THEORY OF COMPUTATION Grammars - 25

Prof. Dan A. Simovici

UMB

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○

1/42

Outline

2 Languages Generated by Grammars

3 Unsolvable Problems Concerning Grammars

Definition

A grammar is a semi-Thue process that involves two types of symbols:

- **1** nonterminal symbols or variables denoted by capital letters, X, Y, Z, S, \ldots , and
- 2 terminal symbols or terminals denoted by small letters, a, b, c,

A special nonterminal symbol S is the start symbol. In addition, for every production $x \rightarrow y$ the left part contains a nonterminal symbol. - Grammars

A grammar will be denoted as

$$\Gamma = (\mathcal{V}, T, S, P),$$

where

- V is the set of non-terminals or variables;
- T is the set of terminals;
- $S \in \mathcal{V}$ is the start symbol, and
- *P* is the set of productions.

Definition

The language generated by Γ is the set $L(\Gamma) \subseteq T^*$ given by

$$L(\Gamma) = \{ u \in T^* \mid S \stackrel{*}{\Rightarrow} u \}.$$

Note that in a grammar all non-terminal symbols are eliminated in the derivation process that ends up with a word over the terminal alphabet.

Example

Let
$$\Gamma = (\{S, X, Y\}, \{a, b\}, S, \{S \rightarrow X, X \rightarrow aX, X \rightarrow 0, X \rightarrow Y, Y \rightarrow bY, Y \rightarrow 0\}).$$

Every derivation in Γ that begins with S and ends with a word in \mathcal{T}^* has the form

Thus, the language $L(\Gamma)$ is $\{a^n b^m \mid n, m \in \mathbb{N}\}$.

Example

Let $\Gamma = (\{S\}, \{a, b\}, S, \{S \rightarrow aSb, S \rightarrow 0\})$. Every derivation in Γ that begins with S and ends with a word in T^* has the form

イロト イボト イヨト 一日

7 / 42

The language generated by this grammar is $L(\Gamma) = \{a^n b^n \mid n \in \mathbb{N}\}.$

- Grammars

Example

Consider the grammar

$$\Gamma = (\{S, X, Y\}, \{a, b, c\}, S, P),$$

where P consists of the following productions:

$$\begin{array}{rcl} \pi_{0} & : & S \rightarrow abc, & \pi_{1} & : & S \rightarrow aXbc, \\ \pi_{2} & : & Xb \rightarrow bX, & \pi_{3} & : & Xc \rightarrow Ybcc, \\ \pi_{4} & : & bY \rightarrow Yb, & \pi_{5} & : & aY \rightarrow aaX, \\ \pi_{6} & : & aY \rightarrow aa \end{array}$$

We will refer later in this lecture to this kind of grammars as length-increasing grammars because for each of its productions $x \rightarrow y$ we have $|x| \leq |y|$.

Example cont'd

We claim that $L(\Gamma) = \{a^n b^n c^n \mid n \in \mathbb{P}\}.$

- Any word $\alpha \in \{S, X, Y, a, b, c\}^*$ that occurs in a derivation, $S \stackrel{*}{\Rightarrow} \alpha$ contains at most one nonterminal symbol.
- A derivation must end either by applying the production S → abc or the production aY → aa because only these productions allow us to eliminate a nonterminal symbol.
- If the last production is $S \rightarrow abc$, then the derivation is $S \Rightarrow abc$, and the derived word has the form prescribed.

Otherwise, the symbol Y must be generated starting from S, and the first production applied is $S \rightarrow aXbc$.

Example cont'd

Note that for every $i \ge 1$ we have

$$a^{i}Xb^{i}c^{i} \stackrel{*}{\Rightarrow} a^{i+1}Xb^{i+1}c^{i+1}.$$

Indeed, we can write:

We claim that a word α contains the infix aY (which allows us to apply the production π_5) and $S \stackrel{*}{\xrightarrow[\Gamma]{}} \alpha$ if and only if α has the form $\alpha = a^i Y b^{i+1} c^{i+1}$ for some $i \ge 1$.

- Grammars

Example cont'd

An easy argument by induction on $i \ge 1$ allows us to show that if $\alpha = a^i Y b^{i+1} c^{i+1}$ then $S \stackrel{*}{\Rightarrow} \alpha$. We need to prove only the inverse implication. This can be done by strong induction on the length $n \ge 3$ of the derivation $S \stackrel{*}{\Rightarrow} \alpha$. The shortest derivation that allows us to generate the word containing the infix aY is

$$S \Rightarrow aXbc \Rightarrow abXc \Rightarrow abYbcc \Rightarrow aYb^2c^2,$$

and this word has the prescribed form.

Example cont'd

Suppose now that for derivations shorter than *n* the condition is satisfied, and let $S \stackrel{*}{\underset{G}{\Rightarrow}} \alpha$ be a derivation of length *n* such that α contains the infix *aY*. By the inductive hypothesis the previous word in this derivation that contains the infix *aY* has the form $\alpha' = a^j Y b^{j+1} c^{j+1}$. To proceed from α' we must apply the production π_5 and replace *Y* by *X*. Thus, we have

$$S \stackrel{*}{\Rightarrow}_{G} a^{j}Yb^{j+1}c^{j+1} \Rightarrow_{G} a^{j+1}Xb^{j+1}c^{j+1}$$

Example cont'd

Next, the symbol X must "travel" to the right using the production π_2 , transform itself into an Y (when in touch with the cs) and Y must "travel" to the left to create the infix aY. This can happen only through the application of the productions π_3 and π_4 , as follows:

$$\begin{array}{rcl} a^{j+1}Xb^{j+1}c^{j+1} & \stackrel{j+1}{\Rightarrow} & a^{j+1}b^{j+1}Xc^{j+1} \\ & \stackrel{1}{\Rightarrow} & a^{j+1}b^{j+1}Ybc^{j+2} \\ & \stackrel{i}{\Rightarrow} & a^{j+1}Yb^{j+2}c^{j+2}, \end{array}$$

which proves that α has the desired form. Therefore, all the words in the language $L(\Gamma)$ have the form $a^n b^n c^n$.

Theorem

Let U be a language accepted by a nondeterministic Turing machine M. Then, there is a grammar Γ such that $U = L(\Gamma)$

Proof

Recall that we defined a semi-Thue process $\Omega(\mathcal{M})$ attached to the TM \mathcal{M} .

We started from ${\mathcal M}$ and defined first the semi-Thue system $\Sigma({\mathcal M})$ on the alphabet

$$s_0, s_1, \ldots, s_K, q_0, q_1, \ldots, q_n, q_{n+1}, h$$

containing the following productions:

Quadruple	semi-Thue Production
$q_i s_j s_k q_\ell$	$q_i s_j o q_\ell s_k$
$q_i s_j R q_\ell$	$q_i s_j s_k o s_j q_\ell s_k, 0 \leqslant k \leqslant K$
	$q_i s_j h o s_j q_\ell s_0 h$
$q_i s_j L q_\ell$	$q_\ell s_k s_j o s_0 q_\ell s_k, 0 \leqslant k \leqslant K$
	$hq_is_j ightarrow hq_\ell s_0s_j$
	· · · · · · · · · · · · · · · · · · · ·

Proof cont'd

In addition we included in $\Sigma(\mathcal{M})$ the following productions:

- whenever $q_i s_j$ are not the first two symbols of a quadruple of \mathcal{M} we place in $\Sigma(\mathcal{M})$ the production $q_i s_j \rightarrow q_{n+1} s_j$. Thus, q_{n+1} serves as "halt" state.
- Finally, we place in $\Sigma(\mathcal{M})$ the productions:

$$q_{n+1}s_i
ightarrow q_{n+1}, 0 \leqslant i \leqslant K, \ q_{n+1}h
ightarrow q_0h, \ s_iq_0
ightarrow q_0, 0 \leqslant i \leqslant K.$$

Proof cont'd

The system $\Omega(\mathcal{M})$ contains the productions

Quadruple	semi-Thue Production
$q_i s_j s_k q_\ell$	$q_\ell s_k o q_i s_j$
$q_i s_j R q_\ell$	$s_j q_\ell s_k o q_i s_j s_k, 0 \leqslant k \leqslant K$
	$s_j q_\ell s_0 h o q_i s_j h$
$q_i s_j L q_\ell$	$s_0 q_\ell s_k o q_\ell s_k s_j, 0 \leqslant k \leqslant K$
	$hq_\ell s_0 s_j o hq_i s_j$

Proof cont'd

In addition, we have in $\Omega(\mathcal{M})$:

• $q_{n+1}s_j \rightarrow q_is_j$ when q_is_j are not the first two symbols of a quadruple of \mathcal{M} , and

$$egin{aligned} q_{n+1} &
ightarrow q_{n+1} s_i, 0 \leqslant i \leqslant K \ q_0 h &
ightarrow q_{n+1} h, \ q_0 &
ightarrow s_i q_0, 0 \leqslant i \leqslant K. \end{aligned}$$

,

イロト イボト イヨト 一日

18 / 42

Proof cont'd

We construct the grammar Γ by modifying the semi-Thue process $\Omega(\mathcal{M})$ as follows:

- the terminals of Γ are just the letters of the alphabet $T = \{s_1, \ldots, s_m\}$ of \mathcal{M} ;
- the non-terminals (variables) of Γ are the symbols of Ω(M) not in T, s₀, q₀,..., q_n, q_{n+1}, h;
- two additional non-terminals S and q.
- S is the start symbol of Γ .

Proof cont'd

The production of Γ are:

- the productions of $\Omega(\mathcal{M})$;
- $S \rightarrow hq_0h;$
- $hq_1s_0 \rightarrow q;$
- $qs \rightarrow sq$ for each $s \in T$;

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

20 / 42

• $qh \rightarrow 0$.

Proof cont'd

Suppose \mathcal{M} accepts $u \in T^*$, that is:

$$S \Rightarrow hq_0 h \stackrel{*}{\Rightarrow} hq_1 s_0 uh \Rightarrow quh \stackrel{*}{\Rightarrow} uqh \Rightarrow u,$$

so that $u \in L(\Gamma)$.

- Grammars

Proof cont'd

Conversely, let $u \in L(\Gamma)$. Then, $u \in T^*$ and $S \stackrel{*}{\xrightarrow{}} u$. Examining the list of productions of Γ this derivation can be written as

$$S \Rightarrow hq_0 h \stackrel{*}{\Rightarrow} vqhz \Rightarrow vz = u.$$

Note that q could be introduced only by using the production $hq_1s_0 \rightarrow q$. Thus, the derivation has the form

$$S \Rightarrow hq_0h \stackrel{*}{\xrightarrow{\Gamma}} xhq_1s_0yhz \Rightarrow xqyhz \stackrel{*}{\xrightarrow{\Gamma}} xyqhz \Rightarrow xyz = u,$$

where xy = v. Thus, there is a derivation of xhq_1s_0yhz from hq_0h in Γ . This derivation must actually be a derivation in $\Omega(\mathcal{M})$ because the added productions are inapplicable.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Proof cont'd

The productions in $\Omega(\mathcal{M})$ always lead from Post words to Post words, hence xhq_1s_0yhz must be a Post word, which implies x = z = 0 and u = xyz = y. We conclude that

$$hq_0h \stackrel{*}{\underset{\Omega(\mathcal{M})}{\Rightarrow}} hq_1s_0uh,$$

which implies that \mathcal{M} accepts u.

Let Γ be a grammar having the alphabet

$$\{s_1,\ldots,s_n,V_1,\ldots,V_k\},\$$

where $T = \{s_1, \ldots, s_n\}$ is the set of terminals and $\{V_1, \ldots, V_k\}$ is the set of variables (nonterminals). We assume that $S = V_1$ is the start symbol.

Assume that the alphabet of Γ is ordered as above and we regard strings on this alphabet as integers in the base n + k.

Theorem

The predicate
$$u \Rightarrow v$$
 is primitive recursive.

Proof.

Let the production of Γ be $x_i \rightarrow y_i$ for $1 \le i \le \ell$. For $1 \le i \le \ell$ define the predicate $\mathsf{PROD}_i(u, v)$ as

$$(\exists r, s)_{\leqslant u}[u = \text{CONCAT}(r, x_i, s)\&v = \text{CONCAT}(r, y_i, s)]$$

Since CONCAT is primitive recursive, PROD_i is primitive recursive. Since $u \Rightarrow v$ if and only if

```
\mathsf{PROD}_1(u, v) \lor \mathsf{PROD}_2(u, v) \lor \cdots \lor \mathsf{PROD}_\ell(u, v)
```

the result follows.

(日)

Define the predicate DERIV(u, y) to mean that for some m $y = [u_1, \ldots, u_m, 1]$, where u_1, \ldots, u_m is a derivation of u from S in Γ , that is,

$$S = u_1 \Rightarrow u_2 \Rightarrow \cdots \Rightarrow u_m = u.$$

 u_1 has been added to avoid complications when $u_m = u = 0$. Note that the value of S in the base n + k is n + 1 (because $S = V_1$ is the $(n + 1)^{st}$ symbol in the alphabetic list).

Theorem

The predicate DERIV(u, y) is primitive recursive.

Proof.

This follows from the following equivalent statements:

$$DERIV(u, y) \Leftrightarrow (\exists m)_{\leqslant y}(m + 1 = Lt(y) \\ \& (y)_1 = n + 1\&(y)_m = u\&(y)_{m+1} = 1 \\ \& (\forall j)_{$$

Note that

• By the definition of DERIV(u, y) we have

$$S \stackrel{*}{\underset{\Gamma}{\to}} u$$
 if and only if $(\exists y) \mathsf{DERIV}(u, y)$.

• $S \stackrel{*}{\underset{\Gamma}{\Rightarrow}} u$ if and only if $\min_{y} \text{DERIV}(u, y) \downarrow$. Therefore, $\{u \mid S \stackrel{*}{\underset{\Gamma}{\Rightarrow}} u\}$ is recursively enumerable. Since $L(\Gamma) = T^* \cap \{u \mid S \stackrel{*}{\underset{\Gamma}{\Rightarrow}} u\}$ it follows that $L(\Gamma)$ is r.e.

<ロト<日

ト<目

ト<目

ト<目

ト<目

ト<目

ト

名

ペ

28/42

Corollary

A language U is r.e. if and only if there is a grammar Γ such that $U = L(\Gamma)$.

Putting together previous results we have the following

Theorem

The following are equivalent for a language L:

- 1 L is r.e.;
- 2 L is accepted by a deterministic TM;
- 3 L is accepted by a nondeterministic TM;
- **4** there is a grammar Γ such that $L = L(\Gamma)$.

イロト イボト イヨト イヨト 三日

30 / 42

Definition

A grammar Γ is called *length-increasing* if for every production $x \to y$ we have $|x| \leq |y|$.

An equivalent class of grammars to the class of length-increasing grammars is the class of *context-sensitive grammars*. This equivalence in a topic in the theory of formal languages.

Theorem

If Γ is a length-increasing grammar, then the set $\{u \in (\mathcal{V} \cup T)^* \mid S \stackrel{*}{\Rightarrow} u\}$ is recursive.

Proof

Recall that we have shown that

$$S \stackrel{*}{\Rightarrow}_{\Gamma} u$$
 if and only if min DERIV $(u, y) \downarrow$

It will suffice to obtain a recursive bound for y to establish that $L(\Gamma)$ is recursive.

Note that in every derivation in Γ we have

$$1=|u_1|\leqslant |u_2|\leqslant \cdots \leqslant |u_m|=|u|.$$

Therefore, $u_1, u_2, \ldots, u_m = u \leq g(u)$, where g(u) is the smallest number that represents a string of length |u| + 1 in the base n + k.

Proof cont'd

Note that:

- g(u) is the value in the base n + k of a string consisting of |u| + 1 repetitions of 1, so g(u) = ∑_{i=0}^{|u|} (n + k)ⁱ, which is primitive recursive because |u| is primitive recursive.
- We may assume that the derivation

$$S = u_1 \Rightarrow u_2 \Rightarrow \cdots \Rightarrow u_m = u_m$$

contains no repetitions because given a sequence of steps

$$z = u_i \Rightarrow u_{i+1} \Rightarrow \cdots \Rightarrow u_{i+\ell} = z$$

we could eliminate the steps $u_{i+1}, \ldots, u_{\ell}$.

Thus, the length of the derivation is bounded by the total number of strings of length less or equal to |u| on the alphabet with n + ksymbols, which is just the number g(u). Hence,

$$[u_1,\ldots,u_m,1]=\prod_{i=1}^m p_i^{u_i}\cdot p_{m+1}\leqslant h(u),$$

where

$$h(u) = \prod_{i=1}^{g(u)} p_i^{g(u)} \cdot p_{g(u)+1}.$$

Finally, we have $S \stackrel{*}{\underset{\Gamma}{\Rightarrow}} u$ if and only if $(\exists y)_{\leqslant h(u)} \text{DERIV}(u, y)$, which gives the result.

Theorem

If Γ is a length-increasing grammar, then $L(\Gamma)$ is recursive.

Proof.

By the previous theorem, the set $\{u \in (\mathcal{V} \cup T)^* \mid S \stackrel{*}{\Rightarrow} u\}$ is recursive. Since

$$L(\Gamma) = \{ u \in (\mathcal{V} \cup T)^* \mid S \stackrel{*}{\Rightarrow} u \} \cap T^*$$

and T^* is recursive, it follows that $L(\Gamma)$ is recursive.

36 / 42

イロン 不同 とくほど 不良 とうほ

Let \mathcal{M} be a TM and let u be a word in the alphabet of \mathcal{M} . The grammar Γ_u is constructed as follows:

- The variables of Γ_u are the entire alphabet of Σ(M) together with S (the start symbol) and a new nonterminal symbol V. There is just one terminal symbol a.
- The production of Γ_u are all productions of Σ(M) together with

$$S
ightarrow hq_1s_0 uh, hq_0 h
ightarrow V, V
ightarrow aV, V
ightarrow a$$

We have $S \stackrel{*}{\underset{\Gamma_u}{\longrightarrow}} V$ if and only if \mathcal{M} accepts u.

Lemma

If \mathcal{M} accepts u, then $L(\Gamma_u) = \{a^i \mid i \neq 0\}$; if \mathcal{M} does not accept u, then $L(\Gamma_u) = \emptyset$.

Proof.

The fact that \mathcal{M} accepts u means that:

$$S \stackrel{*}{\Rightarrow}_{\Gamma_{u}} hq_{1}s_{0}uh \Rightarrow_{\Gamma_{u}} hq_{0}h \Rightarrow_{\Gamma_{u}} V \stackrel{*}{\Rightarrow}_{\Gamma_{u}} a^{n-1}V \Rightarrow_{\Gamma_{u}} a^{n},$$

If \mathcal{M} does not accept u, then the word hq_0u cannot be generated, so $L(\Gamma_u) = \emptyset$.

Select \mathcal{M} such that the language accepted by it is not recursive. Then, there is no algorithm for determining for given u whether \mathcal{M} accepts u. The lemma implies that

$$\mathcal{M} \text{ accepts } u \iff L(\Gamma_u) \neq \emptyset$$
$$\Leftrightarrow \quad L(\Gamma_u) \text{ is infinite}$$
$$\Leftrightarrow \quad a \in L(\Gamma_u).$$

イロト イボト イヨト 一日

39 / 42

The above prove the following:

Theorem

There is no algorithm to determine of a given grammar Γ whether

イロン 不同 とくほど 不良 とうほ

40 / 42

1 $L(\Gamma)$ is empty;

- **2** L(Γ) is infinite;
- 3 $v_0 \in L(\Gamma)$ for a fixed word v_0 .

Theorem

There is no algorithm for determining of a given pair of grammars Γ_1 and Γ_2 whether 1 $L(\Gamma_1) \subseteq L(\Gamma_2)$;

```
2 L(\Gamma_1) = L(\Gamma_2).
```

THEORY OF COMPUTATION Grammars - 25

Unsolvable Problems Concerning Grammars

Let Γ_1 be the grammar whose productions are

$$S \rightarrow aS, S \rightarrow a$$

We have $L(\Gamma_1) = \{a^i \mid i \neq 0\}$. Thus, by the previous theorem, \mathcal{M} accepts *u* if and only if $L(\Gamma_1) = L(\Gamma_u)$ if and only if $L(\Gamma_1) \subseteq L(\Gamma_u)$.