
CS612 – Algorithms in Bioinformatics

Homework Assignment 1
Due Fri. Feb. 21 before midnight, on Gradescope

Objectives

• Learn how to perform sequence alignment and analyze the results
• Understand and apply the theory of sequence alignment
• Practice programming BLAST with Biopython.

The FASTA format

FASTA (pronounced ”fast-ay”) is a text-based format for representing either nucleotide sequences or peptide
sequences, in a single letter code. It is very simple. The top line starts with a > followed by free text. The rest
are the nucleotides or amino acid letter codes.

Part 1 – Practice

1. Sequence alignment hands-on exercise. You are given the following protein sequence:
>protein
TCPFADPAALYSRQDTTSGQSPLAAYEVDDSTGYLTSDVGGPIQDQTSLKAGIRGPTLLEDFMFRQKIQHFDHERVPERAV

The sequence is also available at the course webpage: http://www.cs.umb.edu/ nurith/cs612/protein.fasta
.

(a) Go to the Blast website at http://blast.ncbi.nlm.nih.gov. Select “Protein Blast” to get to the BlastP
website. Paste the above sequence to the top window. Use the default parameters – nr database
(non-redundant protein sequence database). Hit “BLAST” – the search may take up to a minute.
Answer the following questions about the best hit:

i. What is the name of the sequence?
uncharacterized protein VTJ04DRAFT 724 [Mycothermus thermophilus]

ii. what is the identifier (Accession) on the far right?
XP 069223333.1 (this is an NCBI accession number)

iii. what is the alignment score (”max score”)?
171. The raw score is 433.

iv. what is the percent identity and query coverage?
both 100%.

v. what is the E-value? 2e-47
vi. are there any gaps in the alignment? No. This is basically the same sequence.

1

http://www.cs.umb.edu/~nurith/cs612/protein.fasta

(b) Repeat the search above with the UniprotKB/SwissProt database and answer the same questions as
above.

i. What is the name of the sequence? RecName: Full=Catalase-3; Flags: Precursor [Neurospora
crassa OR74A]

ii. what is the identifier (Accession) on the far right?
Q9C169.1 (this is a Uniprot accession number)

iii. what is the alignment score (”max score”)?
100. The raw score is 250.

iv. what is the percent identity and query coverage?
both 100% identity and %100 query coverage.

v. what is the E-value? 2e-25
vi. are there any gaps in the alignment? There are two gaps.

(c) Repeat search with nr as the database and PAM30 as a substitution matrix. This can be done in the
blastP homepage by opening “algorithm parameters” at the bottom of the page. Observe the changes
between the results of a and c due to the change in the substitution matrix: Look at the first entry
that differs between a and c. What is its rank in a and c? What is the name of the protein sequence
in this entry?
The two searches are similar, but not identical. The protein from (a) is in 8th place here, but it’s the
same basically, only with a structure.

i. What is the name of the sequence? Chain A, Catalase [Mycothermus thermophilus]
ii. what is the identifier (Accession) on the far right?

7VN0 A (this is a PDB accession number)
iii. what is the alignment score (”max score”)?

175. The raw score is 407.
iv. what is the percent identity and query coverage?

both 100% identity and %99 query coverage.
v. what is the E-value? 6e-45

vi. are there any gaps in the alignment? There are no gaps.

2. DNA sequence alignment: The following sequence was constructed by NCBI scientist Mark Boguski
for Michael Chrichton’s “The Lost World” of the Jurassic Park series:
>DinoDNA from THE LOST WORLD p. 135
GAATTCCGGAAGCGAGCAAGAGATAAGTCCTGGCATCAGATACAGTTGGAGATAAGGACG
GACGTGTGGCAGCTCCCGCAGAGGATTCACTGGAAGTGCATTACCTATCCCATGGGAGCC
ATGGAGTTCGTGGCGCTGGGGGGGCCGGATGCGGGCTCCCCCACTCCGTTCCCTGATGAA
GCCGGAGCCTTCCTGGGGCTGGGGGGGGGCGAGAGGACGGAGGCGGGGGGGCTGCTGGCC
TCCTACCCCCCCTCAGGCCGCGTGTCCCTGGTGCCGTGGGCAGACACGGGTACTTTGGGG
ACCCCCCAGTGGGTGCCGCCCGCCACCCAAATGGAGCCCCCCCACTACCTGGAGCTGCTG
CAACCCCCCCGGGGCAGCCCCCCCCATCCCTCCTCCGGGCCCCTACTGCCACTCAGCAGC
GGGCCCCCACCCTGCGAGGCCCGTGAGTGCGTCATGGCCAGGAAGAACTGCGGAGCGACG
GCAACGCCGCTGTGGCGCCGGGACGGCACCGGGCATTACCTGTGCAACTGGGCCTCAGCC
TGCGGGCTCTACCACCGCCTCAACGGCCAGAACCGCCCGCTCATCCGCCCCAAAAAGCGC
CTGCTGGTGAGTAAGCGCGCAGGCACAGTGTGCAGCCACGAGCGTGAAAACTGCCAGACA
TCCACCACCACTCTGTGGCGTCGCAGCCCCATGGGGGACCCCGTCTGCAACAACATTCAC
GCCTGCGGCCTCTACTACAAACTGCACCAAGTGAACCGCCCCCTCACGATGCGCAAAGAC
GGAATCCAAACCCGAAACCGCAAAGTTTCCTCCAAGGGTAAAAAGCGGCGCCCCCCGGGG
GGGGGAAACCCCTCCGCCACCGCGGGAGGGGGCGCTCCTATGGGGGGAGGGGGGGACCCC

2

TCTATGCCCCCCCCGCCGCCCCCCCCGGCCGCCGCCCCCCCTCAAAGCGACGCTCTGTAC
GCTCTCGGCCCCGTGGTCCTTTCGGGCCATTTTCTGCCCTTTGGAAACTCCGGAGGGTTT
TTTGGGGGGGGGGCGGGGGGTTACACGGCCCCCCCGGGGCTGAGCCCGCAGATTTAAATA
ATAACTCTGACGTGGGCAAGTGGGCCTTGCTGAGAAGACAGTGTAACATAATAATTTGCA
CCTCGGCAATTGCAGAGGGTCGATCTCCACTTTGGACACAACAGGGCTACTCGGTAGGAC
CAGATAAGCACTTTGCTCCCTGGACTGAAAAAGAAAGGATTTATCTGTTTGCTTCTTGCT
GACAAATCCCTGTGAAAGGTAAAAGTCGGACACAGCAATCGATTATTTCTCGCCTGTGTG
AAATTACTGTGAATATTGTAAATATATATATATATATATATATATCTGTATAGAACAGCC
TCGGAGGCGGCATGGACCCAGCGTAGATCATGCTGGATTTGTACTGCCGGAATTC

The sequence is also available at the course webpage: http://www.cs.umb.edu/ nurith/cs612/dino.fasta

Perform a Blast search using blastn (nucleotide search) and the default non-redundant (nt) nucleotide
database.

(a) What are the two main species used to construct the dinosaur DNA sequence?

Frog and chicken

(b) Repeat the search with blastx (DNA vs. protein sequence) using the default non-redundant protein
sequence database. Look at the top sequence alignment and retrieve the hidden message there (hint:
look at the gaps...).

MARK WAS HERE NIH
(Mark Boguski was obviously playing a little practical joke on the way).

Part 2 – Theory

1. Lesk book question 5.3: The edit distance between the strings agtcc and cgctca is 3, consistent with
the following alignment:

ag-tcc
cgctca

Find the sequence of three edit operations that convert agtcc to cgctca.

• Substitution a→ c at first position
• Insertion (c after g)
• Substitution c→ a at last position

2. Dynamic programming:

(a) Use the Needleman Wunsch global alignment Dynamic programming formula in slide set no. 2 to
find the sequence alignment score of the two DNA sequences ATCGAACTGCC and TACGCACTCCA.
Show the filled dynamic programming matrix using +1 for a match, -1 for a mismatch and -1 for
a gap penalty in a way similar to the slide sets. Additionally, show the alignment itself. Show the
filled dynamic programming matrix using +1 for a match, -1 for a mismatch and -1 for a gap penalty
in a way similar to the slide sets. Additionally, show the alignment itself.

3

http://www.cs.umb.edu/~nurith/cs612/dino.fasta

yj A T C G A A C T G C C

xi

T

A

C

G

C

A

C

T

C

C

A -11 -9
↑

-9
↑

-7
↑

-6
↑

-4
↑

-2
տ

-2
↑

0
↑

0
տ

2
↑

3
↑

-10 -8
↑

-8
↑

-6
տ

-5
↑

-3
↑

-3
↑

-1
տ

1
↑

1
↑

3
տ

4
տ

-9 -7
↑

-7
↑

-5
↑

-4
↑

-2
↑

-2
↑

0
↑

2
↑

2
տ

3
տ

2
տ

-8 -6
↑

-6
↑

-4
↑

-3
↑

-1
↑

-1
↑

1
↑

3
տ

2
←

1
←

0
←

-7 -5
↑

-5
↑

-3
↑

-2
↑

0
↑

0
տ

2
տ

1
←

0
←

-1
տ

0
տ

-6 -4
տ

-4
տ

-2
↑

-1
↑

1
տ

1
տ

0
←

-1
տ

-2
տ

-1
↑

-1
տ

-5 -3
↑

-3
↑

-1
տ

0
↑

0
տ

-1
տ

0
տ

-1
←

-2
←

0
տ

-1
տ

-4 -2
↑

-2
տ

-1
↑

1
տ

0
←

-1
←

-2
←

-2
տ

-1
տ

-2
←

-3
←

-3 -1
↑

-1
տ

0
տ

-1
←

-2
←

-2
տ

-1
տ

-2
←

-3
←

-4
տ

-5
տ

-2 0
տ

-1
←

-1
տ

-2
←

-1
տ

-2
←

-3
←

-4
←

-5
←

-6
←

-7
←

-1 -1
տ

0
տ

-1
←

-2
←

-3
←

-4
←

-5
←

-6
←

-7
←

-8
←

-9
←

0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11

-ATCGAACTGCC-
-|-||.|||-||-
TA-CGCACT-CCA

(b) Repeat with the Smith-Waterman local alignment algorithm and the same scoring scheme.

See below. Notice that there can be several solutions.
yj A T C G A A C T G C C

xi

T

A

C

G

C

A

C

T

C

C

A 0 1
տ

0
←

0
↑

0
↑

2
տ

1
տ

0
←

1
↑

1
↑

3
↑

4
↑

0 0
←

0
←

1
տ

1
տ

0
←

0
←

1
տ

2
↑

2
↑

4
տ

5
տ

0 0
←

0
↑

2
տ

1
←

0
←

0
←

1
տ

3
↑

3
տ

4
տ

3
տ

0 0
←

1
տ

0
←

0
տ

0
←

0
←

2
↑

4
տ

3
←

2
←

2
↑

0 0
↑

0
←

1
տ

0
←

1
↑

1
↑

3
տ

2
←

1
←

1
տ

3
տ

0 1
տ

0
←

0
↑

0
↑

2
տ

2
տ

1
←

0
←

0
↑

2
↑

2
տ

0 0
←

0
←

1
տ

1
↑

1
տ

0
←

1
տ

0
←

1
տ

3
տ

2
տ

0 0
←

0
←

0
↑

2
տ

1
←

0
←

1
↑

1
տ

2
տ

1
←

0
←

0 0
↑

0
տ

1
տ

0
←

0
←

0
տ

2
տ

1
←

0
←

1
տ

1
տ

0 1
տ

0
←

0
←

0
←

1
տ

1
տ

0
←

0
←

0
←

0
←

0
←

0 0
տ

1
տ

0
←

0
←

0
←

0
←

0
←

1
տ

0
←

0
←

0
←

0 0 0 0 0 0 0 0 0 0 0 0

CGAACTGCC
||.|||-||
CGCACT-CC

(c) The semi-global alignment is a variant of global alignment that does not penalize for gaps at the
beginning and/or the end of one of the sequences but penalizes in the middle. In other words, the

4

conditions are the same as in global alignment:

Si,j = max

Si−1,j−1 + s(xi, yj)
Si−1,j + g
Si,j−1 + g

but the boundary conditions are different: Si,0 = S0,j = 0. Calculate the semi-global alignment of
the two sequences.

yj A T C G A A C T G C C

xi

T

A

C

G

C

A

C

T

C

C

A 0 1
տ

0
←

0
↑

0
↑

2
տ

1
տ

0
←

1
↑

1
↑

3
↑

4
↑

0 -1
տ

-1
↑

1
տ

1
տ

0
←

-1
←

0
տ

2
↑

2
↑

4
տ

5
տ

0 -1
տ

0
↑

2
տ

1
←

0
←

-1
←

1
տ

3
↑

3
տ

4
տ

3
տ

0 -1
↑

1
տ

0
←

0
տ

0
↑

0
↑

2
↑

4
տ

3
←

2
←

1
←

0 0
↑

0
տ

1
տ

0
←

1
↑

1
↑

3
տ

2
←

1
←

0
տ

2
տ

0 1
տ

0
←

-1
←

0
↑

2
տ

2
տ

1
←

0
←

-1
↑

1
↑

1
տ

0 -1
տ

-2
←

0
տ

1
↑

1
տ

0
←

1
տ

0
←

0
↑

2
տ

1
տ

0 -1
↑

-1
↑

0
↑

2
տ

1
←

0
←

0
↑

0
տ

1
տ

0
←

0
տ

0 0
↑

0
տ

1
տ

0
←

-1
↑

-1
↑

1
տ

0
←

-1
↑

1
տ

0
տ

0 1
տ

0
←

0
տ

-1
տ

0
տ

0
տ

-1
←

0
↑

0
տ

-1
←

-2
←

0 -1
↑

1
տ

0
←

-1
←

-1
↑

-1
↑

-1
↑

1
տ

0
←

-1
↑

-1
↑

0 0 0 0 0 0 0 0 0 0 0 0

-ATCGAACTGCC-
-|-||.|||-||-
TA-CGCACT-CCA

3. The longest common subsequence (LCS) is the ungapped result of the global alignment. In other words
– given two sequences, X and Y, Z it is the longest subsequence of X and Y if Z is a subsequence of X
and Y and it is the longest of all subsequences. For example - the LCS of ABLE and BLUE is BLE (these
letters appear in both sequences, in the same relative order). The Shortest common supersequence (SCS)
of two sequences X and Y is the shortest sequence which has X and Y as subsequences. For example –
The shortest common supersequence of ABLE and BLUE is ABLUE.

(a) Describe how to obtain the SCS of two sequences, X and Y, given their LCS.

First of all, find the LCS. Then fill every gap with the letter of the non-gapped sequence and add
every mismatching character on both sides.

(b) What is the SCS of TACGGGTAT and GGACGTACG?

Here is the dynamic programming matrix of the two sequences:

5

yj G G A C G T A C G

xi

T

A

C

G

G

G

T

A

T -9 -7↑ -5↑ -3↑ -3
տ

-4↑ -2
տ

0↑ 0
տ

-1
տ

-8 -6↑ -4↑ -2
տ

-3
←

-3↑ -1↑ 1
տ

0
←

-1
←

-7 -5↑ -3↑ -3↑ -3
տ

-2↑ 0
տ

-1
←

-2
←

-2↑
-6 -4
տ

-2
տ

-2
տ

-3↑ -1
տ

-1
տ

-1
տ

-2
տ

-1
տ

-5 -3
տ

-1
տ

-2
←

-2↑ 0
տ

0
տ

-1
←

-2
←

-1
տ

-4 -2
տ

-2
տ

-3
←

-1↑ 1
տ

0
←

-1
←

-2
←

-1
տ

-3 -3
տ

-3
տ

-2↑ 0
տ

-1
←

-2
←

-3
←

-2
տ

-3
←

-2 -2
տ

-2
տ

-1
տ

-2
←

-3
←

-4
←

-3
տ

-4
←

-5
←

-1 -1
տ

-2
տ

-3
տ

-4
տ

-5
տ

-4
տ

-5
←

-6
←

-7
←

0 -1
←

-2 -3 -4 -5 -6 -7 -8 -9

The LCS is (mismatches and gaps are in bold)
-TACGGGTA-T
GGAC--GTACG

Hence, the SSC is GGTACGGGTATCG.

4. Substitution matrices:

(a) Given the BLOSUM-62 matrix (see sequence class notes or http://www.ncbi.nlm.nih.
gov/IEB/ToolBox/C_DOC/lxr/source/data/BLOSUM62), find the score of the follow-
ing alignment (assume this is the optimal alignment):
THISSEQ
THATSEQ

5+8-1+1+4+5+5=27

(b) Repeat with the PAM-250 matrix. It can be found in Lesk, page 257, or here: http://www.
ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/source/data/PAM250

3+6-1+1+2+4+4=19

5. Multiple Sequence Alignment: Extend the dynamic programming formula to 3 dimensions. What is the
run time in this case? How many cases do we have to compare this time?

Hint: this time the matrix is cubic since instead of a 2-dimensional matrix we need to run on a cube of
m × n × k where m,n, and k are the lengths of the three sequences. Every path goes from one vertex of
the cube and traveling inside the cube to another vertex. Try to count how many such paths there can be.

The run time is cubic, O(m ∗n ∗ k) because you have to fill out a 3-D matrix instead of a 2-D, going over
all the possible positions. However, what makes the problem difficult is not only the increased number of
sequences, but the number of neighbors we have to compare for every step. This time we have 7 instead
of 3 (think of the neighbors that precede a given position). In other words, the number of neighbors
increases exponentially with the dimension, which hints to why the problem becomes NP-hard in higher
dimensions.

6

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/source/data/BLOSUM62
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/source/data/BLOSUM62
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/source/data/BLOSUM62
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/source/data/BLOSUM62
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/source/data/PAM250
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/source/data/PAM250
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/source/data/PAM250
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/source/data/PAM250

Part 3 – Programming

For this part you need the biopython module installed (https://biopython.org/docs/1.75/api/index.html) and in
particular - BioBlast. In particular – look at the NCBIWWW module.

Here is an extensive tutorial: https://biopython.org/docs/dev/Tutorial/index.html Write a python program that
implements questions 1 and 2 using BioBlast. Using NCBIWWW it should not be difficult. Use the web run
and do not try to install and run standalone BLAST! It will take a lot of space to install the databases locally.
Try to have your program obtain the results in a human-readable format. By default the results are in xml, but
you can change the format or use the parse tools from the NCBIXML library. Notice: The BLAST run may
take a while (30–60 seconds or more). Attach the code as part of your answer.

7

https://biopython.org/docs/1.75/api/index.html
https://biopython.org/docs/dev/Tutorial/index.html

