THEORY OF COMPUTATION Primitive Recursive Predicates and Minimalization - 6

Prof. Dan A. Simovici

UMB

イロト 不得 トイヨト イヨト 二日

1/16

Theorem

Let $P(t, x_1, ..., x_n)$ be a predicate that belongs to some PRC class C. Define the function $f(y, x_1, ..., x_n)$ as having the least value t such that $t \leq y$ for which $P(t, x_1, ..., x_n)$ is TRUE, if such a value exists. Otherwise, this value is 0. The function f belongs to the same PRC class C.

The function f is denoted as

$$f(y, x_1, \ldots, x_n) = \min_{t \leq y} P(t, x_1, \ldots, x_n)$$

and the construction of f is *bounded minimalization*.

Proof.

Let $g(y, x_1, ..., x_n)$ be the function defined by:

$$g(y, x_1, \ldots, x_n) = \sum_{u=0}^{y} \prod_{t=0}^{u} \alpha(P(t, x_1, \ldots, x_n)).$$

This function belongs to C by a previous theorem. We claim that $g(y, x_1, \ldots, x_n)$ is the least value of t for which $P(t, x_1, \ldots, x_n) = 1$ (that is, $P(t, x_1, \ldots, x_n) = 1$ is TRUE). Indeed, suppose that for some value of $t_0 \leq y$ we have:

•
$$P(t, x_1, ..., x_n) = 0$$
 for $t < t_0$, and

•
$$P(t_0, x_1, ..., x_n) = 1.$$

Proof cont'd

Proof.

In other words, t_0 is the the least value of $t \leq y$ for which $P(t, x_1, ..., x_n)$ is TRUE. Note that

$$\prod_{t=0}^{u} \alpha(P(t, x_1, \ldots, x_n)) = \begin{cases} 1 & \text{if } u < t_0, \\ 0 & \text{if } u \ge t_0. \end{cases}$$

Therefore,

$$g(y, x_1, \ldots, x_n) = \sum_{u < t_0} 1 = t_0,$$

hence $g(y, x_1, ..., x_n)$ is the least value of t for which $P(t, x_1, ..., x_n)$ is TRUE.

・ロト ・日ト ・ヨト ・ヨト

Proof cont'd

Proof.

Now we define

$$\min_{t \leqslant y} P(t, x_1, \dots, x_n) = \begin{cases} g(y, x_1, \dots, x_n) & \text{if } (\exists t)_{\leqslant y} P(t, x_1, \dots, x_n) \\ 0 & \text{otherwise.} \end{cases}$$

This shows that $\min_{t \leq y} P(t, x_1, \ldots, x_n)$ belongs to C.

The bounded minimalization allows the definition of further primitive recursive functions.

Example

|x/y| is the integer part of the quotient x/y. For example, |7/2| = 3 and |3/3| = 0. We also define the "special case" |x/0| = 0.

This function is primitive recursive because

$$\lfloor x/y \rfloor = \min_{t \leq x} [(t+1) \cdot y > x].$$

7/16

Example

The remainder of the division of x by y, R(x, y): Note that R(x, 0) = x. Since x = R(x, y)

$$\frac{x}{y} = \lfloor x/y \rfloor + \frac{R(x,y)}{y},$$

we can write $R(x, y) = x \div (y \cdot \lfloor x/y \rfloor)$, so R is primitive recursive.

The n^{th} prime number is denoted by p_n . For example,

$$p_0 = 0$$
 (special case) , $p_1 = 2, p_2 = 3, p_3 = 5, \dots$

The function p_n is primitive recursive. Begin by verifying the inequality

$$p_{n+1} \leqslant (p_n)! + 1.$$

Note that for $0 < i \leq n$ we have

$$\frac{p_n!+1}{p_i}=K+\frac{1}{p_i},$$

where K is an integer. Therefore, $p_n! + 1$ is not divisible by any of the primes p_1, \ldots, p_n . So, either $p_n! + 1$ is a prime itself, or it is divisible by a prime greater than p_n . In either case, there is a prime q such that $p_n < q \leq p_n! + 1$, which implies $p_{n+1} \leq (p_n)! + 1$.

Example

The function p_n is primitive recursive. Consider the primitive recursive function

$$h(y,z) = \min_{t \leq z} [\mathsf{Prime}(t) \& t > y].$$

Then, we define k(x) = h(x, x! + 1), which is again primitive recursive. This allows us to define p_n as

$$p_0 = 0,$$

$$p_{n+1} = k(p_n),$$

so p_n is primitive recursive.

Definition

Let $P(x_1, \ldots, x_n, y)$ be a predicate. The least value of y for which the predicate $P(x_1, \ldots, x_n, y)$ is TRUE is denoted by min_y $P(x_1, \ldots, x_n, y)$ if such a value exists. If there is no value for which $P(x_1, \ldots, x_n, y)$ is TRUE, then min_y $P(x_1, \ldots, x_n, y)$ is undefined.

The unbounded minimalization defines a partial function $y = f(x_1, ..., x_n) = \min_y P(x_1, ..., x_n, y).$

Example

Note that

$$x - y = min_z[y + z = x]$$

This is a partial function that is undefined if x < y.

Theorem

If $P(x_1, \ldots, x_n, y)$ is a computable predicate and if

$$f(x_1,\ldots,x_n)=\min_{y}P(x_1,\ldots,x_n,y),$$

then f is a partially computable function.

Proof.

The following program obviously computes f:

$$\begin{array}{ll} [A] & \mathsf{IF} \ P(X_1,\ldots,X_n,Y) \ \mathsf{GOTO} \ E \\ & Y \leftarrow Y+1 \\ & \mathsf{GOTO} \ A \end{array}$$

- Conclusion

Bounded minimalization begins with a primitive recursive predicate $P(t, x_1, ..., x_n)$ with 1 + n arguments and produces a primitive recursive function $f : \mathbb{N}^{1+n} \longrightarrow \mathbb{N}$.

$$f(y, x_1, \ldots, x_n) = \min_{t \leq y} P(t, x_1, \ldots, x_n)$$

of 1 + n arguments.

- Conclusion

In contrast, unbounded minimalization begins with a computable predicate $P(x_1, ..., x_n, y)$ with n + 1 arguments and produces a computable function $f : \mathbb{N}^n \longrightarrow \mathbb{N}$

$$f(x_1,\ldots,x_n)=\min_{y}P(x_1,\ldots,x_n,y),$$

of *n* arguments.