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Grammars

Definition

A grammar is a semi-Thue process that involves two types of
symbols:

1 nonterminal symbols or variables denoted by capital letters,
X ,Y ,Z ,S , . . ., and

2 terminal symbols or terminals denoted by small letters,
a, b, c , . . ..

A special nonterminal symbol S is the start symbol.
In addition, for every production x → y the left part contains a
nonterminal symbol.
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Grammars

A grammar will be denoted as

Γ = (V,T , S ,P),

where

V is the set of non-terminals or variables;

T is the set of terminals;

S ∈ V is the start symbol, and

P is the set of productions.
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Grammars

Definition

The language generated by Γ is the set L(Γ) ⊆ T ∗ given by

L(Γ) = {u ∈ T ∗ | S
∗⇒
Γ

u}.

Note that in a grammar all non-terminal symbols are eliminated in
the derivation process that ends up with a word over the terminal
alphabet.
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Grammars

Example

Let Γ = ({S ,X ,Y }, {a, b},S , {S → X ,X → aX ,X → 0,X →
Y ,Y → bY ,Y → 0}).
Every derivation in Γ that begins with S and ends with a word in
T ∗ has the form

S ⇒
Γ

X ⇒
Γ

aX ⇒
Γ

aaX

⇒
Γ

aaaX ⇒
Γ

aaaY ⇒
Γ

aaabY

⇒
Γ

aaabbY ⇒
Γ

aaabb.

Thus, the language L(Γ) is {anbm | n,m ∈ N}.
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Grammars

Example

Let Γ = ({S}, {a, b},S , {S → aSb, S → 0}).
Every derivation in Γ that begins with S and ends with a word in
T ∗ has the form

S ⇒
Γ

aSb ⇒
Γ

aaSbb ⇒
Γ

aaaSbbb

⇒
Γ

aaabbb.

The language generated by this grammar is
L(Γ) = {anbn | n ∈ N}.
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Grammars

Example

Consider the grammar

Γ = ({S ,X ,Y }, {a, b, c}, S ,P),

where P consists of the following productions:

π0 : S → abc, π1 : S → aXbc,
π2 : Xb → bX , π3 : Xc → Ybcc,
π4 : bY → Yb, π5 : aY → aaX ,
π6 : aY → aa

We will refer later in this lecture to this kind of grammars as
length-increasing grammars because for each of its productions
x → y we have |x | ⩽ |y |.
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Grammars

Example cont’d

We claim that L(Γ) = {anbncn | n ∈ P}.
Any word α ∈ {S ,X ,Y , a, b, c}∗ that occurs in a derivation,

S
∗⇒ α contains at most one nonterminal symbol.

A derivation must end either by applying the production
S → abc or the production aY → aa because only these
productions allow us to eliminate a nonterminal symbol.

If the last production is S → abc, then the derivation is
S ⇒ abc, and the derived word has the form prescribed.

Otherwise, the symbol Y must be generated starting from S ,
and the first production applied is S → aXbc.

9 / 42



THEORY OF COMPUTATION Grammars - 25

Grammars

Example cont’d

Note that for every i ⩾ 1 we have

aiXbic i
∗⇒
Γ

ai+1Xbi+1c i+1.

Indeed, we can write:

aiXbic i
i⇒
π2

aibiXc i
1⇒
π3

aibiYbc i+1

i⇒
π4

aiYbi+1c i+1 1⇒
π5

ai+1Xbi+1c i+1

We claim that a word α contains the infix aY (which allows us to

apply the production π5) and S
∗⇒
Γ

α if and only if α has the form

α = aiYbi+1c i+1 for some i ⩾ 1.
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Grammars

Example cont’d

An easy argument by induction on i ⩾ 1 allows us to show that if

α = aiYbi+1c i+1 then S
∗⇒
Γ

α. We need to prove only the inverse

implication. This can be done by strong induction on the length

n ⩾ 3 of the derivation S
∗⇒
Γ

α.

The shortest derivation that allows us to generate the word
containing the infix aY is

S ⇒
Γ

aXbc ⇒
Γ

abXc ⇒
Γ

abYbcc ⇒
Γ

aYb2c2,

and this word has the prescribed form.
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Grammars

Example cont’d

Suppose now that for derivations shorter than n the condition is

satisfied, and let S
∗⇒
G

α be a derivation of length n such that α

contains the infix aY . By the inductive hypothesis the previous
word in this derivation that contains the infix aY has the form
α′ = ajYbj+1c j+1. To proceed from α′ we must apply the
production π5 and replace Y by X . Thus, we have

S
∗⇒
G

ajYbj+1c j+1 ⇒
G

aj+1Xbj+1c j+1.

12 / 42



THEORY OF COMPUTATION Grammars - 25

Grammars

Example cont’d

Next, the symbol X must “travel” to the right using the
production π2, transform itself into an Y (when in touch with the
cs) and Y must “travel” to the left to create the infix aY . This
can happen only through the application of the productions π3 and
π4, as follows:

aj+1Xbj+1c j+1 j+1⇒
π2

aj+1bj+1Xc j+1

1⇒
π3

aj+1bj+1Ybc j+2

i⇒
π4

aj+1Ybj+2c j+2,

which proves that α has the desired form. Therefore, all the words
in the language L(Γ) have the form anbncn.
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Grammars

Theorem

Let U be a language accepted by a nondeterministic Turing
machine M. Then, there is a grammar Γ such that U = L(Γ)
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Grammars

Proof

Recall that we defined a semi-Thue process Ω(M) attached to the
TM M.
We started from M and defined first the semi-Thue system Σ(M)
on the alphabet

s0, s1, . . . , sK , q0, q1, . . . , qn, qn+1, h

containing the following productions:

Quadruple semi-Thue Production
qi sj sk qℓ qi sj → qℓsk
qi sj R qℓ qi sjsk → sjqℓsk , 0 ⩽ k ⩽ K

qi sjh → sjqℓs0h

qi sj L qℓ qℓsksj → s0qℓsk , 0 ⩽ k ⩽ K
hqi sj → hqℓs0sj
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Grammars

Proof cont’d

In addition we included in Σ(M) the following productions:

whenever qi sj are not the first two symbols of a quadruple of
M we place in Σ(M) the production qi sj → qn+1sj . Thus,
qn+1 serves as “halt” state.

Finally, we place in Σ(M) the productions:

qn+1si → qn+1, 0 ⩽ i ⩽ K ,
qn+1h → q0h,
siq0 → q0, 0 ⩽ i ⩽ K .
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Grammars

Proof cont’d

The system Ω(M) contains the productions

Quadruple semi-Thue Production
qi sj sk qℓ qℓsk → qi sj
qi sj R qℓ sjqℓsk → qi sjsk , 0 ⩽ k ⩽ K

sjqℓs0h → qi sjh

qi sj L qℓ s0qℓsk → qℓsksj , 0 ⩽ k ⩽ K
hqℓs0sj → hqi sj
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Grammars

Proof cont’d

In addition, we have in Ω(M):

qn+1sj → qi sj when qi sj are not the first two symbols of a
quadruple of M, and

qn+1 → qn+1si , 0 ⩽ i ⩽ K ,
q0h → qn+1h,
q0 → siq0, 0 ⩽ i ⩽ K .
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Grammars

Proof cont’d

We construct the grammar Γ by modifying the semi-Thue process
Ω(M) as follows:

the terminals of Γ are just the letters of the alphabet
T = {s1, . . . , sm} of M;

the non-terminals (variables) of Γ are the symbols of Ω(M)
not in T , s0, q0, . . . , qn, qn+1, h;

two additional non-terminals S and q.

S is the start symbol of Γ.
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Grammars

Proof cont’d

The production of Γ are:

the productions of Ω(M);

S → hq0h;

hq1s0 → q;

qs → sq for each s ∈ T ;

qh → 0.
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Grammars

Proof cont’d

Suppose M accepts u ∈ T ∗, that is:

S ⇒
Γ

hq0h
∗⇒
Γ

hq1s0uh ⇒
Γ

quh
∗⇒
Γ

uqh ⇒
Γ

u,

so that u ∈ L(Γ).
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Grammars

Proof cont’d

Conversely, let u ∈ L(Γ). Then, u ∈ T ∗ and S
∗⇒
Γ

u. Examining

the list of productions of Γ this derivation can be written as

S ⇒
Γ

hq0h
∗⇒
Γ

vqhz ⇒
Γ

vz = u.

Note that q could be introduced only by using the production
hq1s0 → q. Thus, the derivation has the form

S ⇒
Γ

hq0h
∗⇒
Γ

xhq1s0yhz ⇒
Γ

xqyhz
∗⇒
Γ

xyqhz ⇒
Γ

xyz = u,

where xy = v . Thus, there is a derivation of xhq1s0yhz from hq0h
in Γ. This derivation must actually be a derivation in Ω(M)
because the added productions are inapplicable.
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Grammars

Proof cont’d

The productions in Ω(M) always lead from Post words to Post
words, hence xhq1s0yhz must be a Post word, which implies
x = z = 0 and u = xyz = y . We conclude that

hq0h
∗⇒

Ω(M)
hq1s0uh,

which implies that M accepts u.
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Languages Generated by Grammars

Let Γ be a grammar having the alphabet

{s1, . . . , sn,V1, . . . ,Vk},

where T = {s1, . . . , sn} is the set of terminals and {V1, . . . ,Vk} is
the set of variables (nonterminals). We assume that S = V1 is the
start symbol.
Assume that the alphabet of Γ is ordered as above and we regard
strings on this alphabet as integers in the base n + k.
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Languages Generated by Grammars

Theorem

The predicate u ⇒
Γ

v is primitive recursive.

Proof.

Let the production of Γ be xi → yi for 1 ⩽ i ⩽ ℓ. For 1 ⩽ i ⩽ ℓ
define the predicate PRODi (u, v) as

(∃r , s)⩽u[u = CONCAT(r , xi , s)&v = CONCAT(r , yi , s)]

Since CONCAT is primitive recursive, PRODi is primitive recursive.
Since u ⇒

Γ
v if and only if

PROD1(u, v) ∨ PROD2(u, v) ∨ · · · ∨ PRODℓ(u, v)

the result follows.

25 / 42



THEORY OF COMPUTATION Grammars - 25

Languages Generated by Grammars

Define the predicate DERIV(u, y) to mean that for some m
y = [u1, . . . , um, 1], where u1, . . . , um is a derivation of u from S in
Γ, that is,

S = u1 ⇒
Γ

u2 ⇒
Γ

· · · ⇒
Γ

um = u.

u1 has been added to avoid complications when um = u = 0.
Note that the value of S in the base n + k is n + 1 (because
S = V1 is the (n + 1)st symbol in the alphabetic list).
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Languages Generated by Grammars

Theorem

The predicate DERIV(u, y) is primitive recursive.

Proof.

This follows from the following equivalent statements:

DERIV(u, y) ⇔ (∃m)⩽y (m + 1 = Lt(y)

& (y)1 = n + 1&(y)m = u&(y)m+1 = 1

& (∀j)<m(j = 0 ∨ [(y)j ⇒
Γ

(y)j+1])
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Languages Generated by Grammars

Note that

By the definition of DERIV(u, y) we have

S
∗⇒
Γ

u if and only if (∃y)DERIV(u, y).

S
∗⇒
Γ

u if and only if miny DERIV(u, y) ↓.

Therefore, {u | S
∗⇒
Γ

u} is recursively enumerable. Since

L(Γ) = T ∗ ∩ {u | S
∗⇒
Γ

u} it follows that L(Γ) is r.e.
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Languages Generated by Grammars

Corollary

A language U is r.e. if and only if there is a grammar Γ such that
U = L(Γ).
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Languages Generated by Grammars

Putting together previous results we have the following

Theorem

The following are equivalent for a language L:

1 L is r.e.;

2 L is accepted by a deterministic TM;

3 L is accepted by a nondeterministic TM;

4 there is a grammar Γ such that L = L(Γ).
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Languages Generated by Grammars

Definition

A grammar Γ is called length-increasing if for every production
x → y we have |x | ⩽ |y |.

An equivalent class of grammars to the class of length-increasing
grammars is the class of context-sensitive grammars. This
equivalence in a topic in the theory of formal languages.
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Languages Generated by Grammars

Theorem

If Γ is a length-increasing grammar, then the set

{u ∈ (V ∪ T )∗ | S
∗⇒
Γ

u} is recursive.
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Languages Generated by Grammars

Proof

Recall that we have shown that

S
∗⇒
Γ

u if and only if min
y

DERIV(u, y) ↓

It will suffice to obtain a recursive bound for y to establish that
L(Γ) is recursive.
Note that in every derivation in Γ we have

1 = |u1| ⩽ |u2| ⩽ · · · ⩽ |um| = |u|.

Therefore, u1, u2, . . . , um = u ⩽ g(u), where g(u) is the smallest
number that represents a string of length |u|+ 1 in the base n+ k .
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Languages Generated by Grammars

Proof cont’d

Note that:

g(u) is the value in the base n + k of a string consisting of

|u|+ 1 repetitions of 1, so g(u) =
∑|u|

i=0(n + k)i , which is
primitive recursive because |u| is primitive recursive.

We may assume that the derivation

S = u1 ⇒
Γ

u2 ⇒
Γ

· · · ⇒
Γ

um = u

contains no repetitions because given a sequence of steps

z = ui ⇒
Γ

ui+1 ⇒
Γ

· · · ⇒
Γ

ui+ℓ = z

we could eliminate the steps ui+1, . . . , uℓ.
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Languages Generated by Grammars

Thus, the length of the derivation is bounded by the total number
of strings of length less or equal to |u| on the alphabet with n + k
symbols, which is just the number g(u).
Hence,

[u1, . . . , um, 1] =
m∏
i=1

puii · pm+1 ⩽ h(u),

where

h(u) =

g(u)∏
i=1

p
g(u)
i · pg(u)+1.

Finally, we have S
∗⇒
Γ

u if and only if (∃y)⩽h(u)DERIV(u, y),

which gives the result.
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Languages Generated by Grammars

Theorem

If Γ is a length-increasing grammar, then L(Γ) is recursive.

Proof.

By the previous theorem, the set {u ∈ (V ∪ T )∗ | S
∗⇒
Γ

u} is

recursive. Since

L(Γ) = {u ∈ (V ∪ T )∗ | S
∗⇒
Γ

u} ∩ T ∗,

and T ∗ is recursive, it follows that L(Γ) is recursive.
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Unsolvable Problems Concerning Grammars

Let M be a TM and let u be a word in the alphabet of M. The
grammar Γu is constructed as follows:

The variables of Γu are the entire alphabet of Σ(M) together
with S (the start symbol) and a new nonterminal symbol V .
There is just one terminal symbol a.

The production of Γu are all productions of Σ(M) together
with

S → hq1s0uh, hq0h → V ,V → aV ,V → a

We have S
∗⇒
Γu

V if and only if M accepts u.
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Unsolvable Problems Concerning Grammars

Lemma

If M accepts u, then L(Γu) = {ai | i ̸= 0}; if M does not accept
u, then L(Γu) = ∅.

Proof.

The fact that M accepts u means that:

S
∗⇒
Γu

hq1s0uh ⇒
Γu

hq0h ⇒
Γu

V
∗⇒
Γu

an−1V ⇒
Γu

an,

If M does not accept u, then the word hq0u cannot be generated,
so L(Γu) = ∅.
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Unsolvable Problems Concerning Grammars

Select M such that the language accepted by it is not recursive.
Then, there is no algorithm for determining for given u whether M
accepts u. The lemma implies that

M accepts u ⇔ L(Γu) ̸= ∅
⇔ L(Γu) is infinite

⇔ a ∈ L(Γu).
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Unsolvable Problems Concerning Grammars

The above prove the following:

Theorem

There is no algorithm to determine of a given grammar Γ whether

1 L(Γ) is empty;

2 L(Γ) is infinite;

3 v0 ∈ L(Γ) for a fixed word v0.
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Unsolvable Problems Concerning Grammars

Theorem

There is no algorithm for determining of a given pair of grammars
Γ1 and Γ2 whether

1 L(Γ1) ⊆ L(Γ2);

2 L(Γ1) = L(Γ2).
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Unsolvable Problems Concerning Grammars

Proof

Let Γ1 be the grammar whose productions are

S → aS , S → a

We have L(Γ1) = {ai | i ̸= 0}. Thus, by the previous theorem, M
accepts u if and only if L(Γ1) = L(Γu) if and only if L(Γ1) ⊆ L(Γu).
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