THEORY OF COMPUTATION Grammars - 25

Prof. Dan A. Simovici

UMB

 $1/42$

KO KARK KEK KEK EL KORO

 L_{Outline} L_{Outline} L_{Outline}

2 [Languages Generated by Grammars](#page-23-0)

3 [Unsolvable Problems Concerning Grammars](#page-36-0)

Definition

A grammar is a semi-Thue process that involves two types of symbols:

- **1** nonterminal symbols or variables denoted by capital letters, X, Y, Z, S, \ldots , and
- 2 terminal symbols or terminals denoted by small letters, a, b, c, \ldots

A special nonterminal symbol S is the start symbol. In addition, for every production $x \rightarrow y$ the left part contains a nonterminal symbol.

A grammar will be denoted as

$$
\Gamma=(\mathcal{V},\mathcal{T},\mathcal{S},\mathit{P}),
$$

4 / 42

 Ω

4 ロ > 4 何 > 4 ミ > 4 ミ > - ミ

where

- \bullet \vee is the set of non-terminals or variables;
- \blacksquare T is the set of terminals;
- $S \in V$ is the start symbol, and
- \blacksquare P is the set of productions.

Definition

The language generated by Γ is the set $L(\Gamma) \subseteq T^*$ given by

$$
L(\Gamma)=\{u\in \mathcal{T}^*\,\mid\,S\stackrel{*}{\Rightarrow}u\}.
$$

Note that in a grammar all non-terminal symbols are eliminated in the derivation process that ends up with a word over the terminal alphabet.

Example

Let
$$
\Gamma = (\{S, X, Y\}, \{a, b\}, S, \{S \rightarrow X, X \rightarrow aX, X \rightarrow 0, X \rightarrow Y, Y \rightarrow bY, Y \rightarrow 0\}).
$$

Every derivation in Γ that begins with S and ends with a word in T^* has the form

$$
S \Rightarrow X \Rightarrow aX \Rightarrow aaX
$$

\n
$$
\Rightarrow aaaX \Rightarrow aaaY \Rightarrow aaabY
$$

\n
$$
\Rightarrow aaabY \Rightarrow aaabb.
$$

\n
$$
\Rightarrow aaabY \Rightarrow aaabb.
$$

6 / 42

 Ω

イロト イ団 トイヨト イヨト 一番

Thus, the language $L(\Gamma)$ is $\{a^n b^m | n, m \in \mathbb{N}\}.$

Example

Let $\Gamma = (\{S\}, \{a, b\}, S, \{S \rightarrow aSb, S \rightarrow 0\}).$

Every derivation in Γ that begins with S and ends with a word in T^* has the form

$$
S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaaSbbb
$$

$$
\Rightarrow aaaabbb.
$$

7 / 42

イロト イ団 トイヨト イヨト 一番

The language generated by this grammar is $L(\Gamma) = \{a^n b^n \mid n \in \mathbb{N}\}.$

Example

Consider the grammar

$$
\Gamma = (\{S, X, Y\}, \{a, b, c\}, S, P),
$$

where *consists of the following productions:*

$$
\begin{array}{rcl}\n\pi_0 & : & S \rightarrow abc, \\
\pi_2 & : & Xb \rightarrow bX, \\
\pi_3 & : & Xc \rightarrow Ybcc, \\
\pi_4 & : & bY \rightarrow Yb, \\
\pi_5 & : & aY \rightarrow aaX, \\
\pi_6 & : & aY \rightarrow aa\n\end{array}
$$

We will refer later in this lecture to this kind of grammars as length-increasing grammars because for each of its productions $x \rightarrow y$ we have $|x| \leq |y|$.

Example cont'd

We claim that $L(\Gamma) = \{a^n b^n c^n \mid n \in \mathbb{P}\}.$

- Any word $\alpha \in \{S, X, Y, a, b, c\}^*$ that occurs in a derivation, $S \stackrel{*}{\Rightarrow} \alpha$ contains at most one nonterminal symbol.
- \blacksquare A derivation must end either by applying the production $S \rightarrow abc$ or the production $aY \rightarrow aa$ because only these productions allow us to eliminate a nonterminal symbol.
- If the last production is $S \rightarrow abc$, then the derivation is $S \Rightarrow abc$, and the derived word has the form prescribed. Otherwise, the symbol Y must be generated starting from S . and the first production applied is $S \rightarrow aXbc$.

Example cont'd

Note that for every $i \geqslant 1$ we have

$$
a^iXb^ic^i \stackrel{*}{\Rightarrow} a^{i+1}Xb^{i+1}c^{i+1}.
$$

Indeed, we can write:

$$
a^{i}Xb^{i}c^{i} \Rightarrow a^{i}b^{i}Xc^{i} \Rightarrow a^{i}b^{i}Xc^{i}
$$

$$
\Rightarrow a^{i}Yb^{i+1}c^{i+1} \Rightarrow a^{i+1}Xb^{i+1}c^{i+1}
$$

We claim that a word α contains the infix aY (which allows us to apply the production π_5) and $S \stackrel{*}{\Rightarrow} \alpha$ if and only if α has the form $\alpha =$ a $^i Y b^{i+1} c^{i+1}$ for some $i \geqslant 1.$

Example cont'd

An easy argument by induction on $i \geq 1$ allows us to show that if $\alpha = a^i Y b^{i+1} c^{i+1}$ then $S \stackrel{*}{\Rightarrow} \alpha$. We need to prove only the inverse implication. This can be done by strong induction on the length $n \geqslant 3$ of the derivation $S \stackrel{*}{\Rightarrow} \alpha$.

The shortest derivation that allows us to generate the word containing the infix aY is

$$
S \Rightarrow aXbc \Rightarrow abXc \Rightarrow abYbcc \Rightarrow aYb^2c^2,
$$

and this word has the prescribed form.

 $\mathrel{\sqsubseteq}$ [Grammars](#page-2-0)

Example cont'd

Suppose now that for derivations shorter than n the condition is satisfied, and let $S \stackrel{*}{\Rightarrow} \alpha$ be a derivation of length *n* such that α contains the infix aY . By the inductive hypothesis the previous word in this derivation that contains the infix aY has the form $\alpha' =$ a $^j Y b^{j+1} c^{j+1}.$ To proceed from α' we must apply the production π_5 and replace Y by X. Thus, we have

$$
S \stackrel{*}{\Rightarrow} a^j Y b^{j+1} c^{j+1} \Rightarrow a^{j+1} X b^{j+1} c^{j+1}.
$$

12 / 42

Example cont'd

Next, the symbol X must "travel" to the right using the production π_2 , transform itself into an Y (when in touch with the cs) and Y must "travel" to the left to create the infix aY . This can happen only through the application of the productions π_3 and π_4 , as follows:

$$
a^{j+1}Xb^{j+1}c^{j+1} \underset{\pi_2}{\overset{j+1}{\underset{\pi_2}{\rightleftharpoons}}} a^{j+1}b^{j+1}Xc^{j+1}
$$

$$
\underset{\pi_3}{\overset{1}{\rightleftharpoons}} a^{j+1}b^{j+1}Ybc^{j+2}
$$

$$
\underset{\pi_4}{\overset{j}{\rightleftharpoons}} a^{j+1}Yb^{j+2}c^{j+2},
$$

which proves that α has the desired form. Therefore, all the words in the language $L(\Gamma)$ have the form $a^n b^n c^n$.

13 / 42

イロト イ団 トイヨト イヨト 一番

Theorem

Let U be a language accepted by a nondeterministic Turing machine M. Then, there is a grammar Γ such that $U = L(\Gamma)$

Proof

Recall that we defined a semi-Thue process $\Omega(M)$ attached to the TM M.

We started from M and defined first the semi-Thue system $\Sigma(\mathcal{M})$ on the alphabet

$$
s_0, s_1, \ldots, s_K, q_0, q_1, \ldots, q_n, q_{n+1}, h
$$

containing the following productions:

Proof cont'd

In addition we included in $\Sigma(\mathcal{M})$ the following productions:

- whenever $q_i s_i$ are not the first two symbols of a quadruple of ${\mathcal M}$ we place in $\Sigma({\mathcal M})$ the production $q_i s_j \to q_{n+1} s_j.$ Thus, q_{n+1} serves as "halt" state.
- **Finally, we place in** $\Sigma(\mathcal{M})$ **the productions:**

$$
q_{n+1}s_i \rightarrow q_{n+1}, 0 \leq i \leq K,
$$

\n
$$
q_{n+1}h \rightarrow q_0h,
$$

\n
$$
s_iq_0 \rightarrow q_0, 0 \leq i \leq K.
$$

16 / 42

イロト イ団 トイヨト イヨト 一番

Proof cont'd

The system $\Omega(M)$ contains the productions

Proof cont'd

П

In addition, we have in $\Omega(M)$:

 $q_{n+1}s_i \rightarrow q_i s_i$ when $q_i s_i$ are not the first two symbols of a quadruple of M , and

$$
q_{n+1} \rightarrow q_{n+1} s_i, 0 \leq i \leq K,
$$

\n
$$
q_0 h \rightarrow q_{n+1} h,
$$

\n
$$
q_0 \rightarrow s_i q_0, 0 \leq i \leq K.
$$

18 / 42

 OQ

イロトメ 御 トメ 君 トメ 君 トッ 君

Proof cont'd

We construct the grammar Γ by modifying the semi-Thue process $\Omega(\mathcal{M})$ as follows:

- \blacksquare the terminals of \blacksquare are just the letters of the alphabet $\mathcal{T} = \{s_1, \ldots, s_m\}$ of \mathcal{M} ;
- **the non-terminals (variables) of Γ** are the symbols of $\Omega(M)$ not in T , s_0 , q_0 , ..., q_n , q_{n+1} , h;
- **u** two additional non-terminals S and q .
- S is the start symbol of Γ.

Proof cont'd

The production of Γ are:

- **■** the productions of $\Omega(\mathcal{M})$;
- $S \rightarrow hq_0h;$
- **h** $q_1s_0 \rightarrow q;$
- qs \rightarrow sq for each s \in T;

20 / 42

 OQ

イロト イ団 トイヨト イヨト 一番

qh \rightarrow 0.

Proof cont'd

Suppose $\mathcal M$ accepts $u \in \mathcal T^*$, that is:

$$
S \Rightarrow \underset{\Gamma}{\text{hq}} \text{hq}_0 h \overset{*}{\Rightarrow} \underset{\Gamma}{\text{hq}} \text{1} \text{sguh} \Rightarrow \underset{\Gamma}{\text{quh}} \overset{*}{\Rightarrow} \underset{\Gamma}{\text{uq}} \text{h} \Rightarrow u,
$$

21 / 42

KO KARK KEK KEK EL KORO

so that $u \in L(\Gamma)$.

 $\overline{}$ [Grammars](#page-2-0)

Proof cont'd

Conversely, let $u \in L(\Gamma)$. Then, $u \in \mathcal{T}^*$ and $S \stackrel{*}{\Rightarrow} u$. Examining the list of productions of Γ this derivation can be written as

$$
S \Rightarrow hq_0h \stackrel{*}{\Rightarrow} vqhz \Rightarrow vz = u.
$$

Note that q could be introduced only by using the production $hq_1s_0 \rightarrow q$. Thus, the derivation has the form

$$
S \Rightarrow hq_0h \stackrel{*}{\Rightarrow} xhq_1s_0yhz \Rightarrow xqyhz \stackrel{*}{\Rightarrow} xyqhz \Rightarrow xyz = u,
$$

where $xy = v$. Thus, there is a derivation of $x h q_1 s_0 y h z$ from $h q_0 h$ in Γ. This derivation must actually be a derivation in $\Omega(\mathcal{M})$ because the added productions are inapplicable.

メロメメ 御きメモ メモ おく 重

Proof cont'd

The productions in $\Omega(M)$ always lead from Post words to Post words, hence $x h q_1 s_0 y h z$ must be a Post word, which implies $x = z = 0$ and $u = xyz = y$. We conclude that

$$
hq_0h \overset{*}{\Rightarrow} hq_1s_0uh,
$$

23 / 42

イロト イ団 トイヨト イヨト 一番

which implies that M accepts u .

Let Γ be a grammar having the alphabet

$$
\{s_1,\ldots,s_n,V_1,\ldots,V_k\},\
$$

where $\mathcal{T} = \{s_1, \ldots, s_n\}$ is the set of terminals and $\{V_1, \ldots, V_k\}$ is the set of variables (nonterminals). We assume that $S = V_1$ is the start symbol.

Assume that the alphabet of Γ is ordered as above and we regard strings on this alphabet as integers in the base $n + k$.

Theorem

The predicate
$$
u \Rightarrow v
$$
 is primitive recursive.

Proof.

Let the production of Γ be $x_i \to y_i$ for $1 \leqslant i \leqslant \ell$. For $1 \leqslant i \leqslant \ell$ define the predicate $PROD_i(u, v)$ as

$$
(\exists r, s)_{\leq u}[u = \text{CONCAT}(r, x_i, s) \& v = \text{CONCAT}(r, y_i, s)]
$$

Since CONCAT is primitive recursive, $PROD_i$ is primitive recursive. Since $u \Rightarrow v$ if and only if Γ

```
PROD_1(u, v) \vee PROD_2(u, v) \vee \cdots \vee PROD_\ell(u, v)
```
the result follows.

イロト イ押ト イヨト イヨト

Define the predicate DERIV(u, y) to mean that for some m $y = [u_1, \ldots, u_m, 1]$, where u_1, \ldots, u_m is a derivation of u from S in Γ, that is,

$$
S = u_1 \Rightarrow u_2 \Rightarrow \cdots \Rightarrow u_m = u.
$$

 u_1 has been added to avoid complications when $u_m = u = 0$. Note that the value of S in the base $n + k$ is $n + 1$ (because $S = V_1$ is the $(n + 1)$ st symbol in the alphabetic list).

Theorem

The predicate DERIV (u, y) is primitive recursive.

Proof.

This follows from the following equivalent statements:

$$
\begin{array}{rcl}\n\text{DERIV}(u, y) & \Leftrightarrow & (\exists m)_{\leq y} (m+1 = Lt(y) \\
& & (y)_1 = n + 1 \& (y)_m = u \& (y)_{m+1} = 1 \\
& & (\forall j)_{< m} (j = 0 \lor [(y)_j \Rightarrow (y)_{j+1}])\n\end{array}
$$

27 / 42

 Ω

K ロ メ イ 団 メ マ ヨ メ マ ヨ メ ニ ヨ

Note that

By the definition of DERIV(u, y) we have

$$
S \stackrel{*}{\Rightarrow} u \text{ if and only if } (\exists y) \text{DERIV}(u, y).
$$

 $S \stackrel{*}{\Rightarrow} u$ if and only if \min_{y} DERIV $(u, y) \downarrow$. Therefore, $\{u \mid S \stackrel{*}{\Rightarrow} u\}$ is recursively enumerable. Since $L(\Gamma) = T^* \cap \{u \mid S \stackrel{*}{\Rightarrow} u\}$ it follows that $L(\Gamma)$ is r.e.

Corollary

A language U is r.e. if and only if there is a grammar Γ such that $U = L(\Gamma)$.

Putting together previous results we have the following

Theorem

The following are equivalent for a language L:

- \Box L is r.e.;
- 2 L is accepted by a deterministic TM;
- 3 L is accepted by a nondeterministic TM;
- **4** there is a grammar Γ such that $L = L(\Gamma)$.

30 / 42

 Ω

K ロ メ イ 団 メ マ ヨ メ マ ヨ メ ニ ヨ

Definition

A grammar Γ is called length-increasing if for every production $x \rightarrow y$ we have $|x| \leq |y|$.

An equivalent class of grammars to the class of length-increasing grammars is the class of *context-sensitive grammars*. This equivalence in a topic in the theory of formal languages.

Theorem

If Γ is a length-increasing grammar, then the set ${u \in (\mathcal{V} \cup \mathcal{T})^* \mid S \stackrel{*}{\Rightarrow} u}$ is recursive.

> メロメメ 御きメモ メモ おく 老 Ω 32 / 42

Proof

Recall that we have shown that

$$
S \stackrel{*}{\Rightarrow} u \text{ if and only if } \min_{y} \text{DERIV}(u, y) \downarrow
$$

It will suffice to obtain a recursive bound for y to establish that $L(\Gamma)$ is recursive.

Note that in every derivation in Γ we have

$$
1=|u_1|\leqslant |u_2|\leqslant \cdots \leqslant |u_m|=|u|.
$$

Therefore, $u_1, u_2, \ldots, u_m = u \leq g(u)$, where $g(u)$ is the smallest number that represents a string of length $|u| + 1$ in the base $n + k$.

Proof cont'd

Note that:

- g(u) is the value in the base $n + k$ of a string consisting of $|u| + 1$ repetitions of 1, so $g(u) = \sum_{i=0}^{|u|} (n+k)^i$, which is primitive recursive because $|u|$ is primitive recursive.
- We may assume that the derivation

$$
S = u_1 \Rightarrow u_2 \Rightarrow \cdots \Rightarrow u_m = u
$$

contains no repetitions because given a sequence of steps

$$
z = u_i \Rightarrow u_{i+1} \Rightarrow \cdots \Rightarrow u_{i+\ell} = z
$$

we could eliminate the steps $u_{i+1}, \ldots, u_{\ell}$.

K ロ メ イ 団 メ マ ヨ メ マ ヨ メ ニ ヨ 34 / 42

Thus, the length of the derivation is bounded by the total number of strings of length less or equal to |u| on the alphabet with $n + k$ symbols, which is just the number $g(u)$. Hence,

$$
[u_1, \ldots, u_m, 1] = \prod_{i=1}^m p_i^{u_i} \cdot p_{m+1} \leq h(u),
$$

where

$$
h(u)=\prod_{i=1}^{g(u)}p_i^{g(u)}\cdot p_{g(u)+1}.
$$

Finally, we have $S \stackrel{*}{\Rightarrow} u$ if and only if $(\exists y)_{\leqslant h(u)}$ DERIV (u, y) , which gives the result.

Theorem

If Γ is a length-increasing grammar, then $L(\Gamma)$ is recursive.

Proof.

By the previous theorem, the set $\{u \in (\mathcal{V} \cup \mathcal{T})^* \mid S \stackrel{*}{\Rightarrow} u\}$ is recursive. Since

$$
L(\Gamma) = \{u \in (\mathcal{V} \cup \mathcal{T})^* \mid S \stackrel{*}{\Rightarrow} u\} \cap \mathcal{T}^*,
$$

and T^* is recursive, it follows that $L(\Gamma)$ is recursive.

K ロ メ イ 団 メ マ ヨ メ マ ヨ メ ニ ヨ 36 / 42

Let M be a TM and let u be a word in the alphabet of M. The grammar Γ _u is constructed as follows:

- **The variables of** Γ_u **are the entire alphabet of** $\Sigma(\mathcal{M})$ **together** with S (the start symbol) and a new nonterminal symbol V . There is just one terminal symbol a.
- **The production of Γ**_u are all productions of $\Sigma(\mathcal{M})$ together with

$$
S \to hq_1s_0uh, hq_0h \to V, V \to aV, V \to a
$$

We have $S \underset{\mathsf{\Gamma}_{u}}{\overset{*}{\Rightarrow}} V$ if and only if ${\mathcal M}$ accepts $u.$

Lemma

If M accepts u, then $L(\Gamma_u) = \{a^i \mid i \neq 0\}$; if M does not accept u, then $L(\Gamma_u) = \emptyset$.

Proof.

The fact that M accepts u means that:

$$
S \stackrel{*}{\Rightarrow} hq_1s_0uh \stackrel{}{\Rightarrow} hq_0h \stackrel{}{\Rightarrow} V \stackrel{*}{\Rightarrow} a^{n-1}V \stackrel{}{\Rightarrow} a^n,
$$

If M does not accept u, then the word hq_0u cannot be generated, so $L(\Gamma_u) = \emptyset$.

Select M such that the language accepted by it is not recursive. Then, there is no algorithm for determining for given u whether M accepts u. The lemma implies that

$$
\mathcal{M} \text{ accepts } u \Leftrightarrow L(\Gamma_u) \neq \emptyset
$$
\n
$$
\Leftrightarrow L(\Gamma_u) \text{ is infinite}
$$
\n
$$
\Leftrightarrow a \in L(\Gamma_u).
$$

39 / 42

 Ω

4 ロ > 4 何 > 4 ミ > 4 ミ > - ミ

The above prove the following:

Theorem

There is no algorithm to determine of a given grammar Γ whether

40 / 42

 QQ

 $A \cap B \rightarrow A \cap B \rightarrow A \cap B \rightarrow A \cap B \rightarrow A \cap B$

 $L(\Gamma)$ is empty;

- $2 L(Γ)$ is infinite;
- 3 $v_0 \in L(\Gamma)$ for a fixed word v_0 .

Theorem

There is no algorithm for determining of a given pair of grammars $Γ_1$ and $Γ_2$ whether

```
L(\Gamma_1) \subseteq L(\Gamma_2);
2 L(\Gamma_1) = L(\Gamma_2).
```
[THEORY OF COMPUTATION Grammars - 25](#page-0-0)

[Unsolvable Problems Concerning Grammars](#page-36-0)

Proof

Let Γ_1 be the grammar whose productions are

$$
S \to aS, S \to a
$$

We have $\mathsf{L}(\mathsf{\Gamma}_1)=\{a^i\,\mid\,i\neq0\}.$ Thus, by the previous theorem, $\mathcal M$ accepts u if and only if $L(\Gamma_1) = L(\Gamma_u)$ if and only if $L(\Gamma_1) \subseteq L(\Gamma_u)$.