
∗⇒
Π

v .

Proving the existence of Πu,v with the above mentioned property
implies the theorem. Indeed, if there were an algorithm for
determining whether a PCP has a solution, this algorithm applied

to Πu,v would determine whether u
∗⇒
Π

v . Since Π has an

unsolvable word problem, this is impossible.
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Post’s Correspondence Problem

Proof cont’d:

Let the n productions of Π be xi → yi for 1 ⩽ i ⩽ n, including
a → a and b → b.
The alphabet of the Post correspondence problem Πu,v consists of
eight symbols:

a b ã b̃ [ ] ∗ ∗̃.

If w ∈ {a, b}∗ we denote by w̃ the word on {ã, b̃} obtained by
replacing a, b with ã, b̃, respectively.
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Post’s Correspondence Problem

Proof cont’d:

Πu,v consists of 2n + 4 dominoes shown below:

4 dominoes:

[

[u∗

,
∗̃

∗

,
∗

∗̃

,
∗̃v ]

]

,

2n dominoes corresponding to the n productions xi → yi of Π
for 1 ⩽ i ⩽ n:

xi

ỹi

,
x̃i

yi
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Post’s Correspondence Problem

The second group includes the four dominoes:

ã

a

,
a

ã

,
b̃

b

,
b

b̃
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Post’s Correspondence Problem

Note that it is OK to use dominoes of the form

p

p̃

or
p̃

p

because any such dominoes can be assembled from dominoes in
the list

ã

a

,
a

ã

,
b̃

b

,
b

b̃
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Post’s Correspondence Problem

We prove first that if u
∗⇒
Π

v , then there is a solution to Πu,v .

Since u
∗⇒
Π

v , there is a derivation

u = u1 ⇒
Π

u2 ⇒
Π

· · · ⇒
Π

um = v ,

where m is an odd number. Thus, for each i , 1 ⩽ i < m we have

ui = pixjiqi , ui+1 = piyjiqi ,

where we used the j thi production of Π, xji → yji .
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Post’s Correspondence Problem

We claim that the word

[u1 ∗ ũ2 ∗̃ u3 ∗ · · · ∗ ũm−1 ∗̃ um]

is a solution of Πu,v .
The beginning of the sequence of dominoes is:

[

[u1∗

p1

p̃1

xj1

ỹj1

q1

q̃1

∗

∗̃

· · ·
At this stage the word on top is [u1 ∗ ũ2∗̃ while at the bottom we
have [u1∗.
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Post’s Correspondence Problem

The play continues as follows:

[

[u∗

p1

p̃1

xj1

ỹj1

q1

q̃1

∗

∗̃

p̃2

p2

x̃j2

yj2

q̃2

q2

∗̃

∗

The word at the top is [u1 ∗ ũ2∗̃u3∗ and the word at the bottom is
[u1 ∗ ũ2∗̃.
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Post’s Correspondence Problem

Since m is an odd number we can win as follows:

[

[u∗

p1

p̃1

· · ·
∗

∗̃

p̃m−1

pm−1

x̃jm−1

yjm−1

q̃m−1

qm−1

∗̃v

]

because at this point the top and the bottom words are equal to
[u1 ∗ ũ2∗̃u3 ∗ · · · ∗ ũm−1∗̃um].

16 / 21



THEORY OF COMPUTATION Post’ Correspondence Problem - 24

Post’s Correspondence Problem

Conversely, suppose that Πu,v has a solution w . Examining the set
of tiles the only possible way to win is to play

[

[u∗

and
∗̃v ]

]

first and last, respectively, because none of the other dominoes in
Π have tops and bottoms that begin or end with the same symbols.
Thus, w must begin with [ and end with ].
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Post’s Correspondence Problem

Since we know that the game looks like

[

[u∗

· · ·
∗̃v ]

]

a solution looks line
[u ∗ · · · ∗̃v ]

Continuing from the left the play must go

[

[u∗

xi1

ỹi1

xi2

ỹi2

· · ·
xik

ỹik

∗

∗̃

where xi1xi2 · · · xik = u. This is necessary in order for the bottom to
catch up with u∗ which is already at the top.
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Post’s Correspondence Problem

Writing u = u1 and u2 = yi1yi2 · · · yik we see that u1
∗⇒
Π

u2 and

that the solution has he form

[u1 ∗ ũ2∗̃ · · · ∗̃v ]
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Post’s Correspondence Problem

The play continues as

[

[u∗

xi1

ỹi1

xi2

ỹi2

· · ·
xik

ỹik

∗

∗̃

x̃j1

yj1

x̃j2

yj2

· · ·
x̃jℓ

yjℓ

∗̃

∗

where u2 = xj1xj2 · · · xjk . Again, writing

u3 = yj1yj2 · · · yjℓ

we have u2
∗⇒
Π

u3 and the solution has the form

[u1 ∗ ũ2∗̃u3 ∗ · · · ∗̃v ].

20 / 21



THEORY OF COMPUTATION Post’ Correspondence Problem - 24

Post’s Correspondence Problem

Continuing, it is clear that the solution can be written as

[u1 ∗ ũ2∗̃u3 ∗ · · · ũm−1∗̃um]

where

u = u1
∗⇒
Π

u2
∗⇒
Π

u3
∗⇒
Π

· · ·
∗⇒
Π

um−1

∗⇒
Π

um = v ,

so that u
∗⇒
Π

v .

21 / 21


	Outline
	Post's Correspondence Problem

