Homework

« Reading

— Tokheim, Section 13-6
 Continue mpl

— Questions?

« Labs
— Continue labs with your assigned section

Accessing 1/O Devices

» Can’t directly access I/0 devices under Unix
— Why not?

« Can do it under Tutor
— Why?

 Tutor allows us to learn about accessing 1/O devices
from “hands-on” experience

/O Devices

« We’ll discuss 2 types of I/0 devices 1n detail:
— Serial ports
— Parallel ports

 Covering the following aspects:
— Physical connectors
— Overview of interface electronics
— Handshake procedures
— 1/O addresses assigned
— Programming procedures

Serial Ports (COM1: and COM2:)

EIA RS-232C interface same connector as LPT1:

13 1

\ soscccccesee /

25 14

COM1: a DB-9 connector on back of computer with a subset of
the RS-232C signals (sufficient for async use)

XKy

9 6

Requires a conversion cable (DB9 - DB25) to connecta PC to a
standard RS-232C device such as analog modem

“RS-232” level signals
+3 to +15 volts is considered a logic 0

- 3to - 15 volts is considered a logic 1
(Note: + 12 and -12 are voltages usually used)

Serial Port

 DB9 Pin Out
 Pin1 Data Carrier Detect (DCD) Input
Pin 2 Receive Data (RXD) Input
Pin 3 Transmit Data (TXD) Output

Pin 4 Data Terminal Ready (DTR) Output
Pin 5 Signal Ground

Pin 6 Data Set Ready (DSR) Input
Pin 7 Requestto Send (RTS) Output
Pin 8 Clear to Send (CTS) Input
Pin 9 Ring Indicator (RI) Input

Single wire for sending data and single wire for
receiving data plus return path (i.e., ground)

« Multiple control and status signals

Serial Port

* The “inside story” on a serial port:

Control Bus (M/10# and W/R#) Physical
+5V Connector

Address Bus (16 bits)

+12V
- L~

Transmit Data :
To/From National 16450 / 16550 | Receive Data EIA-423
Processor Called a UART | 4 Status Lines Drvers
Chip (“You-art”) 2 Control Lines |Receivers .
See Note Ground Reference — 1%

Data Bus (up to 32 bits) I -12V N

Note: Implemented inside a “mother board” chip today, but backward compatible 5

Serial Port Handshake

« Connecting PC to an access server via a pair of modems

« Control / Status Lines (two straight-through cables)
— Data Terminal Ready indicates that PC is on and ready
— Data Set Ready indicates that modem is on and ready
— With Request to Send, PC tells modem to turn on its carrier
— With Clear to Send, the modem indicates that carrier is on
— With Data Carrier Detect, the modem indicates carrier seen
— With Ring Indicator, modem indicates incoming call

DTR , DR
<DSR DSR ,
RTS , Analog signals RIS
o~ on phone line «L- Remote
PC [DRCD | Modem | » Modem -DRCD,| Access
<RI RL | o
XD _Txp | Server
<RXD RXD ,
GND GND ;

Serial Port Handshake

» Connecting two PCs via a NULL modem cable
— Behaves like a pair of modems
— Control / status lines are “cross-connected”
— Transmit and receive data are “cross-connected”

DTR — — DTR
DSR DSR
RTS RTS
CTS CTS
DCD DCD
GND GND
TXD TXD
RXD RXD
Y (RI not normally needed) Y

+12V
-12V

Serial Port Handshake

 Bits are sent on TXD and RXD serially (one at a time)
— Bit Rate needs to be specified
— When the sequence starts and stops has to be specified
— How the bits are serialized has to be specified

ASCII character sent Optional
Arbitrary time since With LSB first in time Parity Bit
last character sent « > /
Bit value =0
DO D1 D2 | D3| D4 |D5|D6|D7
/ Bitvalue =1 /«

One Start Bit

<«

Bit Duration = 1 / Bit Rate

L One or Two Stop Bits

Accessing the Serial Port

» PC specification allows up to four serial ports
— COM1.: base address is 0x3F8
— COMZ2: base address is 0x2F8
— Each has up to eight port addresses
— Usually use six of these addresses

* Base:
e Base+1

« Baset+2:
« Base+3:
» Base+4:
e Base+b:
« Base+6:

Receive buffer on read / Transmit buffer on write
Interrupts and FIFO buffer

Interrupt ID

Line control (set up by Tutor for us)

Modem control

Line status

Modem Status

10

Accessing the Serial Port

« Examples:

— Send an ‘A’ out on COM2: (port mtip connected to)
ps 2£8 41 (ASCII A=0x41)

— And you will see:

ATutor> (Character A then prompt)
— Read a character from COM2:
pd 2f8

— And you will see:
02f8 00 00 cl 03 Ob 00 00 00 ff ff ff ff ff ff ff ff

11

Accessing the Serial Port

 Port access support for C programs
— Can use functions specific to the PC
— We have our own library ($pcinc/cpu.h)

« Look at example $pcex/echo.c
 Function prototypes are in cpu.h

volid outpt(int port, unsigned char outbyte);

unsigned char inpt (int port);
— Port address < OXFFFF
— Unsigned char is the 8-bit character
— Example for COM2:

outpt (0x2F8, 0x41);

12

Accessing the Serial Port

 Don’t want to use hard coded numbers!
* Look at $pcinc/serial.h for symbolic constants

#define
#define
#define
#define

#define
#define
#define
#define

COM1 BASE
COM2 BASE
UART TX
UART RX

UART LCR
UART MCR
UART LSR
UART MSR

Ox3£8
O0x2£f8
0 /*
0 /*
3 /%
4 /%
5 /*
6 /%

send data */
recv data */

line control */
modem control */
line status */

modem status */

13

Accessing the Serial Port

 Construct addresses using symbolic constants

unsigned char status;
outpt (COM1 BASE + UART TX, ‘A");

status = 1inpt (COM1 BASE + UART LSR);

14

Parallel Port (LPT1:)

« LPT1: a DB25 connector on back of computer

13 1

\ soscccccesee /

— Data appears on pins 2-9
— Control/Status on pins 1 & 10-17
— Pins 18-25 are ground
— “TTL” level signals
» 0-1volts is considered low and a logic O
« 3-5volts is considered high and a logic 1
 Very simple interface to understand and use
— Provides 8 bits of output (one byte at a time)
— No transformation of data
— Simple handshake protocol

15

Parallel Port

* The “inside story” on a parallel port:

Control Bus (M/10# and W/R#)

_ +5V Physical
Address Bus (16 bits) Connector

I

;%/Eer;rgr Interface .5 Status Lines (Busy)
o LSI Chip(s) 4 Control Lines (Strobe#) .
See Note Ground Reference Lines

Data Bus (up to 32 bits) I ™

Note: Implemented inside a “mother board” chip today, but backward compatible 16

Parallel Port Printer Handshake

 Data byte sent to parallel data port (all 8 bits at once)
1. Printer indicates ready for next data byte (Busy = 0)
2. PC sets up data bits on data lines DO-D7
3. PC tells printer that data is ready Strobe# =0
4. Printer acknowledges or “acks” (Busy = 1) and takes data
5. PC sets Strobe# =1 to be ready for next cycle

Signals on Pins One Handshake Cycle
DO-D7 ;
(from PC) Byte N-1 2>< (Data valid for Byte N) 2><Byte N+l * % *
Strobe#
(from PC) y 3k 5/ 3\ * % %
Busy —
(from Prtr) T\ 4/ 1\ ol

17

« |IBM defines up to three parallel port addresses

Accessing Parallel Port

 We will use “LPT1:” with 0x378 as base address
— Base used to send data to printer (D0-D7)
— Base+1 used to get status byte (with MSB = Busy# signal)
— Base+2 used for control (with LSB = Strobe signal)
« (an access parallel port using Tutor ‘ps’ command
— ps 378 FF to set all data output bits to ones
— ps 378 0 to set all data output bits to zeros

0x378

0x379

Ox37a

Write Read
D7\D6 |D5 |D4 |D3 D2 |D1 DO D7\D6 |D5 |D4 |D3 D2 D1 DO
- - - Bsy#Ack# PE | SL |Err#|IRQ
D [I1Q |SI |IN#| AF| ST D [I1Q |SI |IN#| AF| ST

18

Accessing the Parallel Port

« Examples:

—Note that status port address is “read only”
pd 378
0378 00 7F EO
ps 378 55
pd 378
0378 55 7F EO . . . {has effect on 378}
ps 379 66
pd 378
0378 55 7F EO . . . {no effect on 379}

19

Accessing Parallel Port

 Port access support for C programs
— Can use functions specific to the PC
— We have our own library ($pcinc/cpu.h)

« Look at example $pcex/testlp.c
 Function prototypes are in $pcinc/cpu.h

volid outpt(int port, unsigned char outbyte);

unsigned char inpt (int port);
— Port address < OXFFFF
— Unsigned char is the 8-bit character
— Example:

outpt (0x378, OxFF);

20

Accessing the Parallel Port

 Don’t want to use hard coded numbers!
« Look at $pcinc/Ip.h for symbolic constants

#define
#define
#define
#define

LPT1 BASE 0x378

LP DATA 0 /* 8 bits of data */

LP STATUS 1 /* in: status bits */

LP CNTRL 2 /* in, out: control bits*/

 Construct addresses using symbolic constants

unsigned char cntrl, status;
outpt (LPT1 BASE + LP CNTRL, cntrl);

status

inpt (LPT1 BASE + LP STATUS);

21

