
THEORY OF COMPUTATION Coding Programs - 8

THEORY OF COMPUTATION
Coding Programs - 8

Prof. Dan A. Simovici

UMB

1 / 24



THEORY OF COMPUTATION Coding Programs - 8

Outline

1 Coding Programs by Numbers

2 The Halting Problem

2 / 24



THEORY OF COMPUTATION Coding Programs - 8

Coding Programs by Numbers

Each program P of S will receive a number #(P) such that the
program can be retrieved from this number.

CODING VARIABLES and LABELS:

variables will be arranged in the following order:

Y ,X1,Z1,X2,Z2,X3,Z3, . . . ,Xi ,Zi , . . .

labels will be arranged as

A1,B1,C1,D1,E1,A2,B2,C2,D2,E2,A3, . . .

#(V ) and #(L) are the positions of a given variable or a
given label in the ordering.

3 / 24



THEORY OF COMPUTATION Coding Programs - 8

Coding Programs by Numbers

Example

We have

#(X2) = 4,#(Z1) = #(Z ) = 3,#(E1) = #(E ) = 5,#(B2) = 7.

4 / 24



THEORY OF COMPUTATION Coding Programs - 8

Coding Programs by Numbers

CODING SCHEME for INSTRUCTIONS

a, b, c

label instr. type variable

5 / 24



THEORY OF COMPUTATION Coding Programs - 8

Coding Programs by Numbers

CODING INSTRUCTIONS:
Let I be an instruction, labeled or unlabeled of S.
We write #(I ) = ⟨a, ⟨b, c⟩⟩, where

if I is an unlabeled, then a = 0; if I la labeled L, then
a = #(L);

if the variable V is mentioned in I , then c = #(V )− 1;

if the statement is V ← V , or V ← V + 1, or
V ← V − 1, then b = 0, or 1, or 2, respectively;

if the statement is IF V ̸= 0 GOTO L′, then
b = #(L′) + 2.

6 / 24



THEORY OF COMPUTATION Coding Programs - 8

Coding Programs by Numbers

Example

The code of the unlabeled instruction

X ← X + 1

is
⟨0, ⟨1, 1⟩⟩ = ⟨0, 5⟩ = 10.

7 / 24



THEORY OF COMPUTATION Coding Programs - 8

Coding Programs by Numbers

Example

The code of the labeled instruction

[A] X ← X + 1

is
⟨1, ⟨1, 1⟩⟩ = ⟨1, 5⟩ = 21(2 · 5 + 1)− 1 = 21.

8 / 24



THEORY OF COMPUTATION Coding Programs - 8

Coding Programs by Numbers

For any given q there is a unique instruction I with #(I ) = q.
To decode an instruction:

compute ℓ(q): if ℓ(q) = 0, I is unlabeled; otherwise I has the
ℓ(q)th label on the list.

to find the variable mentioned in I , compute i = r(r(q)) + 1
and locate the i th variable on the list;

to find the type of the instruction compute ℓ(r(q)).

9 / 24



THEORY OF COMPUTATION Coding Programs - 8

Coding Programs by Numbers

Instruction Type:

ℓ(r(q)) Instruction

0 V ← V

1 V ← V + 1

2 V ← V − 1

j = ℓ(r(q))− 2 IF V ̸= 0 GOTO L
where L is the jth label

10 / 24



THEORY OF COMPUTATION Coding Programs - 8

Coding Programs by Numbers

CODING PROGRAMS:
If a program P consists of instructions

I1, I2, . . . , In,

then its Gödel number is

#(P) = [#(I1),#(I2), . . . ,#(In)]− 1.

Gödel numbers can be very large! Thus, the code of simple
programs can be quite enormous.

11 / 24



THEORY OF COMPUTATION Coding Programs - 8

Coding Programs by Numbers

Example

For the program P:

[A] X ← X + 1
IF X ̸= 0 GOTO A

that consists of the instructions I1 and I2 we have #(I1) = 21 (as
we saw) and #(I2) = ⟨0, ⟨3, 1⟩⟩ = 46. Therefore, the Gödel
number of the program is #(P) = 221 · 346 − 1.

12 / 24



THEORY OF COMPUTATION Coding Programs - 8

Coding Programs by Numbers

Example

Note that the number of the unlabeled instruction Y ← Y is

⟨0, ⟨0, 0⟩⟩ = ⟨0, 0⟩ = 0.

Thus, the Gödel number of a program remains the same if an
unlabeled statement Y ← Y is added onto its end. This is a
harmless ambiguity because Y ← Y added at the end of a
program does nothing. Also, this is harmless we add the stipulation
that the final instruction of a program cannot be Y ← Y .
With this stipulation each Gödel number determines a unique
program.

13 / 24



THEORY OF COMPUTATION Coding Programs - 8

Coding Programs by Numbers

Example

Let us determine the program whose number is 199. We have

199 + 1 = 200 = 23 · 30 · 52 = [3, 0, 2].

Thus, the program consists of three instruction having the codes
3,0 and 2, respectively.
We have 3 = ⟨2, 0⟩ = ⟨2, ⟨0, 0⟩⟩, and 2 = ⟨0, 1⟩ = ⟨0, ⟨1, 0⟩⟩. This
implies that the program is

[B] Y ← Y
Y ← Y
Y ← Y + 1

The program computes the constant function y = 1.

14 / 24



THEORY OF COMPUTATION Coding Programs - 8

Coding Programs by Numbers

Example

The empty program has the number 1− 1 = 0.

15 / 24



THEORY OF COMPUTATION Coding Programs - 8

The Halting Problem

Definition

Let HALT be the predicate:

HALT(x , y) =

{
1 if the program P with #(P) = y halts on input x ,

0 otherwise.

Note that HALT(x , y) = 1 if ψ
(1)
P (x) is defined and

HALT(x , y) = 0 if ψ
(1)
P (x) is undefined.

16 / 24



THEORY OF COMPUTATION Coding Programs - 8

The Halting Problem

Theorem

HALT(x , y) is not a computable predicate.

17 / 24



THEORY OF COMPUTATION Coding Programs - 8

The Halting Problem

Proof.

Suppose that HALT were computable. Then, we could construct
the program P:

[A] IF HALT(X ,X ) GOTO A

We have

ψP(x) =

{
undefined if HALT (X ,X ),

0 if ∼ HALT (X ,X ).

Let #(P) = y0. Using the definition of HALT we have

HALT(x , y0)⇔∼ HALT(x , x)

for all x . If we take x = y0, then HALT(y0, y0)⇔∼ HALT(y0, y0),
which is a contradiction!

18 / 24



THEORY OF COMPUTATION Coding Programs - 8

The Halting Problem

Conclusions:

The previous theorem provides an example of a function that
is not computable by any program in S.
There is no algorithm that given a program in S and an input
to that program can determine whether or not the given
program will eventually halt on the given input. This is
unsolvability of the halting problem.

19 / 24



THEORY OF COMPUTATION Coding Programs - 8

The Halting Problem

The Church’s Thesis: any algorithm for computing on numbers can
be carried out by a program in S.

Church thesis cannot be proven as a mathematical theorem
because the notion of algorithm has no general definition
separated from a programming language.

Thus, Church’s thesis allows us to assert the non-existence of
algorithms whenever we have shown that some problem
cannot be solved by a program in S.

20 / 24



THEORY OF COMPUTATION Coding Programs - 8

The Halting Problem

It is easy to construct short programs (in S) such that nobody is in
a position to tell if they will eventually hold.

Example

Goldbach’s conjecture: is one of the oldest and best-known
unsolved problems in number theory and all of mathematics. It
states that every even integer greater than 2 is the sum of two
primes:

4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, . . .

21 / 24



THEORY OF COMPUTATION Coding Programs - 8

The Halting Problem

Example

To check if an even number n is a counterexample requires
checking a primitive recursive predicate:

G (n) =∼ (∃x)x⩽n(∃y)y⩽n[Prime(x)&Prime(y)&x + y = n].

22 / 24



THEORY OF COMPUTATION Coding Programs - 8

The Halting Problem

Example cont’d

Example

This predicate allows us to write a program P in S that will search
for a counterexample to Goldbach conjecture, that is, an even
number n ⩾ 4 that is not the sum of two primes:

Z ← 4
[A] IF G (Z ) = 0 GOTO E

Z ← Z + 1
GOTO A

The statement that P never halts is equivalent to the Goldbach
conjecture. Since this conjecture is still open after 250 years,
nobody knows that the program P will eventually halt!

23 / 24



THEORY OF COMPUTATION Coding Programs - 8

The Halting Problem

Christian Goldbach was born in the Duchy of Prussia’s capital
Königsberg, part of Brandenburg-Prussia in 1690. Goldbach was
the son of a pastor, studied at the Royal Albertus University, and
after finishing his studies he went on long educational voyages
from 1710 to 1724 through Europe.
He worked at the St. Petersburg Academy of Sciences in 1725, as
a professor of mathematics and historian of the academy. In 1728,
when Peter II became Tsar of Russia, Goldbach became his tutor.
He corresponded with Euler and the famous conjecture was stated
in one of his letters.
He died on November 20, 1764 at age of 74, in Moscow.

24 / 24


	Outline
	Coding Programs by Numbers
	The Halting Problem

