THEORY OF COMPUTATION Programs and Computable Functions - 3

Prof. Dan A. Simovici

UMB

1 / 32

 Ω

メロトメ 倒 トメ 差 トメ 差 トー 差

 L_{Outline} L_{Outline} L_{Outline}

1 [Rigurous Definition of Syntax of](#page-2-0) S

2 [Computable Functions](#page-14-0)

3 [More about Macros](#page-22-0)

メロトメ 倒 トメ 差 トメ 差 トー 差 299 2 / 32

 $\overline{}$ [Rigurous Definition of Syntax of](#page-2-0) $\cal S$

 \blacksquare The symbols

 X_1 X_2 X_3 \cdots

are called input variables;

 \blacksquare the symbols

 Z_1 Z_2 Z_3 \cdots

are called *local variables*;

 \blacksquare Y is the *output variable*;

 \blacksquare the symbols

$$
A_1 \ B_1 \ C_1 \ D_1 \ E_1 \ A_2 \ B_2 \cdots
$$

are the *the labels* of S .

 $\overline{\Box}$ [Rigurous Definition of Syntax of](#page-2-0) S

A *statement* is one of the following

$$
V \leftarrow V + 1
$$

\n
$$
V \leftarrow V - 1
$$

\n
$$
V \leftarrow V
$$

\nIF $V \neq 0$ GOTO L ,

where V may be any variable and L may be any label. An *instruction* is either a statement (also called unlabeled instruction) or [L] followed by a statement.

A *program* is a finite sequence of instructions. The length of this list is called the *length* of the program.

The *empty program* is the program of length 0.

Definition

A state of a program P is a list of equations of the form $X = m$, where X is a variable and $m \in \mathbb{N}$ such that

- **the list includes an equation for each variable that occurs in** P , and
- \blacksquare no two equations involve the same variable.

Example

$$
[A] \quad \text{IF } X \neq 0 \text{ GOTO } B
$$
\n
$$
Z \leftarrow Z + 1
$$
\n
$$
\text{IF } Z \neq 0 \text{ GOTO } E
$$
\n
$$
[B] \quad X \leftarrow X - 1
$$
\n
$$
Y \leftarrow Y + 1
$$
\n
$$
Z \leftarrow Z + 1
$$
\n
$$
\text{IF } Z \neq 0 \text{ GOTO } A
$$

STATES : $X = 4, Y = 3, Z = 3$ A state need not be attained by the program. $X_1 = 4, X_2 = 5, Y = 4, Z = 4$ Variables that do not occur may also be included $X = 3, Z = 3$ is not a state because Y is not included $X = 3, X = 4, Y = 2, Z = 2$ is not a state because X appears twice.

 \Box [Rigurous Definition of Syntax of](#page-2-0) $\mathcal S$

Definition

Let σ be a state of a program P and let V be a variable that occurs in σ .

The *value* of V is the unique number q such that the equation $V = q$ is one of the equations that make up σ .

Example

The value of X at the state $X = 4$, $Y = 3$, $Z = 3$ is 4.

 $\overline{\Box}$ [Rigurous Definition of Syntax of](#page-2-0) S

Definition

A snapshot or instantaneous description of a program P of length *n* is a pair (i, σ), where $1 \leqslant i \leqslant n+1$, and σ is a state of \mathcal{P} .

Intuition: i indicates that it is the i^{th} instruction that is about to be executed; $i = n + 1$ corresponds to a "stop" instruction and the snapshot $(n+1, \sigma)$ is said to be a *terminal snapshot*.

The successor snapshot

The *successor snapshot* of (i, σ) is the snapshot (i, τ) defined as follows:

- if the i^{th} instruction of ${\mathcal P}$ is ${\mathcal V} \leftarrow {\mathcal V} + 1$ and σ contains the equation $V = m$, then $j = i + 1$ and τ is obtained from σ by replacing $V = m$ by $V = m + 1$;
- if the i^{th} instruction of ${\mathcal P}$ is $V \leftarrow V-1$ and σ contains the equation $V = m$, then $j = i + 1$ and τ is obtained from σ by replacing $V = m$ by $V = m - 1$ if $m \neq 0$; if $m = 0$, then $\tau = \sigma$:
- if the i^{th} instruction of ${\mathcal P}$ is ${\mathsf V} \leftarrow {\mathsf V}$ then $\tau = \sigma$ and $j = i+1;$

The successor snapshot cont'd

- if the i^{th} instruction of ${\cal P}$ is IF $V\neq 0$ GOTO L , then $\tau=\sigma$ and we may have two subcases:
	- if σ contains the equation $V = 0$, then $i = i + 1$;
	- if σ contains the equation $V = m$ where $m \neq 0$, them if there is an instruction of P labeled L, then *j* is the least number such that the j^{th} instruction is labeled L; otherwise, $j = n + 1$.

Example

Consider again the program shown in Slide [6:](#page-5-0)

\n- [A] IF
$$
X \neq 0
$$
 GOTO B
\n- $Z \leftarrow Z + 1$
\n- [F $Z \neq 0$ GOTO E
\n- [B] $X \leftarrow X - 1$
\n- $Y \leftarrow Y + 1$
\n- $Z \leftarrow Z + 1$
\n- [F $Z \neq 0$ GOTO A
\n

Let σ be the state $X = 4$, $Y = 0$, $Z = 0$. For $i = 1$, the successor is $(4, \sigma)$ For $i = 2$, the successor is $(3, \tau)$ where τ consists of $X = 4, Y = 0, Z = 1.$ For $i = 7$ the successor is $(8, \sigma)$ which is terminal.

> K ロ > K @ > K 경 > K 경 > 시 경 Ω 11 / 32

 $\overline{}$ [Rigurous Definition of Syntax of](#page-2-0) $\cal S$

Definition

A computation of a program P is defined as a sequence (s_1, s_2, \ldots, s_k) of snapshots of P such that s_{i+1} is a successor of s_i for $1 \leq i \leq k - 1$ and s_k is terminal.

 \Box [Rigurous Definition of Syntax of](#page-2-0) $\mathcal S$

A program may contain more than one instruction having the same label.

The definition of the successor snapshot implies that a branch instruction as always referring to the FIRST statement of the program having the label in question.

 $\overline{\mathsf{L}}$ [Rigurous Definition of Syntax of](#page-2-0) $\mathcal S$

Example

The program

$$
[A] \quad X \leftarrow X - 1
$$

IF $X \neq 0$ GOTO A

$$
[A] \quad X \leftarrow X + 1
$$

is equivalent to the program

$$
\begin{array}{ll} [A] & X \leftarrow X - 1 \\ & \text{IF } X \neq 0 \text{ GOTO } A \\ & X \leftarrow X + 1 \end{array}
$$

メロトメ 倒 トメ 差 トメ 差 トー 差 299 14 / 32

Let P be a program in the language S and let r_1, \ldots, r_m be m given numbers. Form the state σ of $\mathcal P$ that consists of:

- **the equations** $X_1 = r_1, X_2 = r_2, \ldots, X_m = r_m, Y = 0$,
- **n** and of equations of the form $V = 0$ for each variable V in \mathcal{P} other than X_1, \ldots, X_n and Y.

This is the *initial state* σ of P and $(1, \sigma)$ is the initial snapshot.

Definition

The *m-argument function* $\psi_{\mathcal{P}}^{(m)}$ $P_{\mathcal{P}}^{(m)}$ computed by the program $\mathcal P$ is:

- If there is a computation s_1, \ldots, s_k of P beginning with the initial snapshot s_1 then $\psi_{\mathcal{P}}^{(m)}$ $\mathcal{P}^{(m)}(r_1,\ldots,r_m)$ is the value of Y at the terminal snapshot.
- If there is no such finite computation, that is if there is an infinite computation s_1,s_2,\dots then $\psi_{\mathcal{P}}^{(m)}$ $\mathcal{P}^{(m)}(r_1,\ldots,r_m)$ is undefined.

Very important: a program may be used with any number of inputs.

- If a program has *n* input variables but only $m < n$ are specified, the remaining input variables are set to 0 and the computation proceeds.
- If $m > n$ the extra input variables are ignored.

Example

Consider again the program with explicit line numbers:

[A]	IF $X \neq 0$ GOTO B	(1)
$Z \leftarrow Z + 1$	(2)	
IF $Z \neq 0$ GOTO E	(3)	
[B]	$X \leftarrow X - 1$	(4)
$Y \leftarrow Y + 1$	(5)	
$Z \leftarrow Z + 1$	(6)	
IF $Z \neq 0$ GOTO A	(7)	

Snapshots $(1, {X = 3, Y = 0, Z = 0})$ $(4, \{X = 3, Y = 0, Z = 0\})$ $(5, \{X = 2, Y = 0, Z = 0\})$ $(6, {X = 2, Y = 1, Z = 0})$ $(7, \{X = 3, Y = 1, Z = 1\})$ $(1, {X = 3, Y = 1, Z = 1})$. . . $(1, {X = 0, Y = 3, Z = 3})$ $(2, {X = 0, Y = 3, Z = 3})$ $(3, {X = 0, Y = 3, Z = 4})$ $(8, {X = 0, Y = 3, Z = 4})$

- As previously mentioned, we are permitting each program to be used with any number of inputs.
- If a program has *n* input variables, but only $m < n$ are specified, the remaining input variables are set to 0 and the computation proceeds.
- If m values are specified, where $m > n$, the extra input variables are ignored.

For any program P and any positive integer m , the function $\psi_{\cal P}^{(m)}$ $\mathcal{P}^{(m)}(x_1,\ldots,x_m)$ is said to be computed by \mathcal{P} . A partial function g is said to be partially computable if it is computed by some program. That is, g is partially computable if there exists a program P such that

$$
g(r_1,\ldots,r_m)=\psi_{\mathcal{P}}^{(m)}(r_1,\ldots,r_m)
$$

When one side of this equation is undefined, then so is the other side.

```
A function g of m variables is total if g(r_1, \ldots, r_m) is defined for
all r_1, \ldots, r_m).
A function is computable if it is both partially computable and
total.
```
Example

The functions $x, x + y, x \cdot y$ are computable; the function $x - y$ is partially computable.

Example

For the program

$$
[A] \quad X \leftarrow X + 1
$$

IF $X \neq 0$ GOTO A

the one-argument function $\psi^1_{\cal P}(\mathsf{x})$ is undefined for all $\mathsf{x}.$ So, the nowhere defined function must be included in the class of partially computed functions.

Let f be a partially computable function computed by a program P . We make the following assumptions:

- **the variables in** P belong to the list $Y, X_1, \ldots, X_n, Z_1, \ldots, Z_k$;
- the labels in ${\mathcal P}$ are included in the list $E,A_1,\ldots,A_\ell;$
- **for each instruction IF V** \neq 0 GOTO A there is an instruction in P labeled A (that is, E is the single exit label).

Then P is written as:

$$
\mathcal{P}=\mathcal{P}(Y,X_1,\ldots,X_n,Z_1,\ldots,Z_k;E,A_1,\ldots,A_\ell).
$$

The notation

$$
\mathcal{P}=\mathcal{P}(Y,X_1,\ldots,X_n,Z_1,\ldots,Z_k;E,A_1,\ldots,A_\ell).
$$

can be used to write:

$$
Q = P(Z_m, Z_{m+1}, \ldots, Z_{m+n}, Z_{m+n+1}, \ldots, Z_{m+n+k};
$$

$$
E_m, A_{m+1}, \ldots, A_{m+\ell})
$$

to denote a program obtained from P by replacing the variables and labels by others.

To use a macro like $W \leftarrow f(V_1, \ldots, V_n)$ is regarded as an abbreviation of:

$$
Z_m \leftarrow 0
$$
\n
$$
Z_{m+1} \leftarrow V_1
$$
\n
$$
\vdots
$$
\n
$$
Z_{m+n+1} \leftarrow V_n
$$
\n
$$
Z_{m+n+1} \leftarrow 0
$$
\n
$$
Z_{m+n+2} \leftarrow 0
$$
\n
$$
\vdots
$$
\n
$$
Z_{m+n+k} \leftarrow 0
$$
\n
$$
Q_m
$$
\n
$$
[E_m] \quad W \leftarrow Z_m
$$

m is chosem so large that none of the variables or labels used in \mathcal{Q}_m occur in the main program that contains Q_m .

Note that:

- \blacksquare the expansion sets the variables corresponding to the output variable Y and to the local variables of P , $Z_{m+n+1}, \ldots, Z_{m+n+k}$ to 0;
- **the variables corresponding to** X_1, \ldots, X_n **are set to the values** of V_1, \ldots, V_n ;
- **s** setting the variables equal to 0 is necessary because the expansion may be part of a loop in the main program;
- when \mathcal{Q}_m terminates the value of Z_m is $f(V_1, \ldots, V_n)$.

If $f(V_1,\ldots,V_n)$ \uparrow (is undefined), \mathcal{Q}_m never terminates. Thus, f is not total and the macro

$$
W \leftarrow f(V_1, \ldots, V_n)
$$

is encountered in a program, the main program will never terminate.

Example

The program

$$
Z \leftarrow X_1 - X_2
$$

$$
Y \leftarrow Z + X_3
$$

computes the function $f(x_1, x_2, x_3)$ defined as

$$
f(x_1, x_2, x_3) = \begin{cases} (x_1 - x_2) + x_3 & \text{if } x_1 \ge x_2, \\ \uparrow & \text{otherwise.} \end{cases}
$$

Note that $f(2, 5, 6)$ is undefined! The computation never gets past the attempt to compute $2 - 5$.

Augmenting the language to include macros of the form

IF $P(V_1, \ldots, V_n)$ GOTO L

where $P(x_1, \ldots, x_n)$ is a computable predicate. Recall the convention that TRUE $= 1$ and FALSE $= 0$. This regards predicate as total functions whose values are always 0 or 1.

The macro expansion of

IF $P(V_1, \ldots, V_n)$ GOTO L

is

$$
Z \leftarrow P(V_1, \ldots, V_n)
$$

IF $Z \neq 0$ GOTO L

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ① 할 → ① 의 O 30 / 32

Note that the predicate $P(x)$ defined by

$$
P(x) = \begin{cases} \text{TRUE} & \text{if } x = 0, \\ \text{FALSE} & \text{otherwise} \end{cases}
$$

is computable by the program

IF
$$
X \neq 0
$$
 GOTO E
 $Y \leftarrow Y + 1$

31 / 32

K ロ X (日) X X B X X B X 2 B X 9 Q Q O

Example

An instruction used frequently is

IF $V = 0$ GOTO L

This is legitimate because we can compute $V = 0$.