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Universality Theorem:

Theorem

For each n > 0 there exists a partially computable function ®("
such that if P is an S-program with #(P) =y, then we have:

q)(n)(xla 000 7Xn7.y) = ¢7(>’1)(X17 000 7Xn)
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X1 e——

Un —»

Xn o——

y = #(P)

Universal program U, acts like an interpreter for computable
functions of n arguments.
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The proof of the theorem consists in the construction of a program
U, for each n > 0 such that

1)
Q;[)(n—i_ (X17 s 7Xn7Xn+1) = ¢(n)(xlﬂ <oy Xn, Xn+1)7

when x,41 is the code of a program that computes (),
The program U, is called universal. It must

m keep track of the current snapshot of P, and

m by decoding the number of the program being interpreted
decide what to do next and do it.
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Encoding the state of program P in a variable S:

If the i*® variable in the list of variables has the value a; and all
variables after the m'" variables have value 0, the encoding of the
state is [a1,...,am].

Example

The state Y =0, X; =2, X, =1 is encoded as

[0,2,0,1] = 3% -7 = 63.

Note that the input variables occupy even numbered positions in
the list of variables.
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The variable K contains the number that indicates the number of
the instruction about to be executed.
Recall that the program U, will compute

Y = ¢(n)(X17 s aXm Xn+1)7
where X,11 = #(P). The beginning of U consists of
Z +— Xn+1 +1
S« [T7a(p2i) ™
K+1

Note: the successive fragments of the program U, will be shown in
this color.
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m If X,11 = #(P), where P consists of instructions h, ..., Im,
then Z gets the value [#(h), ..., #(In)].

m S is initialized at [0, X1, 0, X2, ..., 0, X,] which initializes the
input variables and sets all other variables to 0.

m K is given the initial value 1 so that the computation can
begin with the first instruction.
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Next, the line
[C] FK=Lt(Z)+1V(K=0)GOTO F

has the role of determine the end of the computation.
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The current instruction must be decoded and executed:

U<+ r((2)k)
P < pruy+1

Note that (Z)k = (a, (b, c)) is the number of the K'!" instruction.
Thus, U = (b, c) is the code of the statement about to be
executed.

The variable mentioned in the K* instruction is the ¢ + 1 in the
list, that is, r(U) + 15" in the list. Its current value is stored as the
exponent to which P divides S.
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Depending on b = ¢(U) and on the value of ~ (P|S) we continue
to certain labels:

IF ¢(U) =0 GOTO N
IF ¢(U) =1 GOTO A
IF ~ (P|S) GOTO N
IF ¢(U) =2 GOTO M
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m If {(U) = 0 the instruction is V < V and the computation
does nothing to S.

m If £(U) =1 the instruction is V <~ V + 1, so 1 has to be
added to the exponent of P in the prime power factorization
of S. Then, the computation executes a GOTO A.

m If £(U) is neither 0 nor 1, then the current instruction is either
V<« V—-1lorlF V##0GOTO L. In either case, if P is not a
divisor of S, that is, if the current value of V is 0, the
computation does nothing to S.

m If P|S and ¢(U) = 2, the computation executes a GOTO M

(M for minus), so 1 is subtracted from the exponent to which
P divides S.
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The program continues with

K« min;;4(2)[0((Z2)i) +2 = £(U)]
GOTO C

If £(U) > 2 and P|S the current instruction is
IF V#0GOTO L,

where V' has a non-zero value and L is the label whose position is

¢(U) — 2. The instruction executed next is the first with this label,
so K should be the least i such that ¢((Z);) = ¢(U) — 2. If there is
no instruction with the appropriate label, K gets 0, so the program
terminates.
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In either case, GOTO C causes a jump to the beginning of the
loop for the next instruction (if any) to be processed.

Next, we have:
[M] S+« [S/P]

GOTO N
[A] S« S-P
[N] K+« K+1
GOTO C

GOTO C causes a jump to the beginning of the loop for the next
instruction to be processed.
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m S < |S/P] subtracts 1 from the value of the variable
mentioned in the current instruction.

m S+ S-P adds 1 to the value of the variable mentioned in
the current instruction.

The program concludes with

[F] Y« (Sh
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The Program U,

Z <+ Xpp1 +1
S« H?:1(P2i)xf
K+1
[C] IFK=Lt(Z)+1V(K=0)GOTO F
U« r((2)k)
P < pruy+1
IF £(U) =0 GOTO N
IF £(U) =1 GOTO A
IF ~ (P|S) GOTO N
IF ¢£(U) =2 GOTO M
K minic14(2)[6((2)) + 2 = (V)]
GOTO C
M S« [S/P]
GOTO N
Al S« S-P
IN] K« K+1
GOTO C
(Al Y« (Sh
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On termination, the value of Y is stored as the exponent on p;
(which is 2).
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For n > 0, the sequence
CD(")(Xl, .e vy Xn, 0), CD(")(Xl, ceyXny 1),

enumerates all partially computable functions of n variables.
An alternative notation is

¢§,")(x1, ceyXp) = CD(")(xl, cey Xny V).
For n = 1 we use the simplified notation

¢y(X) = ¢(X7y) = ¢(1)(X7y)'
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Let STP'") be the predicate:

1 if program number y halts

after t or fewer steps
STP(”)(Xl,...,xn,y, t) = i a
on inputs xi, ..., Xy

0 otherwise.

For each n > 0, STP\" js primitive recursive.

Note that STP(") is TRUE if there is a computation of program y
of length not greater than t beginning with inputs xi, ..., xp.
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The proof operates on numeric versions of the notion of snapshot.
If z represents a state o of the program y, the number (i, z)
represents the snapshot (i, o). Therefore, for a program P whose
code is

y = #(P) = [#(h), #(k), ..., #(l)] - 1,

the code of instruction /; is (y + 1);.
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Proof cont'd

The following functions extract the components of the i
instruction of the program number y, namely, the label, the
variable number, the instruction type, and the label to which the

i instruction is pointing:
LABEL(i,y) = £/((y+ 1)),
VAR(i,y) = r(r((y + 1)) +1,
INSTR(i,y) = £(r((y +1)))),
LABEL'(i,y) = £(r((y +1);)) = 2.
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Proof cont'd

Next, we define some predicates that indicate, for program y and
snapshot x, which kind of action is to be performed:

Recall that if x is a snapshot, £(x) is the number of the instruction
about to be executed and r(x) represents the state of the program.

SKIP(x,y) < [INSTR({(x),y) = 0&¢(x) < Lt(y + 1)]
VIINSTR(¢(x), y) = 2& ~ (pvar(e(x).y)|7(x))]

This says that if the type of the instruction is V < V or the
instruction is an IF V' # 0 GOTO L and the value of V is 0
(expressed as ~ (pvar(¢(x),y)|r(x)), then the program skips to the
next instruction. L]
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Proof cont'd

INCR(x,y) < INSTR({(x),y)=1
DECR(x,y) <« INSTR((x),y) = 2&pvar(e(x)y)|r(x)

INCR(x, y) is TRUE if the instruction is V < V + 1; DECR(x, y)
is TRUE if the instruction is V < V — 1 and the value of V is not
0; O
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Proof cont'd

BRANCH(x,y) < INSTR({(x),y) > 2&pyar((x),y)|r(X)
&(31)<Lt(y+1)LABEL(i, y) = LABEL'({(x), y).

BRANCH is TRUE if the instruction is of type IF V #£ 0 GOTO L,
the value of the variable V is not 0 (expressed by

PVAR(£(x),y)| F(X)), and there exists an instruction with the label L,

where the flow may continue. Ol
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The function SUCC(x, y) gives the representation of the successor
of the snapshot represented by x for the program y. This is a
primitive recursive function defined by cases:

SUCC(x,y) =
(U(x)+1,r(x)) if SKIP(x, y),
(€(x) + 1, r(x) - PvAR(E(x).y)) if INCR(x, y),
(€(x) + 1, Lr(x)/ Pvar(ex) ) ]) if DECR(x, y),
(min;<iy(y11)[LABEL(i, y) = LABEL'({(x),y)] if BRANCH(x, y)
L(Lt(y + 1) + 1, r(x)) otherwise.
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The function

n

INITO) (x1, ..., xa) = (1, [ [ (p2i))

i=1

gives the representation of the initial snapshot for inputs
X1,...,Xp, and the predicate TERM given by

TERM(x, y) < £(x) > Lt(y + 1)

tests whether x represents a terminal snapshot for program y.
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The function SNAP gives the numbers of successive snapshots
produced by a program y. This function is primitive recursive
because

SNAP(")(xl,...,xn,y,O) = INIT(")(xl,...,Xn)
SNAP( (xi, ..., xn,y, i +1) = SUCC(SNAP (x1, ..., Xn, ¥, 1), ).

Thus,
STP(x1, ..., xn, v, t) & TERM(SNAP™) (xq. .. xn, v, 2), ),

hence STP(" is primitive recursive.
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An important consequence is the next theorem known as the
Normal Form Theorem:

Theorem

Let f be a partially computable function. Then, there is a primitive
recursive predicate R(xy, ..., Xn,y) such that

(X1, ., %xn) =4 (mzin R(xl,...,x,,,z)) .
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Proof.

Let yp be the number of a program that computes f(x,. .., Xp).
Let R(x1,...,Xn,Z) be the predicate defined by

R(x1,...,xn2z) < STPM™M(x1,... xn y0,r(2))
&(r(SNAP) (xq. . .., xn, yo, 1(2))))1 = £(2).

Suppose that the right side of the above equality is defined. This
means that there exists a number z such that the computation of
the program with number yy has reached a terminal snapshot in
r(z) or fewer steps and ¢(z) is the value held in the output variable
Y, thatis, {(z) = f(x1,...,Xn).

If the right side is undefined it must be the case that

STP(”)(xl, ..., Xn, Y0, t) is false for all values of t, that is
f(x1,...,xn) 1. O
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A characterization of partially computable functions:

Theorem

A function is partially computable if and only if it can be obtained
from the initial functions by a finite number of applications of
composition, recursion, and minimalization.

Proof.

Every function that can be obtained by a finite number of
applications of composition, recursion, and minimalization is
clearly partially computable by previous results. [
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Proof cont'd

Proof.

Conversely, by the Normal Form Theorem, we can write any
partially computable function as

f(x1,...,xn) =4 (mzin R(X1,---,sz)) )

where R is a primitive recursive predicate. Then R is obtained from
initial functions by a finite number of applications of composition
and recursion. Finally, the given function is obtained from R by
one use of minimalization and then by application of /. O

31/31



	Outline
	The Universality Theorem
	The Step-Counter Theorem

