
THEORY OF COMPUTATION Universality - 9

THEORY OF COMPUTATION
Universality - 9

Prof. Dan A. Simovici

UMB

1 / 31



THEORY OF COMPUTATION Universality - 9

Outline

1 The Universality Theorem

2 The Step-Counter Theorem

2 / 31



THEORY OF COMPUTATION Universality - 9

The Universality Theorem

Universality Theorem:

Theorem

For each n > 0 there exists a partially computable function Φ(n)

such that if P is an S-program with #(P) = y, then we have:

Φ(n)(x1, . . . , xn, y) = ψ
(n)
P (x1, . . . , xn)

3 / 31



THEORY OF COMPUTATION Universality - 9

The Universality Theorem

x1

...

xn

Un

y = #(P)

ψ
(n)
P (x1, . . . , xn)

Universal program Un acts like an interpreter for computable
functions of n arguments.

4 / 31



THEORY OF COMPUTATION Universality - 9

The Universality Theorem

The proof of the theorem consists in the construction of a program
Un for each n > 0 such that

ψ
(n+1)
Un

(x1, . . . , xn, xn+1) = Φ(n)(x1, . . . , xn, xn+1),

when xn+1 is the code of a program that computes Φ(n).
The program Un is called universal. It must

keep track of the current snapshot of P, and
by decoding the number of the program being interpreted
decide what to do next and do it.

5 / 31



THEORY OF COMPUTATION Universality - 9

The Universality Theorem

Encoding the state of program P in a variable S :
If the i th variable in the list of variables has the value ai and all
variables after the mth variables have value 0, the encoding of the
state is [a1, . . . , am].

Example

The state Y = 0,X1 = 2,X2 = 1 is encoded as

[0, 2, 0, 1] = 32 · 7 = 63.

Note that the input variables occupy even numbered positions in
the list of variables.

6 / 31



THEORY OF COMPUTATION Universality - 9

The Universality Theorem

The variable K contains the number that indicates the number of
the instruction about to be executed.
Recall that the program Un will compute

Y = Φ(n)(X1, . . . ,Xn,Xn+1),

where Xn+1 = #(P). The beginning of U consists of

Z ← Xn+1 + 1
S ←

∏n
i=1(p2i )

Xi

K ← 1

Note: the successive fragments of the program Un will be shown in
this color.

7 / 31



THEORY OF COMPUTATION Universality - 9

The Universality Theorem

If Xn+1 = #(P), where P consists of instructions I1, . . . , Im,
then Z gets the value [#(I1), . . . ,#(Im)].

S is initialized at [0,X1, 0,X2, . . . , 0,Xn] which initializes the
input variables and sets all other variables to 0.

K is given the initial value 1 so that the computation can
begin with the first instruction.

8 / 31



THEORY OF COMPUTATION Universality - 9

The Universality Theorem

Next, the line

[C ] IF K = Lt(Z ) + 1 ∨ (K = 0) GOTO F

has the role of determine the end of the computation.

9 / 31



THEORY OF COMPUTATION Universality - 9

The Universality Theorem

The current instruction must be decoded and executed:

U ← r((Z )K )
P ← pr(U)+1

Note that (Z )K = ⟨a, ⟨b, c⟩⟩ is the number of the K th instruction.
Thus, U = ⟨b, c⟩ is the code of the statement about to be
executed.
The variable mentioned in the K th instruction is the c + 1st in the
list, that is, r(U) + 1st in the list. Its current value is stored as the
exponent to which P divides S .

10 / 31



THEORY OF COMPUTATION Universality - 9

The Universality Theorem

Depending on b = ℓ(U) and on the value of ∼ (P|S) we continue
to certain labels:

IF ℓ(U) = 0 GOTO N
IF ℓ(U) = 1 GOTO A
IF ∼ (P|S) GOTO N
IF ℓ(U) = 2 GOTO M

11 / 31



THEORY OF COMPUTATION Universality - 9

The Universality Theorem

If ℓ(U) = 0 the instruction is V ← V and the computation
does nothing to S .

If ℓ(U) = 1 the instruction is V ← V + 1, so 1 has to be
added to the exponent of P in the prime power factorization
of S . Then, the computation executes a GOTO A.

If ℓ(U) is neither 0 nor 1, then the current instruction is either
V ← V − 1 or IF V ̸= 0 GOTO L. In either case, if P is not a
divisor of S , that is, if the current value of V is 0, the
computation does nothing to S .

If P|S and ℓ(U) = 2, the computation executes a GOTO M
(M for minus), so 1 is subtracted from the exponent to which
P divides S .

12 / 31



THEORY OF COMPUTATION Universality - 9

The Universality Theorem

The program continues with

K ← mini⩽Lt(Z)[ℓ((Z )i ) + 2 = ℓ(U)]
GOTO C

If ℓ(U) > 2 and P|S the current instruction is

IF V ̸= 0 GOTO L,

where V has a non-zero value and L is the label whose position is
ℓ(U)− 2. The instruction executed next is the first with this label,
so K should be the least i such that ℓ((Z )i ) = ℓ(U)− 2. If there is
no instruction with the appropriate label, K gets 0, so the program
terminates.

13 / 31



THEORY OF COMPUTATION Universality - 9

The Universality Theorem

In either case, GOTO C causes a jump to the beginning of the
loop for the next instruction (if any) to be processed.
Next, we have:

[M] S ← ⌊S/P⌋
GOTO N

[A] S ← S · P
[N] K ← K + 1

GOTO C

GOTO C causes a jump to the beginning of the loop for the next
instruction to be processed.

14 / 31



THEORY OF COMPUTATION Universality - 9

The Universality Theorem

S ← ⌊S/P⌋ subtracts 1 from the value of the variable
mentioned in the current instruction.

S ← S · P adds 1 to the value of the variable mentioned in
the current instruction.

The program concludes with

[F ] Y ← (S)1

15 / 31



THEORY OF COMPUTATION Universality - 9

The Universality Theorem

The Program Un

Z ← Xn+1 + 1

S ←
∏n

i=1(p2i )
Xi

K ← 1
[C ] IF K = Lt(Z) + 1 ∨ (K = 0) GOTO F

U ← r((Z)K )
P ← pr(U)+1
IF ℓ(U) = 0 GOTO N
IF ℓ(U) = 1 GOTO A
IF ∼ (P|S) GOTO N
IF ℓ(U) = 2 GOTO M
K ← mini⩽Lt(Z)[ℓ((Z)i ) + 2 = ℓ(U)]

GOTO C
[M] S ← ⌊S/P⌋

GOTO N
[A] S ← S · P
[N] K ← K + 1

GOTO C
[F ] Y ← (S)1

16 / 31



THEORY OF COMPUTATION Universality - 9

The Universality Theorem

On termination, the value of Y is stored as the exponent on p1
(which is 2).

17 / 31



THEORY OF COMPUTATION Universality - 9

The Universality Theorem

For n > 0, the sequence

Φ(n)(x1, . . . , xn, 0),Φ
(n)(x1, . . . , xn, 1), . . .

enumerates all partially computable functions of n variables.
An alternative notation is

Φ
(n)
y (x1, . . . , xn) = Φ(n)(x1, . . . , xn, y).

For n = 1 we use the simplified notation

Φy (x) = Φ(x , y) = Φ(1)(x , y).

18 / 31



THEORY OF COMPUTATION Universality - 9

The Step-Counter Theorem

Theorem

Let STP(n) be the predicate:

STP(n)(x1, . . . , xn, y , t) =


1 if program number y halts

after t or fewer steps

on inputs x1, . . . , xn

0 otherwise.

For each n > 0, STP(n) is primitive recursive.

Note that STP(n) is TRUE if there is a computation of program y
of length not greater than t beginning with inputs x1, . . . , xn.

19 / 31



THEORY OF COMPUTATION Universality - 9

The Step-Counter Theorem

The proof operates on numeric versions of the notion of snapshot.
If z represents a state σ of the program y , the number ⟨i , z⟩
represents the snapshot (i , σ). Therefore, for a program P whose
code is

y = #(P) = [#(I1),#(I2), . . . ,#(In)]− 1,

the code of instruction Ii is (y + 1)i .

20 / 31



THEORY OF COMPUTATION Universality - 9

The Step-Counter Theorem

Proof cont’d

The following functions extract the components of the i th

instruction of the program number y , namely, the label, the
variable number, the instruction type, and the label to which the
i th instruction is pointing:

LABEL(i , y) = ℓ((y + 1)i ),

VAR(i , y) = r(r((y + 1)i )) + 1,

INSTR(i , y) = ℓ(r((y + 1)i )),

LABEL′(i , y) = ℓ(r((y + 1)i )) ·− 2.

21 / 31



THEORY OF COMPUTATION Universality - 9

The Step-Counter Theorem

Proof cont’d

Proof.

Next, we define some predicates that indicate, for program y and
snapshot x , which kind of action is to be performed:
Recall that if x is a snapshot, ℓ(x) is the number of the instruction
about to be executed and r(x) represents the state of the program.

SKIP(x , y) ⇔ [INSTR(ℓ(x), y) = 0&ℓ(x) ⩽ Lt(y + 1)]

∨[INSTR(ℓ(x), y) ⩾ 2& ∼ (pVAR(ℓ(x),y)|r(x))]

This says that if the type of the instruction is V ← V or the
instruction is an IF V ̸= 0 GOTO L and the value of V is 0
(expressed as ∼ (pVAR(ℓ(x),y)|r(x)), then the program skips to the
next instruction.

22 / 31



THEORY OF COMPUTATION Universality - 9

The Step-Counter Theorem

Proof cont’d

Proof.

INCR(x , y) ⇔ INSTR(ℓ(x), y) = 1

DECR(x , y) ⇔ INSTR(ℓ(x), y) = 2&pVAR(ℓ(x),y)|r(x)

INCR(x , y) is TRUE if the instruction is V ← V + 1; DECR(x , y)
is TRUE if the instruction is V ← V − 1 and the value of V is not
0;

23 / 31



THEORY OF COMPUTATION Universality - 9

The Step-Counter Theorem

Proof cont’d

Proof.

BRANCH(x , y) ⇔ INSTR(ℓ(x), y) > 2&pVAR(ℓ(x),y)|r(x)
&(∃i)⩽Lt(y+1)LABEL(i , y) = LABEL′(ℓ(x), y).

BRANCH is TRUE if the instruction is of type IF V ̸= 0 GOTO L,
the value of the variable V is not 0 (expressed by
pVAR(ℓ(x),y)|r(x)), and there exists an instruction with the label L,
where the flow may continue.

24 / 31



THEORY OF COMPUTATION Universality - 9

The Step-Counter Theorem

The function SUCC(x , y) gives the representation of the successor
of the snapshot represented by x for the program y . This is a
primitive recursive function defined by cases:

SUCC(x , y) =

⟨ℓ(x) + 1, r(x)⟩ if SKIP(x , y),

⟨ℓ(x) + 1, r(x) · pVAR(ℓ(x),y)⟩ if INCR(x , y),

⟨ℓ(x) + 1, ⌊r(x)/pVAR(ℓ(x),y)⌋⟩ if DECR(x , y),

⟨mini⩽Lt(y+1)[LABEL(i , y) = LABEL′(ℓ(x), y)] if BRANCH(x , y)

⟨Lt(y + 1) + 1, r(x)⟩ otherwise.

25 / 31



THEORY OF COMPUTATION Universality - 9

The Step-Counter Theorem

The function

INIT(n)(x1, . . . , xn) = ⟨1,
n∏

i=1

(p2i )
xi ⟩

gives the representation of the initial snapshot for inputs
x1, . . . , xn, and the predicate TERM given by

TERM(x , y)⇔ ℓ(x) > Lt(y + 1)

tests whether x represents a terminal snapshot for program y .

26 / 31



THEORY OF COMPUTATION Universality - 9

The Step-Counter Theorem

The function SNAP gives the numbers of successive snapshots
produced by a program y . This function is primitive recursive
because

SNAP(n)(x1, . . . , xn, y , 0) = INIT(n)(x1, . . . , xn)

SNAP(n)(x1, . . . , xn, y , i + 1) = SUCC(SNAP(n)(x1, . . . , xn, y , i), y).

Thus,

STP(n)(x1, . . . , xn, y , t)⇔ TERM(SNAP(n)(x1, . . . , xn, y , t), y),

hence STP(n) is primitive recursive.

27 / 31



THEORY OF COMPUTATION Universality - 9

The Step-Counter Theorem

An important consequence is the next theorem known as the
Normal Form Theorem:

Theorem

Let f be a partially computable function. Then, there is a primitive
recursive predicate R(x1, . . . , xn, y) such that

f (x1, . . . , xn) = ℓ
(
min
z

R(x1, . . . , xn, z)
)
.

28 / 31



THEORY OF COMPUTATION Universality - 9

The Step-Counter Theorem

Proof.

Let y0 be the number of a program that computes f (x1, . . . , xn).
Let R(x1, . . . , xn, z) be the predicate defined by

R(x1, . . . , xn, z) ⇔ STP(n)(x1, . . . , xn, y0, r(z))

&(r(SNAP(n)(x1, . . . , xn, y0, r(z))))1 = ℓ(z).

Suppose that the right side of the above equality is defined. This
means that there exists a number z such that the computation of
the program with number y0 has reached a terminal snapshot in
r(z) or fewer steps and ℓ(z) is the value held in the output variable
Y , that is, ℓ(z) = f (x1, . . . , xn).
If the right side is undefined it must be the case that
STP(n)(x1, . . . , xn, y0, t) is false for all values of t, that is
f (x1, . . . , xn) ↑.

29 / 31



THEORY OF COMPUTATION Universality - 9

The Step-Counter Theorem

A characterization of partially computable functions:

Theorem

A function is partially computable if and only if it can be obtained
from the initial functions by a finite number of applications of
composition, recursion, and minimalization.

Proof.

Every function that can be obtained by a finite number of
applications of composition, recursion, and minimalization is
clearly partially computable by previous results.

30 / 31



THEORY OF COMPUTATION Universality - 9

The Step-Counter Theorem

Proof cont’d

Proof.

Conversely, by the Normal Form Theorem, we can write any
partially computable function as

f (x1, . . . , xn) = ℓ
(
min
z

R(x1, . . . , xn, z)
)
,

where R is a primitive recursive predicate. Then R is obtained from
initial functions by a finite number of applications of composition
and recursion. Finally, the given function is obtained from R by
one use of minimalization and then by application of ℓ.

31 / 31


	Outline
	The Universality Theorem
	The Step-Counter Theorem

