
THEORY OF COMPUTATION Primitive Recursive Functions - 4

THEORY OF COMPUTATION
Primitive Recursive Functions - 4

Prof. Dan A. Simovici

UMB

1 / 26

THEORY OF COMPUTATION Primitive Recursive Functions - 4

Outline

1 Function Composition

2 Recursion

3 Primitive Recursively Closed Classes

4 Building the Class of Primitive Recursive Functions

2 / 26

THEORY OF COMPUTATION Primitive Recursive Functions - 4

Function Composition

Definition

Let f be a function of k variables and let g1, . . . , gk be functions of
n variables. The function h defined as

h(x1, . . . , xn) = f (g1(x1, . . . , xn), . . . , gk(x1, . . . , xn))

is said to be obtained from f and g1, . . . , gk by composition.

The functions f , g1, . . . , gk need not be total. h(x1, . . . , xn) is
defined when all of z1 = g1(x1, . . . , xn), . . . , zk = g(x1, . . . , xn) are
defined and f (z1, . . . , zn) is defined.

3 / 26

THEORY OF COMPUTATION Primitive Recursive Functions - 4

Function Composition

Theorem

If h is obtained from the computable functions f , g1, . . . , gk by
composition, then h is computable.

Proof.

The following programm computes h:

Z1 ← g1(X1, . . . ,Xn)
...
Zk ← gk(X1, . . . ,Xn)
Y ← f (Z1, . . . ,Zk)

4 / 26

THEORY OF COMPUTATION Primitive Recursive Functions - 4

Function Composition

Example

We saw that the functions

x , x + y , x · y , x − y

are partially computable. Therefore, 2x = x + x and
4x2 = (2x) · (2x) are partially computable. So are 4x2 + 2x and
4x2 − 2x . Note that 4x2 − 2x is total although is obtained from a
non-total function x − y by composition with 4x2 and 2x .

5 / 26

THEORY OF COMPUTATION Primitive Recursive Functions - 4

Recursion

Recursion is a modality of constructing a new function from a
given one.

Definition

Suppose that g is a total function of two variables and k is a fixed
number, k ∈ N.
The function h : N −→ N is obtained from g by primitive recursion
if

h(0) = k ,

h(t + 1) = g(t, h(t)).

6 / 26

THEORY OF COMPUTATION Primitive Recursive Functions - 4

Recursion

Theorem

If h is obtained from the computable function g by primitive
recursion, then h is also computable.

Proof.

Note that the constant function f (x) = k is computed by the
program

Y ← Y + 1
Y ← Y + 1
...
Y ← Y + 1

that contains k lines.

7 / 26

THEORY OF COMPUTATION Primitive Recursive Functions - 4

Recursion

Proof cont’d

Proof.

This shows that we can use the macro Y ← k. The following is a
program that computed h(x):

Y ← k
[A] IF X = 0 GOTO E

Y ← g(Z ,Y)
Z ← Z + 1
X ← X − 1
GOTO A

Note that if Y has the value h(z) before executing instruction
labeled A, then it has the value g(z , h(z)) = h(z + 1) after
executing Y ← g(Z ,Y).

8 / 26

THEORY OF COMPUTATION Primitive Recursive Functions - 4

Recursion

A slightly more complicated kind of recursion

The function h : Nn+1 −→ N is defined starting from the functions
f : Nn −→ N and g : Nn+2 −→ N as

h(x1, . . . , xn, 0) = f (x1, . . . , xn),

h(x1, . . . , xn, t + 1) = g(t, h(x1, . . . , xn, t), x1, . . . , xn).

This modality of constructing h is known as primitive recursion.
The functions f and g are total.

9 / 26

THEORY OF COMPUTATION Primitive Recursive Functions - 4

Recursion

Theorem

Let f : Nn −→ N and g : Nn+2 −→ N be two computable
functions. The function h defined from f and g by primitive
recursion is computable.

10 / 26

THEORY OF COMPUTATION Primitive Recursive Functions - 4

Recursion

Proof.

The following program computes h(x1, . . . , xn, xn+1):

Y ← f (X1, . . . ,Xn)
[A] IF Xn+1 = 0 GOTO E

Y ← g(Z ,Y ,X1, . . . ,Xn)
Z ← Z + 1
Xn+1 ← Xn+1 − 1
GOTO A

11 / 26

THEORY OF COMPUTATION Primitive Recursive Functions - 4

Primitive Recursively Closed Classes

Definition

The set of initial functions consists of the following:

the successor function s : N −→ N defined by s(x) = x + 1 for
x ∈ N;

the null function n : N −→ N defined by n(x) = 0 for x ∈ N;

the projection functions uni : Nn −→ N given by
uni (x1, . . . , xn) = xi for 1 6 i 6 n.

Note that because the initial functions contain the projection
functions, the class of initial functions contains an infinite number
of functions.

12 / 26

THEORY OF COMPUTATION Primitive Recursive Functions - 4

Primitive Recursively Closed Classes

Example

The projection function u52 : N5 −→ N is given by

u52(x1, x2, x3, x4, x5) = x2

for x1, x2, x3, x4, x5 ∈ N.

13 / 26

THEORY OF COMPUTATION Primitive Recursive Functions - 4

Primitive Recursively Closed Classes

Definition

A primitive recursively closed class (a PRC class) is a set of total
functions C that satisfies the following conditions:

1 the initial functions belong to C, and

2 a function obtained from functions belonging to C by either
composition or recursion belongs to C.

14 / 26

THEORY OF COMPUTATION Primitive Recursive Functions - 4

Primitive Recursively Closed Classes

Theorem

The class of computable functions is a PRC class.

Proof.

It suffices to show that the initial functions are computable.

The function s(x) = x + 1 is computable by Y ← X + 1.

n(x) is computed by the empty program, and

uni (x1, . . . , xn) is computed by the program

Y ← Xi

15 / 26

THEORY OF COMPUTATION Primitive Recursive Functions - 4

Primitive Recursively Closed Classes

Definition

A function is primitive recursive if it can be obtained from the
initial functions by a finite number of applications of composition
and recursion.

It is clear that the class of primitive recursive functions is a PRC
class.

16 / 26

THEORY OF COMPUTATION Primitive Recursive Functions - 4

Primitive Recursively Closed Classes

Theorem

A function is primitive recursive if and only if it belongs to every
PRC class.

Proof.

If a function belongs to every PRC class then, in particular, it
belongs to the class of primitive recursive functions.
Conversely, let f be a primitive recursive function and let C be
some PRC class.
Since f is primitive recursive, there is a list f1, . . . , fn of functions
such that fn = f and each fi is either an initial function or it can
be obtained from preceeding functions by composition or recursion.
The initial functions belong to C and we saw that the application
of composition or recursion to functions in C results in a function
in C. Hence any function in f1, . . . , fn belongs to C. In particular,
fn = f ∈ C.

17 / 26

THEORY OF COMPUTATION Primitive Recursive Functions - 4

Primitive Recursively Closed Classes

Corollary

Every primitive recursive function is computable.

Proof.

Every primitive recursive function belongs to the PRC class of
computable functions.

18 / 26

THEORY OF COMPUTATION Primitive Recursive Functions - 4

Building the Class of Primitive Recursive Functions

Example

Let f (x , y) = x + y . We have

f (x , 0) = x = u11(x),

f (x , y + 1) = f (x , y) + 1.

The second equality can be written as

f (x , y + 1) = g(y , f (x , y), x),

where
g(x1, x2, x3) = 1 + x2 = s(u32(x1, x2, x3)).

Thus, g is primitive recursive and f is primitive recursive because is
obtained by primitive recursion from primitive recursive functions.

19 / 26

THEORY OF COMPUTATION Primitive Recursive Functions - 4

Building the Class of Primitive Recursive Functions

Example

Let h(x , y) = x · y . We have:

h(x , 0) = 0,

h(x , y + 1) = h(x , y) + x ,

or

h(x , 0) = n(x),

h(x , y + 1) = g(y , h(x , y), x),

where

g(x1, x2, x3) = f (u32(x1, x2, x3), u33(x1, x2, x3)) = f (x2, x3),

where f (x , y) = x + y was shown to be primitive recursive on
Slide 19.

20 / 26

THEORY OF COMPUTATION Primitive Recursive Functions - 4

Building the Class of Primitive Recursive Functions

Example

Let ` : N −→ N be defined as `(x) = x!. The recursion equations
are `(0) = 1 and `(x + 1) = `(x) · s(x), which represent the
equalities:

0! = 1 and (x + 1)! = x!(x + 1).

Formally, we have:

`(0) = 1,

`(t + 1) = g(t, `(t)),

where g(x1, x2) = s(x1) · x2. The function g is primitive recursive
because g(x1, x2) = s(u21(x1, x2)) · u22(x1, x2) and multiplication is
already known to be primitive recursive.

21 / 26

THEORY OF COMPUTATION Primitive Recursive Functions - 4

Building the Class of Primitive Recursive Functions

Example

The exponentiation function xy :
The recursion equations are

x0 = 1,

xy+1 = xy · x

Note that the for the “special case” 00 we have 00 = 1.

22 / 26

THEORY OF COMPUTATION Primitive Recursive Functions - 4

Building the Class of Primitive Recursive Functions

Example

The predecessor function defined as

p(x) =

{
x − 1 if x 6= 0,

0 if x = 0,

is primitive recursive because we have

p(0) = 0,

p(t + 1) = t.

23 / 26

THEORY OF COMPUTATION Primitive Recursive Functions - 4

Building the Class of Primitive Recursive Functions

The function x ·− y defined as

x ·− y =

{
x − y if x > y

0 if x < y

should not be confused with the partial function x − y which is
undefined if x < y . The function x ·− y is a total function and is
defined by

x ·− 0 = x ,

x ·− (t + 1) = p(x ·− t).

Note: the symbol ·− is read “monus”.

24 / 26

THEORY OF COMPUTATION Primitive Recursive Functions - 4

Building the Class of Primitive Recursive Functions

Example

The function |x − y | is primitive recursive because

|x − y | = (x ·− y) + (y ·− x).

25 / 26

THEORY OF COMPUTATION Primitive Recursive Functions - 4

Building the Class of Primitive Recursive Functions

Example

The function α(x), where

α(x) =

{
1 if x = 0,

0 if x 6= 0,

is primitive recursive because α(x) = 1 ·− x .
Alternatively, we can write the recursion equations:

α(0) = 1,

α(t + 1) = 0.

26 / 26

	Outline
	Function Composition
	Recursion
	Primitive Recursively Closed Classes
	Building the Class of Primitive Recursive Functions

