THEORY OF COMPUTATION Grammars - 25

THEORY OF COMPUTATION
Grammars - 25

Prof. Dan A. Simovici

UMB

1/42

THEORY OF COMPUTATION Grammars - 25
L outline

Grammars

Languages Generated by Grammars

Unsolvable Problems Concerning Grammars

2/42

THEORY OF COMPUTATION Grammars - 25
L Grammars

A grammar is a semi-Thue process that involves two types of
symbols:

nonterminal symbols or variables denoted by capital letters,
X,Y,Z,S,..., and

terminal symbols or terminals denoted by small letters,
a,b,c,....

A special nonterminal symbol S is the start symbol.
In addition, for every production x — y the left part contains a
nonterminal symbol.

3/42

THEORY OF COMPUTATION Grammars - 25

L Grammars

A grammar will be denoted as
r=Ww,T,S,P),

where
m)V is the set of non-terminals or variables;
m T is the set of terminals;
m S €V is the start symbol, and
m P is the set of productions.

4/42

THEORY OF COMPUTATION Grammars - 25
L Grammars

Definition

The language generated by I is the set L(I') C T* given by

L) ={ueT" | §= u).

Note that in a grammar all non-terminal symbols are eliminated in
the derivation process that ends up with a word over the terminal
alphabet.

5/42

THEORY OF COMPUTATION Grammars - 25
L Grammars

Example

Let ' =({S,X, Y}, {a,b},5,{S—=> X, X—=aX, X—->0,X —
Y,Y = bY,Y — 0}).

Every derivation in I' that begins with S and ends with a word in
T* has the form

S = X = aX = aaX
r r r
:r> aaaX :r> aaa¥Y ? aaabY

:r> aaabbY :r> aaabb.

Thus, the language L(T') is {a"b™ | n,m € N}.

6/42

THEORY OF COMPUTATION Grammars - 25
L Grammars

Example

Let ' = ({S},{a, b},S,{S — aSbh, S — 0}).
Every derivation in I that begins with S and ends with a word in
T* has the form

S =r> aSh =r> aaSbb =r> aaaSbbb

:r> aaabbb.

The language generated by this grammar is
L(r)={a"b" | n € N}.

7/42

THEORY OF COMPUTATION Grammars - 25
L Grammars

Example

Consider the grammar
r={S,X,Y},{ab,c},S,P),
where P consists of the following productions:

m : S—abc, m : S— aXbc,

m : Xb— bX, m : Xc— Ybcc,
ma : bY = Yb, w5 : aY — aaX,
e : aY — aa

We will refer later in this lecture to this kind of grammars as
length-increasing grammars because for each of its productions
x — y we have |x| < |y|.

8/42

THEORY OF COMPUTATION Grammars - 25

L Grammars

Example cont'd

We claim that L(I') = {a"b"c" | n € P}.
m Any word o € {S, X, Y, a, b, c}* that occurs in a derivation,
S = « contains at most one nonterminal symbol.
m A derivation must end either by applying the production

S — abc or the production aY — aa because only these
productions allow us to eliminate a nonterminal symbol.

m If the last production is S — abc, then the derivation is
S = abc, and the derived word has the form prescribed.

Otherwise, the symbol Y must be generated starting from S,
and the first production applied is S — aXbc.

9/42

THEORY OF COMPUTATION Grammars -

L Grammars

Example cont'd

Note that for every i

25

> 1 we have

aXp'c' = ' TIxp it

Indeed, we can write:

aXbic =
2
1
=

4

a' b Xc!

ai Ybi+lci+1

1
=
3

1
=

5

aibi chi+1

ai-‘rlei-‘rlCH-l

We claim that a word « contains the infix aY' (which allows us to

apply the production 7s) and S :} « if and only if « has the form

a=a'Ybtlcitl for some i > 1.

10/ 42

THEORY OF COMPUTATION Grammars - 25

L Grammars

Example cont'd

An easy argument by induction on i > 1 allows us to show that if
a=aYbt1ct! then S ::} a. We need to prove only the inverse
implication. This can be done by strong induction on the length

n > 3 of the derivation S Z} .

The shortest derivation that allows us to generate the word
containing the infix aY is

S :r> aXbc :|_> abXc :I_> abYbcc ? aYb?c?,

and this word has the prescribed form.

11/42

THEORY OF COMPUTATION Grammars - 25

L Grammars

Example cont'd

Suppose now that for derivations shorter than n the condition is
*
satisfied, and let S =G> « be a derivation of length n such that «

contains the infix aY. By the inductive hypothesis the previous
word in this derivation that contains the infix aY has the form
o = YPTIItL To proceed from o’ we must apply the
production 75 and replace Y by X. Thus, we have

S = JYBHIIH o JrixpHIIHL
G G

12/42

THEORY OF COMPUTATION Grammars - 25

L Grammars

Example cont'd

Next, the symbol X must “travel” to the right using the
production 7y, transform itself into an Y (when in touch with the
cs) and Y must “travel” to the left to create the infix aY. This
can happen only through the application of the productions 73 and
74, as follows:
JHLxpHIt B ity
2

L iyt
3

i i1\ jt2 42
= Ftlyp~+ CJ+-,

4

which proves that « has the desired form. Therefore, all the words
in the language L(I') have the form a"b"c".

13/42

THEORY OF COMPUTATION Grammars - 25

L Grammars

Let U be a language accepted by a nondeterministic Turing
machine M. Then, there is a grammar I such that U = L(T")

14 /42

THEORY OF COMPUTATION Grammars - 25

L Grammars

Proof

Recall that we defined a semi-Thue process Q(,M) attached to the
™ M.

We started from M and defined first the semi-Thue system ¥ (M)
on the alphabet

50,515---55K,40,q1; - -, qnaqn-f-l?h
containing the following productions:

Quadruple | semi-Thue Production

qi Sj Sk qe | 9iSj — QeSk

qi sj Rae | gisisk — sjquesk, 0 < k < K
q,'th — SngSoh

qisiLae | qesksj — soqesk,0 < k < K
hq,-sj — hngon

15/42

THEORY OF COMPUTATION Grammars - 25

L Grammars

Proof cont'd

In addition we included in (M) the following productions:

m whenever g;s; are not the first two symbols of a quadruple of
M we place in (M) the production gjsj — gn115;. Thus,
gn+1 serves as “halt” state.

m Finally, we place in (M) the productions:
qn+1Si — qn+170 < i < K,

Cln+1h—>CI0h7
siqo — qo,0 < 1 < K.

16 /42

THEORY OF COMPUTATION Grammars - 25

L Grammars

Proof cont'd

The system Q(M) contains the productions

Quadruple
qi Sj Sk qe

semi-Thue Production
qeSk — qiSj

qisi R qu

Siqesk — qisjsk, 0 < k < K
Siqg50/7-—9 qisih

qi sj L aq

S0qeSk — qesks;; 0 < k < K
hqesos; — hq;s;

17/42

THEORY OF COMPUTATION Grammars - 25

L Grammars

Proof cont'd

In addition, we have in Q(M):

B gn+1S) — q;sj when g;s; are not the first two symbols of a
quadruple of M, and

Gn+1 = Gnt15i,0 < i < K,

qoh — Qn+1h,
do — Siqo0,0 < i < K.

18/ 42

THEORY OF COMPUTATION Grammars - 25

L Grammars

Proof cont'd

We construct the grammar I by modifying the semi-Thue process
Q(M) as follows:

m the terminals of I' are just the letters of the alphabet
T ={s1,...,5m} of M;
m the non-terminals (variables) of I are the symbols of Q(M)
notin T, So0,q0,---,qn, Gns1, h;
m two additional non-terminals S and q.
S is the start symbol of T

19/ 42

THEORY OF COMPUTATION Grammars - 25

L Grammars

Proof cont'd

The production of I are:

m the productions of Q(M);
m S — hgoh
® hqiso — q;
m gs — sq foreachse T;
|

gh — 0.

20/42

THEORY OF COMPUTATION Grammars - 25

L Grammars

Proof cont'd

Suppose M accepts u € T*, that is:
= =
S :r> hgoh - hqgisouh :r> quh z ugh :r> u,

so that u € L(I).

21/42

THEORY OF COMPUTATION Grammars - 25

L Grammars

Proof cont'd

Conversely, let u € L(I'). Then, u€ T* and S =:> u. Examining
the list of productions of I' this derivation can be written as

*
S = hqoh = vqhz = = u.
g qo rVquVZ u

Note that g could be introduced only by using the production
hgisp — q. Thus, the derivation has the form

S :|_> hqoh ::> xhq1spyhz :|_> xqyhz ::> xyqhz :r> Xyz = u,

where xy = v. Thus, there is a derivation of xhqisoyhz from hqoh
in . This derivation must actually be a derivation in Q(M)
because the added productions are inapplicable.

22/42

THEORY OF COMPUTATION Grammars - 25

L Grammars

Proof cont'd

The productions in Q(M) always lead from Post words to Post
words, hence xhqyspyhz must be a Post word, which implies
x =z=0and u=xyz=y. We conclude that

A
hqoh M) hqysouh,

which implies that M accepts wv.

23 /42

THEORY OF COMPUTATION Grammars - 25
LLanguages Generated by Grammars

Let [be a grammar having the alphabet
{517'”75n7 V17"'7 Vk})

where T = {s1,...,s,} is the set of terminals and {V4,..., Vk} is
the set of variables (nonterminals). We assume that S = V; is the
start symbol.

Assume that the alphabet of I is ordered as above and we regard
strings on this alphabet as integers in the base n + k.

24 /42

THEORY OF COMPUTATION Grammars - 25
LLanguages Generated by Grammars

The predicate u :I_> v is primitive recursive.

Proof.

Let the production of ' be x; — y; for 1 < /i< £. For1 <i</
define the predicate PROD;(u, v) as

(3r,s)<ulu = CONCAT(r, x;, s)&v = CONCAT(r, y;, s)]

Since CONCAT is primitive recursive, PROD; is primitive recursive.
Since u :r> v if and only if

PROD;(u, v) V PRODy(u,v) V-V PRODy(u, v)

the result follows. O

25 /42

THEORY OF COMPUTATION Grammars - 25
LLanguages Generated by Grammars

Define the predicate DERIV(u, y) to mean that for some m

y =[u1,...,Um,1], where uy, ..., un, is a derivation of u from S in
I, that is,
5:u1 = Uy = -+ = Upm = Uu.
r r r

1y has been added to avoid complications when u,, = u = 0.
Note that the value of S in the base n+ k is n+ 1 (because
S = V4 is the (n+ 1) symbol in the alphabetic list).

26 /42

THEORY OF COMPUTATION Grammars - 25
LLanguages Generated by Grammars

The predicate DERIV(u,y) is primitive recursive.

This follows from the following equivalent statements:

DERIV(u,y) < (3m)<,(m+1= Lt(y)
& (Y)1i=n+1&(y)m = v&(y)m+1 =1
& (%)l =0VI); = (1)jsa)

27 /42

THEORY OF COMPUTATION Grammars - 25

LLanguages Generated by Grammars

Note that
m By the definition of DERIV(u, y) we have

S = uif and only if (3y)DERIV(u,y).

= S = u ifand only if min, DERIV(u,y) |.

*
Therefore, {u | S s u} is recursively enumerable. Since

L(N=T*Nn{u| S :} u} it follows that L(I) is r.e.

28/42

THEORY OF COMPUTATION Grammars - 25

LLanguages Generated by Grammars

Corollary

A language U is r.e. if and only if there is a grammar " such that
U=L().

29 /42

THEORY OF COMPUTATION Grammars - 25

LLanguages Generated by Grammars

Putting together previous results we have the following

The following are equivalent for a language L:

Lisre.;

L is accepted by a deterministic TM;

L is accepted by a nondeterministic TM;
there is a grammar I such that L = L(T).

30/42

THEORY OF COMPUTATION Grammars - 25
LLanguages Generated by Grammars

A grammar [is called length-increasing if for every production

x — y we have |x| < |y|.

An equivalent class of grammars to the class of length-increasing
grammars is the class of context-sensitive grammars. This
equivalence in a topic in the theory of formal languages.

31/42

THEORY OF COMPUTATION Grammars - 25

LLang;uages Generated by Grammars

If T is a length-increasing grammar, then the set
*
{ue(VUT)*| S = u} is recursive.

32/42

THEORY OF COMPUTATION Grammars - 25
LLanguages Generated by Grammars

Proof

Recall that we have shown that

S = u if and only if min DERIV(u,y) |
y

It will suffice to obtain a recursive bound for y to establish that
L(T) is recursive.
Note that in every derivation in [we have

1= [u] <] < < um| = [ul.
Therefore, u1, uo, ..., um = u < g(u), where g(u) is the smallest

number that represents a string of length |u| + 1 in the base n+ k.

33/42

THEORY OF COMPUTATION Grammars - 25
LLanguages Generated by Grammars

Proof cont'd

Note that:
m g(u) is the value in the base n+ k of a string consisting of
|u| + 1 repetitions of 1, so g(u) = Z‘,-u:'()(n + k)?, which is
primitive recursive because |u| is primitive recursive.

m We may assume that the derivation

S=u1 = = - =>u,=u
r r r

contains no repetitions because given a sequence of steps
Z=Ui = U1 = '+ = Uyy=2Z
i r I+ r r 1+

we could eliminate the steps ujy1,..., Up.

34/42

THEORY OF COMPUTATION Grammars - 25
LLanguages Generated by Grammars

Thus, the length of the derivation is bounded by the total number
of strings of length less or equal to |u| on the alphabet with n+ k
symbols, which is just the number g(u).

Hence,

m
[,y um 1] =[] P - Pmt1 < h(u),
i=1

where

Finally, we have S ::> u if and only if (3y)<p)DERIV(u, y),

which gives the result.

35/42

THEORY OF COMPUTATION Grammars - 25
LLanguages Generated by Grammars

IfT is a length-increasing grammar, then L(I") is recursive.

Proof.
By the previous theorem, the set {ue (VUT)* | S ::> u} is

recursive. Since
L) ={ue(VUT) | S = u}n T

and T* is recursive, it follows that L(I) is recursive. O

36/42

THEORY OF COMPUTATION Grammars - 25
L Unsolvable Problems Concerning Grammars

Let M be a TM and let u be a word in the alphabet of M. The
grammar [, is constructed as follows:

m The variables of I';, are the entire alphabet of ¥(AM) together
with S (the start symbol) and a new nonterminal symbol V.
There is just one terminal symbol a.

m The production of ', are all productions of ¥ (M) together
with

S = hgispuh, hggh — V,V — aV. V — a
We have S % V if and only if M accepts u.

u

37/42

THEORY OF COMPUTATION Grammars - 25

L Unsolvable Problems Concerning Grammars

Lemma

If M accepts u, then L(T',) = {a' | i # 0}, if M does not accept
u, then L(T',) = 0.

Proof.
The fact that M accepts u means that:

* *
S = haqisouh = hqoh = V= a" v = a",

If M does not accept u, then the word hqou cannot be generated,
so L(T',) = 0.]

38/42

THEORY OF COMPUTATION Grammars - 25

L Unsolvable Problems Concerning Grammars

Select M such that the language accepted by it is not recursive.
Then, there is no algorithm for determining for given u whether M
accepts u. The lemma implies that

M acceptsu < L(I,) #0
< L(T,) is infinite
< ae L(My).

39/42

THEORY OF COMPUTATION Grammars - 25
L Unsolvable Problems Concerning Grammars

The above prove the following:

There is no algorithm to determine of a given grammar I whether
L(T) is empty;
L(T) is infinite;
vo € L(T) for a fixed word vy.

40/ 42

THEORY OF COMPUTATION Grammars - 25

L Unsolvable Problems Concerning Grammars

There is no algorithm for determining of a given pair of grammars
1 and > whether

L(I'l) - L(rg),'
L(I'l) = L(rg)

41/42

THEORY OF COMPUTATION Grammars - 25

L Unsolvable Problems Concerning Grammars

Proof

Let ['; be the grammar whose productions are
S—aSs,S—a

We have L([1) = {a' | i # 0}. Thus, by the previous theorem, M
accepts v if and only if L(I1) = L(T,) if and only if L(I'1) C L(T,).

42/42

	Outline
	Grammars
	Languages Generated by Grammars
	Unsolvable Problems Concerning Grammars

