THEORY OF COMPUTATION Primitive Recursive Functions - 4

Prof. Dan A. Simovici

UMB

イロト 不得 トイヨト イヨト 二日

1/26

1 Function Composition

3 Primitive Recursively Closed Classes

4 Building the Class of Primitive Recursive Functions

Function Composition

Definition

Let f be a function of k variables and let g_1, \ldots, g_k be functions of n variables. The function h defined as

$$h(x_1,\ldots,x_n)=f(g_1(x_1,\ldots,x_n),\ldots,g_k(x_1,\ldots,x_n))$$

is said to be obtained from f and g_1, \ldots, g_k by *composition*.

The functions f, g_1, \ldots, g_k need not be total. $h(x_1, \ldots, x_n)$ is defined when all of $z_1 = g_1(x_1, \ldots, x_n), \ldots, z_k = g(x_1, \ldots, x_n)$ are defined and $f(z_1, \ldots, z_n)$ is defined.

Function Composition

Theorem

If h is obtained from the computable functions f, g_1, \ldots, g_k by composition, then h is computable.

Proof.

The following programm computes h:

$$Z_1 \leftarrow g_1(X_1, \dots, X_n)$$

$$\vdots$$

$$Z_k \leftarrow g_k(X_1, \dots, X_n)$$

$$Y \leftarrow f(Z_1, \dots, Z_k)$$

-Function Composition

Example

We saw that the functions

 $x, x + y, x \cdot y, x - y$

are partially computable. Therefore, 2x = x + x and $4x^2 = (2x) \cdot (2x)$ are partially computable. So are $4x^2 + 2x$ and $4x^2 - 2x$. Note that $4x^2 - 2x$ is total although is obtained from a non-total function x - y by composition with $4x^2$ and 2x.

if

Recursion is a modality of constructing a new function from a given one.

Definition

Suppose that g is a total function of two variables and k is a fixed number, $k \in \mathbb{N}$. The function $h : \mathbb{N} \longrightarrow \mathbb{N}$ is obtained from g by primitive recursion

$$h(0) = k,$$

 $h(t+1) = g(t, h(t)).$

Theorem

If h is obtained from the computable function g by primitive recursion, then h is also computable.

Proof.

Note that the constant function f(x) = k is computed by the program

$$Y \leftarrow Y + 1$$
$$Y \leftarrow Y + 1$$
$$\vdots$$
$$Y \leftarrow Y + 1$$

that contains k lines.

Proof cont'd

Proof.

This shows that we can use the macro $Y \leftarrow k$. The following is a program that computed h(x):

$$Y \leftarrow k$$
[A] IF X = 0 GOTO E

$$Y \leftarrow g(Z, Y)$$

$$Z \leftarrow Z + 1$$

$$X \leftarrow X - 1$$
GOTO A

Note that if Y has the value h(z) before executing instruction labeled A, then it has the value g(z, h(z)) = h(z + 1) after executing $Y \leftarrow g(Z, Y)$. Recursion

A slightly more complicated kind of recursion

The function $h: \mathbb{N}^{n+1} \longrightarrow \mathbb{N}$ is defined starting from the functions $f: \mathbb{N}^n \longrightarrow \mathbb{N}$ and $g: \mathbb{N}^{n+2} \longrightarrow \mathbb{N}$ as

$$h(x_1,...,x_n,0) = f(x_1,...,x_n),$$

$$h(x_1,...,x_n,t+1) = g(t,h(x_1,...,x_n,t),x_1,...,x_n).$$

This modality of constructing h is known as *primitive recursion*. The functions f and g are total.

Theorem

Let $f : \mathbb{N}^n \longrightarrow \mathbb{N}$ and $g : \mathbb{N}^{n+2} \longrightarrow \mathbb{N}$ be two computable functions. The function h defined from f and g by primitive recursion is computable.

Recursion

Proof.

The following program computes $h(x_1, \ldots, x_n, x_{n+1})$:

$$\begin{array}{l} Y \leftarrow f(X_1, \dots, X_n) \\ [A] \quad \mathsf{IF} \ X_{n+1} = 0 \ \mathsf{GOTO} \ E \\ Y \leftarrow g(Z, Y, X_1, \dots, X_n) \\ Z \leftarrow Z + 1 \\ X_{n+1} \leftarrow X_{n+1} - 1 \\ \mathsf{GOTO} \ A \end{array}$$

Definition

The set of *initial functions* consists of the following:

- the successor function $s : \mathbb{N} \longrightarrow \mathbb{N}$ defined by s(x) = x + 1 for $x \in \mathbb{N}$;
- the *null function* $n : \mathbb{N} \longrightarrow \mathbb{N}$ defined by n(x) = 0 for $x \in \mathbb{N}$;

• the projection functions $u_i^n : \mathbb{N}^n \longrightarrow \mathbb{N}$ given by $u_i^n(x_1, \ldots, x_n) = x_i$ for $1 \leq i \leq n$.

Note that because the initial functions contain the projection functions, the class of initial functions contains an infinite number of functions.

Example

The projection function $u_2^5 : \mathbb{N}^5 \longrightarrow \mathbb{N}$ is given by

$$u_2^5(x_1, x_2, x_3, x_4, x_5) = x_2$$

for $x_1, x_2, x_3, x_4, x_5 \in \mathbb{N}$.

Definition

A *primitive recursively closed class* (a PRC class) is a set of total functions C that satisfies the following conditions:

- 1 the initial functions belong to \mathcal{C} , and
- 2 a function obtained from functions belonging to C by either composition or recursion belongs to C.

Theorem

The class of computable functions is a PRC class.

Proof.

It suffices to show that the initial functions are computable.

- The function s(x) = x + 1 is computable by $Y \leftarrow X + 1$.
- n(x) is computed by the empty program, and
- $u_i^n(x_1, \ldots, x_n)$ is computed by the program

$$Y \leftarrow X_i$$

Definition

A function is *primitive recursive* if it can be obtained from the initial functions by a finite number of applications of composition and recursion.

It is clear that the class of primitive recursive functions is a PRC class.

Theorem

A function is primitive recursive if and only if it belongs to every PRC class.

Proof.

If a function belongs to every PRC class then, in particular, it belongs to the class of primitive recursive functions.

Conversely, let f be a primitive recursive function and let C be some PRC class.

Since f is primitive recursive, there is a list f_1, \ldots, f_n of functions such that $f_n = f$ and each f_i is either an initial function or it can be obtained from preceeding functions by composition or recursion. The initial functions belong to C and we saw that the application of composition or recursion to functions in C results in a function in C. Hence any function in f_1, \ldots, f_n belongs to C. In particular, $f_n = f \in C$.

Corollary

Every primitive recursive function is computable.

Proof.

Every primitive recursive function belongs to the PRC class of computable functions.

Example

Let f(x, y) = x + y. We have

$$f(x,0) = x = u_1^1(x),$$

$$f(x,y+1) = f(x,y) + 1.$$

The second equality can be written as

$$f(x, y+1) = g(y, f(x, y), x),$$

where

$$g(x_1, x_2, x_3) = 1 + x_2 = s(u_2^3(x_1, x_2, x_3)).$$

Thus, g is primitive recursive and f is primitive recursive because is obtained by primitive recursion from primitive recursive functions.

Example

Let $h(x, y) = x \cdot y$. We have:

$$h(x,0) = 0,$$

 $h(x,y+1) = h(x,y) + x,$

or

$$h(x,0) = n(x),$$

 $h(x,y+1) = g(y,h(x,y),x),$

where

$$g(x_1, x_2, x_3) = f(u_2^3(x_1, x_2, x_3), u_3^3(x_1, x_2, x_3)) = f(x_2, x_3),$$

where f(x, y) = x + y was shown to be primitive recursive on Slide 19.

20 / 26

Example

Let $\ell : \mathbb{N} \longrightarrow \mathbb{N}$ be defined as $\ell(x) = x!$. The recursion equations are $\ell(0) = 1$ and $\ell(x+1) = \ell(x) \cdot s(x)$, which represent the equalities:

$$0! = 1$$
 and $(x + 1)! = x!(x + 1)$.

Formally, we have:

$$\ell(0) = 1,$$

 $\ell(t+1) = g(t, \ell(t)),$

where $g(x_1, x_2) = s(x_1) \cdot x_2$. The function g is primitive recursive because $g(x_1, x_2) = s(u_1^2(x_1, x_2)) \cdot u_2^2(x_1, x_2)$ and multiplication is already known to be primitive recursive.

Example

The exponentiation function x^{y} : The recursion equations are

$$\begin{array}{rcl} x^0 & = & 1, \\ x^{y+1} & = & x^y \cdot x \end{array}$$

Note that the for the "special case" 0^0 we have $0^0 = 1$.

Example

The *predecessor function* defined as

$$p(x) = \begin{cases} x - 1 & \text{if } x \neq 0, \\ 0 & \text{if } x = 0, \end{cases}$$

is primitive recursive because we have

$$p(0) = 0,$$

 $p(t+1) = t.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The function x - y defined as

$$x \div y = \begin{cases} x - y & \text{if } x \ge y \\ 0 & \text{if } x < y \end{cases}$$

should not be confused with the partial function x - y which is undefined if x < y. The function x - y is a total function and is defined by

$$\begin{array}{rcl} x \dot{-} 0 &=& x, \\ x \dot{-} (t+1) &=& p(x \dot{-} t). \end{array}$$

Note: the symbol - is read "monus".

Example

The function |x - y| is primitive recursive because

$$|x-y| = (x \div y) + (y \div x).$$

Example

The function $\alpha(x)$, where

$$lpha(x) = egin{cases} 1 & ext{if } x = 0, \\ 0 & ext{if } x
eq 0, \end{cases}$$

is primitive recursive because $\alpha(x) = 1 - x$. Alternatively, we can write the recursion equations:

$$\alpha(0) = 1,$$

$$\alpha(t+1) = 0.$$