
THEORY OF COMPUTATION Primitive Recursive Predicates and Operations Defined on Predicates - 5

THEORY OF COMPUTATION
Primitive Recursive Predicates and Operations

Defined on Predicates - 5

Prof. Dan A. Simovici

UMB

1 / 21

THEORY OF COMPUTATION Primitive Recursive Predicates and Operations Defined on Predicates - 5

Outline

1 Primitive Recursive Predicates

2 Iterated Operations and Bounded Quantifiers

2 / 21

THEORY OF COMPUTATION Primitive Recursive Predicates and Operations Defined on Predicates - 5

Primitive Recursive Predicates

Predicates are total functions that range in the two-element set
{0, 1}. Therefore, the notion of “primitive recursive” makes sense
for predicates.

Example

The predicate x = y corresponds to the function

f (x , y) =

{
1 if x = y ,

0 otherwise.

f is primitive recursive because

f (x , y) = α(|x − y |).

3 / 21

THEORY OF COMPUTATION Primitive Recursive Predicates and Operations Defined on Predicates - 5

Primitive Recursive Predicates

The predicate x ⩽ y is primitive recursive because it is just
α(x ·− y).

4 / 21

THEORY OF COMPUTATION Primitive Recursive Predicates and Operations Defined on Predicates - 5

Primitive Recursive Predicates

Theorem

Let C be a PRC class. If P,Q ∈ C, then ¬P,P ∨ Q and P&Q all
belong to C.

Proof.

Note that ¬P = α(P), so ¬P ∈ C.
We have P&Q = P · Q, so P&Q ∈ C.
Finally, P ∨ Q ∈ C because

P ∨ Q =∼ (∼ P& ∼ Q).

5 / 21

THEORY OF COMPUTATION Primitive Recursive Predicates and Operations Defined on Predicates - 5

Primitive Recursive Predicates

A similar result holds for computable predicates:

Corollary

If P and Q are computable predicates, then so are ∼ P, P&Q, and
P ∨ Q.

6 / 21

THEORY OF COMPUTATION Primitive Recursive Predicates and Operations Defined on Predicates - 5

Primitive Recursive Predicates

Example

x < y is primitive recursive because

x < y ⇔∼ (y ⩽ x).

7 / 21

THEORY OF COMPUTATION Primitive Recursive Predicates and Operations Defined on Predicates - 5

Primitive Recursive Predicates

Theorem

Definition by Cases:
Let C be a PRC class. If the functions g , h and the predicate P
belongs to C, then the function f defined as

f (x1, . . . , xn) =

{
g(x1, . . . , xn) if P(x1, . . . , xn)

h(x1, . . . , xn) otherwise

belongs to C.

Proof.

The result follows from the equality

f (x1, . . . , xn) =

g(x1, . . . , xn) · P(x1, . . . , xn) + h(x1, . . . , xn) · α(P(x1, . . . , xn)).

8 / 21

THEORY OF COMPUTATION Primitive Recursive Predicates and Operations Defined on Predicates - 5

Primitive Recursive Predicates

Corollary

Let C be a PRC class. If the functions g1, . . . , gm, h and the
predicates P1, . . . ,Pm belongs to C such that

Pi (x1, . . . , n)&Pj(x1, . . . , n) = 0

for all 1 ⩽ i < j ⩽ m and x1, . . . , xn.
If f defined as

f (x1, . . . , xn) =

g1(x1, . . . , xn) if P1(x1, . . . , xn)

g2(x1, . . . , xn) if P2(x1, . . . , xn)
...

gm(x1, . . . , xn) if Pm(x1, . . . , xn)

h(x1, . . . , xn) otherwise,

then f belongs to C.
9 / 21

THEORY OF COMPUTATION Primitive Recursive Predicates and Operations Defined on Predicates - 5

Primitive Recursive Predicates

Proof.

The proof is by induction on m. For m = 1 the statement holds by
the previous theorem. Suppose that the statement is true and let
h′ be

h′(x1, . . . , xn) =

{
gm+1(x1, . . . , xn) if Pm+1(x1, . . . , xn)

h(x1, . . . , xn) otherwise

Since h′ ∈ C (by the theorem on Slide 8) and

f (x1, . . . , xn) =

g1(x1, . . . , xn) if P1(x1, . . . , xn)

g2(x1, . . . , xn) if P2(x1, . . . , xn)
...

gm(x1, . . . , xn) if Pm(x1, . . . , xn)

h′(x1, . . . , xn) otherwise,

it follows that f ∈ C. 10 / 21

THEORY OF COMPUTATION Primitive Recursive Predicates and Operations Defined on Predicates - 5

Iterated Operations and Bounded Quantifiers

Theorem

Let C be a PRC class. If f (t, x1, . . . , xn) belongs to C, then so do
the functions:

g(y , x1, . . . , xn) =

y∑
t=0

f (t, x1, . . . , xn),

and

h(y , x1, . . . , xn) =

y∏
t=0

f (t, x1, . . . , xn).

11 / 21

THEORY OF COMPUTATION Primitive Recursive Predicates and Operations Defined on Predicates - 5

Iterated Operations and Bounded Quantifiers

Proof.

The recursion equations can be written as

g(0, x1, . . . , xn) = f (0, x1, . . . , xn),

g(t + 1, x1, . . . , xn) = g(t, x1, . . . , xn) + f (t + 1, x1, . . . , xn).

Since addition belongs to C, g ∈ C.
Similarly, since

h(0, x1, . . . , xn) = f (0, x1, . . . , xn),

h(t + 1, x1, . . . , xn) = g(t, x1, . . . , xn) · f (t + 1, x1, . . . , xn),

it follows that h ∈ C.

12 / 21

THEORY OF COMPUTATION Primitive Recursive Predicates and Operations Defined on Predicates - 5

Iterated Operations and Bounded Quantifiers

Question:

Can we prove by induction on y that g(y , x1, . . . , xn) ∈ C?
NO! because such a proof would show only that the functions

g(0, x1, . . . , xn), g(1, x1, . . . , xn), . . .

belong to C and not that g(y , x1, . . . , xn) ∈ C!

13 / 21

THEORY OF COMPUTATION Primitive Recursive Predicates and Operations Defined on Predicates - 5

Iterated Operations and Bounded Quantifiers

A variant of Theorem from Slide 11

Theorem

Let C be a PRC class. If f (t, x1, . . . , xn) belongs to C, then so do
the functions:

g(y , x1, . . . , xn) =

y∑
t=1

f (t, x1, . . . , xn),

and

h(y , x1, . . . , xn) =

y∏
t=1

f (t, x1, . . . , xn).

14 / 21

THEORY OF COMPUTATION Primitive Recursive Predicates and Operations Defined on Predicates - 5

Iterated Operations and Bounded Quantifiers

Proof.

For this variant take the initial recursion equations

g(0, x1, . . . , xn) = 0,

h(0, x1, . . . , xn) = 1.

with the remaining equations as in the previous proof. This defines
a vacuous sum as 0 and a vacuous product to be 1.

15 / 21

THEORY OF COMPUTATION Primitive Recursive Predicates and Operations Defined on Predicates - 5

Iterated Operations and Bounded Quantifiers

Theorem

If the predicate P(t, x1, . . . , xn) belongs to some PRC C then so do
the predicates

(∀t)⩽yP(t, x1, . . . , xn) and (∃t)⩽yP(t, x1, . . . , xn).

The defined predicates are obtained through bounded
quantification.

16 / 21

THEORY OF COMPUTATION Primitive Recursive Predicates and Operations Defined on Predicates - 5

Iterated Operations and Bounded Quantifiers

Proof.

Note that

(∀t)⩽yP(t, x1, . . . , xn) =

(
y∏

t=0

P(t, x1, . . . , xn)

)
= 1

(∃t)⩽yP(t, x1, . . . , xn) =

(
y∑

t=0

P(t, x1, . . . , xn)

)
̸= 0.

17 / 21

THEORY OF COMPUTATION Primitive Recursive Predicates and Operations Defined on Predicates - 5

Iterated Operations and Bounded Quantifiers

Alternatively, we could have written

(∀t)⩽yP(t, x1, . . . , xn) =

y∏
t=0

P(t, x1, . . . , xn).

18 / 21

THEORY OF COMPUTATION Primitive Recursive Predicates and Operations Defined on Predicates - 5

Iterated Operations and Bounded Quantifiers

Another mode for using quantifiers is (∀t)t<y and (∃t)t<y .
The result follows from the recursion equations

(∃t)t<yP(t, x1, . . . , cn) = (∃t)⩽y [t ̸= y&P(t, x1, . . . , xn)]

(∀t)t<yP(t, x1, . . . , cn) = (∀t)⩽y [t = y ∨ P(t, x1, . . . , xn)].

19 / 21

THEORY OF COMPUTATION Primitive Recursive Predicates and Operations Defined on Predicates - 5

Iterated Operations and Bounded Quantifiers

Example

y |x (which stands for “y divides x”); for example, 3|12 is TRUE
while 5|12 is FALSE.
The predicate is primitive recursive because

y |x ⇔ (∃t)⩽x(y · t = x).

20 / 21

THEORY OF COMPUTATION Primitive Recursive Predicates and Operations Defined on Predicates - 5

Iterated Operations and Bounded Quantifiers

Example

Prime(x) which is TRUE when x is a prime number is primitive
recursive because

Prime(x) ⇔ x > 1&(∀t)⩽x{t = 1 ∨ t = x∨ ∼ (t|x)},

which expresses that a number is prime if it is greater than 1 and
has no divisors other than 1 and itself.

21 / 21

	Outline
	Primitive Recursive Predicates
	Iterated Operations and Bounded Quantifiers

