
THEORY OF COMPUTATION Programs and Computable Functions - 3

THEORY OF COMPUTATION
Programs and Computable Functions - 3

Prof. Dan A. Simovici

UMB

1 / 32



THEORY OF COMPUTATION Programs and Computable Functions - 3

Outline

1 Rigurous Definition of Syntax of S

2 Computable Functions

3 More about Macros

2 / 32



THEORY OF COMPUTATION Programs and Computable Functions - 3

Rigurous Definition of Syntax of S

The symbols
X1 X2 X3 · · ·

are called input variables;

the symbols
Z1 Z2 Z3 · · ·

are called local variables;

Y is the output variable;

the symbols

A1 B1 C1 D1 E1 A2 B2 · · ·

are the the labels of S.

3 / 32



THEORY OF COMPUTATION Programs and Computable Functions - 3

Rigurous Definition of Syntax of S

A statement is one of the following

V ← V + 1
V ← V − 1
V ← V
IF V 6= 0 GOTO L,

where V may be any variable and L may be any label.
An instruction is either a statement (also called unlabeled
instruction) or [L] followed by a statement.

4 / 32



THEORY OF COMPUTATION Programs and Computable Functions - 3

Rigurous Definition of Syntax of S

A program is a finite sequence of instructions. The length of this
list is called the length of the program.
The empty program is the program of length 0.

Definition

A state of a program P is a list of equations of the form X = m,
where X is a variable and m ∈ N such that

the list includes an equation for each variable that occurs in
P, and

no two equations involve the same variable.

5 / 32



THEORY OF COMPUTATION Programs and Computable Functions - 3

Rigurous Definition of Syntax of S

Example

[A] IF X 6= 0 GOTO B
Z ← Z + 1
IF Z 6= 0 GOTO E

[B] X ← X − 1
Y ← Y + 1
Z ← Z + 1
IF Z 6= 0 GOTO A

STATES :
X = 4,Y = 3,Z = 3
A state need not
be attained by the program.
X1 = 4,X2 = 5,Y = 4,Z = 4
Variables that do not occur
may also be included
X = 3,Z = 3 is not a state because
Y is not included
X = 3,X = 4,Y = 2,Z = 2
is not a state because X
appears twice.

6 / 32



THEORY OF COMPUTATION Programs and Computable Functions - 3

Rigurous Definition of Syntax of S

Definition

Let σ be a state of a program P and let V be a variable that
occurs in σ.
The value of V is the unique number q such that the equation
V = q is one of the equations that make up σ.

Example

The value of X at the state X = 4,Y = 3,Z = 3 is 4.

7 / 32



THEORY OF COMPUTATION Programs and Computable Functions - 3

Rigurous Definition of Syntax of S

Definition

A snapshot or instantaneous description of a program P of length
n is a pair (i , σ), where 1 6 i 6 n + 1, and σ is a state of P.

Intuition: i indicates that it is the i th instruction that is about to
be executed; i = n + 1 corresponds to a “stop” instruction and the
snapshot (n + 1, σ) is said to be a terminal snapshot.

8 / 32



THEORY OF COMPUTATION Programs and Computable Functions - 3

Rigurous Definition of Syntax of S

The successor snapshot

The successor snapshot of (i , σ) is the snapshot (j , τ) defined as
follows:

if the i th instruction of P is V ← V + 1 and σ contains the
equation V = m, then j = i + 1 and τ is obtained from σ by
replacing V = m by V = m + 1;

if the i th instruction of P is V ← V − 1 and σ contains the
equation V = m, then j = i + 1 and τ is obtained from σ by
replacing V = m by V = m − 1 if m 6= 0; if m = 0, then
τ = σ;

if the i th instruction of P is V ← V then τ = σ and j = i + 1;

9 / 32



THEORY OF COMPUTATION Programs and Computable Functions - 3

Rigurous Definition of Syntax of S

The successor snapshot cont’d

if the i th instruction of P is IF V 6= 0 GOTO L, then τ = σ
and we may have two subcases:

if σ contains the equation V = 0, then j = i + 1;
if σ contains the equation V = m where m 6= 0, them if there
is an instruction of P labeled L, then j is the least number
such that the jth instruction is labeled L; otherwise, j = n + 1.

10 / 32



THEORY OF COMPUTATION Programs and Computable Functions - 3

Rigurous Definition of Syntax of S

Example

Consider again the program shown in Slide 6:

[A] IF X 6= 0 GOTO B
Z ← Z + 1
IF Z 6= 0 GOTO E

[B] X ← X − 1
Y ← Y + 1
Z ← Z + 1
IF Z 6= 0 GOTO A

Let σ be the state X = 4,Y = 0,Z = 0.
For i = 1, the successor is (4, σ)
For i = 2, the successor is (3, τ)
where τ consists of
X = 4,Y = 0,Z = 1.
For i = 7 the successor is

(8, σ) which is terminal.

11 / 32



THEORY OF COMPUTATION Programs and Computable Functions - 3

Rigurous Definition of Syntax of S

Definition

A computation of a program P is defined as a sequence
(s1, s2, . . . , sk) of snapshots of P such that si+1 is a successor of si
for 1 6 i 6 k − 1 and sk is terminal.

12 / 32



THEORY OF COMPUTATION Programs and Computable Functions - 3

Rigurous Definition of Syntax of S

A program may contain more than one instruction having the same
label.
The definition of the successor snapshot implies that a branch
instruction as always referring to the FIRST statement of the
program having the label in question.

13 / 32



THEORY OF COMPUTATION Programs and Computable Functions - 3

Rigurous Definition of Syntax of S

Example

The program
[A] X ← X − 1

IF X 6= 0 GOTO A
[A] X ← X + 1

is equivalent to the program

[A] X ← X − 1
IF X 6= 0 GOTO A
X ← X + 1

14 / 32



THEORY OF COMPUTATION Programs and Computable Functions - 3

Computable Functions

Let P be a program in the language S and let r1, . . . , rm be m
given numbers. Form the state σ of P that consists of:

the equations X1 = r1,X2 = r2, . . . ,Xm = rm,Y = 0,

and of equations of the form V = 0 for each variable V in P
other than X1, . . . ,Xn and Y .

This is the initial state σ of P and (1, σ) is the initial snapshot.

15 / 32



THEORY OF COMPUTATION Programs and Computable Functions - 3

Computable Functions

Definition

The m-argument function ψ
(m)
P computed by the program P is:

If there is a computation s1, . . . , sk of P beginning with the

initial snapshot s1 then ψ
(m)
P (r1, . . . , rm) is the value of Y at

the terminal snapshot.

If there is no such finite computation, that is if there is an

infinite computation s1, s2, . . . then ψ
(m)
P (r1, . . . , rm) is

undefined.

16 / 32



THEORY OF COMPUTATION Programs and Computable Functions - 3

Computable Functions

Very important: a program may be used with any number of
inputs.

If a program has n input variables but only m < n are
specified, the remaining input variables are set to 0 and the
computation proceeds.

If m > n the extra input variables are ignored.

17 / 32



THEORY OF COMPUTATION Programs and Computable Functions - 3

Computable Functions

Example

Consider again the program with explicit line numbers:

[A] IF X 6= 0 GOTO B (1)
Z ← Z + 1 (2)
IF Z 6= 0 GOTO E (3)

[B] X ← X − 1 (4)
Y ← Y + 1 (5)
Z ← Z + 1 (6)
IF Z 6= 0 GOTO A (7)

Snapshots
(1, {X = 3,Y = 0,Z = 0})
(4, {X = 3,Y = 0,Z = 0})
(5, {X = 2,Y = 0,Z = 0})
(6, {X = 2,Y = 1,Z = 0})
(7, {X = 3,Y = 1,Z = 1})
(1, {X = 3,Y = 1,Z = 1})
...
(1, {X = 0,Y = 3,Z = 3})
(2, {X = 0,Y = 3,Z = 3})
(3, {X = 0,Y = 3,Z = 4})
(8, {X = 0,Y = 3,Z = 4)})

18 / 32



THEORY OF COMPUTATION Programs and Computable Functions - 3

Computable Functions

As previously mentioned, we are permitting each program to
be used with any number of inputs.

If a program has n input variables, but only m < n are
specified, the remaining input variables are set to 0 and the
computation proceeds.

If m values are specified, where m > n, the extra input
variables are ignored.

19 / 32



THEORY OF COMPUTATION Programs and Computable Functions - 3

Computable Functions

For any program P and any positive integer m, the function

ψ
(m)
P (x1, . . . , xm) is said to be computed by P.

A partial function g is said to be partially computable if it is
computed by some program. That is, g is partially computable if
there exists a program P such that

g(r1, . . . , rm) = ψ
(m)
P (r1, . . . , rm)

When one side of this equation is undefined, then so is the other
side.

20 / 32



THEORY OF COMPUTATION Programs and Computable Functions - 3

Computable Functions

A function g of m variables is total if g(r1, . . . , rm) is defined for
all r1, . . . , rm).
A function is computable if it is both partially computable and
total.

Example

The functions x , x + y , x · y are computable; the function x − y is
partially computable.

21 / 32



THEORY OF COMPUTATION Programs and Computable Functions - 3

Computable Functions

Example

For the program

[A] X ← X + 1
IF X 6= 0 GOTO A

the one-argument function ψ1
P(x) is undefined for all x . So, the

nowhere defined function must be included in the class of partially
computed functions.

22 / 32



THEORY OF COMPUTATION Programs and Computable Functions - 3

More about Macros

Let f be a partially computable function computed by a program
P. We make the following assumptions:

the variables in P belong to the list Y ,X1, . . . ,Xn,Z1, . . . ,Zk ;

the labels in P are included in the list E ,A1, . . . ,A`;

for each instruction IF V 6= 0 GOTO A there is an instruction
in P labeled A (that is, E is the single exit label).

Then P is written as:

P = P(Y ,X1, . . . ,Xn,Z1, . . . ,Zk ;E ,A1, . . . ,A`).

23 / 32



THEORY OF COMPUTATION Programs and Computable Functions - 3

More about Macros

The notation

P = P(Y ,X1, . . . ,Xn,Z1, . . . ,Zk ;E ,A1, . . . ,A`).

can be used to write:

Q = P(Zm,Zm+1, . . . ,Zm+n,Zm+n+1, . . . ,Zm+n+k ;

Em,Am+1, . . . ,Am+`)

to denote a program obtained from P by replacing the variables
and labels by others.

24 / 32



THEORY OF COMPUTATION Programs and Computable Functions - 3

More about Macros

To use a macro like W ← f (V1, . . . ,Vn) is regarded as an
abbreviation of:

Zm ← 0
Zm+1 ← V1
...
Zm+n ← Vn

Zm+n+1 ← 0
Zm+n+2 ← 0
...
Zm+n+k ← 0
Qm

[Em] W ← Zm

m is chosem so large
that none of the variables
or labels used in Qm

occur in the main program
that contains Qm.

25 / 32



THEORY OF COMPUTATION Programs and Computable Functions - 3

More about Macros

Note that:

the expansion sets the variables corresponding to the output
variable Y and to the local variables of P,
Zm+n+1, . . . ,Zm+n+k to 0;

the variables corresponding to X1, . . . ,Xn are set to the values
of V1, . . . ,Vn;

setting the variables equal to 0 is necessary because the
expansion may be part of a loop in the main program;

when Qm terminates the value of Zm is f (V1, . . . ,Vn).

26 / 32



THEORY OF COMPUTATION Programs and Computable Functions - 3

More about Macros

If f (V1, . . . ,Vn) ↑ (is undefined), Qm never terminates. Thus, f is
not total and the macro

W ← f (V1, . . . ,Vn)

is encountered in a program, the main program will never
terminate.

27 / 32



THEORY OF COMPUTATION Programs and Computable Functions - 3

More about Macros

Example

The program
Z ← X1 − X2

Y ← Z + X3

computes the function f (x1, x2, x3) defined as

f (x1, x2, x3) =

{
(x1 − x2) + x3 if x1 > x2,

↑ otherwise.

Note that f (2, 5, 6) is undefined! The computation never gets past
the attempt to compute 2− 5.

28 / 32



THEORY OF COMPUTATION Programs and Computable Functions - 3

More about Macros

Augmenting the language to include macros of the form

IF P(V1, . . . ,Vn) GOTO L

where P(x1, . . . , xn) is a computable predicate.
Recall the convention that TRUE = 1 and FALSE = 0.
This regards predicate as total functions whose values are always 0
or 1.

29 / 32



THEORY OF COMPUTATION Programs and Computable Functions - 3

More about Macros

The macro expansion of

IF P(V1, . . . ,Vn) GOTO L

is
Z ← P(V1, . . . ,Vn)
IF Z 6= 0 GOTO L

30 / 32



THEORY OF COMPUTATION Programs and Computable Functions - 3

More about Macros

Note that the predicate P(x) defined by

P(x) =

{
TRUE if x = 0,

FALSE otherwise

is computable by the program

IF X 6= 0 GOTO E
Y ← Y + 1

31 / 32



THEORY OF COMPUTATION Programs and Computable Functions - 3

More about Macros

Example

An instruction used frequently is

IF V = 0 GOTO L

This is legitimate because we can compute V = 0.

32 / 32


	Outline
	Rigurous Definition of Syntax of S
	Computable Functions
	More about Macros

