
1

Homework

• Reading

– Tokheim, Section 13-6

• Continue mp1

– Questions?

• Labs

– Continue labs with your assigned section

2

Accessing I/O Devices

• Can’t directly access I/O devices under Unix

– Why not?

• Can do it under Tutor

– Why?

• Tutor allows us to learn about accessing I/O devices
from “hands-on” experience

3

I/O Devices

• We’ll discuss 2 types of I/O devices in detail:

– Serial ports

– Parallel ports

• Covering the following aspects:

– Physical connectors

– Overview of interface electronics

– Handshake procedures

– I/O addresses assigned

– Programming procedures

4

Serial Ports (COM1: and COM2:)

• EIA RS-232C interface same connector as LPT1:

• COM1: a DB-9 connector on back of computer with a subset of
the RS-232C signals (sufficient for async use)

• Requires a conversion cable (DB9 - DB25) to connect a PC to a
standard RS-232C device such as analog modem

• “RS-232” level signals

+3 to +15 volts is considered a logic 0

- 3 to - 15 volts is considered a logic 1

(Note: + 12 and -12 are voltages usually used)

13 1

1425

5 1

69

5

Serial Port

• DB9 Pin Out
• Pin 1 Data Carrier Detect (DCD) Input

• Pin 2 Receive Data (RXD) Input

• Pin 3 Transmit Data (TXD) Output

• Pin 4 Data Terminal Ready (DTR) Output

• Pin 5 Signal Ground ---

• Pin 6 Data Set Ready (DSR) Input

• Pin 7 Request to Send (RTS) Output

• Pin 8 Clear to Send (CTS) Input

• Pin 9 Ring Indicator (RI) Input

• Single wire for sending data and single wire for
receiving data plus return path (i.e., ground)

• Multiple control and status signals

6

Serial Port

• The “inside story” on a serial port:

National 16450 / 16550

Called a UART

(“You-art”)

See Note

Control Bus (M/IO# and W/R#)

Address Bus (16 bits)

Transmit Data

4 Status Lines

2 Control Lines

Data Bus (up to 32 bits)

To/From

Processor

Chip

Physical

Connector

Ground Reference

Receive Data EIA-423

Drivers

and

Receivers

-12V

+12V

+5V

Note: Implemented inside a “mother board” chip today, but backward compatible

7

Serial Port Handshake
• Connecting PC to an access server via a pair of modems

• Control / Status Lines (two straight-through cables)
– Data Terminal Ready indicates that PC is on and ready

– Data Set Ready indicates that modem is on and ready

– With Request to Send, PC tells modem to turn on its carrier

– With Clear to Send, the modem indicates that carrier is on

– With Data Carrier Detect, the modem indicates carrier seen

– With Ring Indicator, modem indicates incoming call

PC Modem Modem

DTR

DSR

RTS

CTS

DCD

GND

DTR

DSR

RTS

CTS

DCD

GND

Remote

Access

Server
TXD

RXD

TXD

RXD

Analog signals

on phone line

RI RI

8

Serial Port Handshake

• Connecting two PCs via a NULL modem cable

– Behaves like a pair of modems

– Control / status lines are “cross-connected”

– Transmit and receive data are “cross-connected”

TXD

RXD

RTS

CTS

DCD

GND

TXD

RXD

RTS

CTS

DCD

GND

DSR

(RI not normally needed)

DTR

DSR

DTR

9

Serial Port Handshake

• Bits are sent on TXD and RXD serially (one at a time)

– Bit Rate needs to be specified

– When the sequence starts and stops has to be specified

– How the bits are serialized has to be specified

Arbitrary time since

last character sent

One Start Bit One or Two Stop Bits

D0 D1 D2 D3 D4 D5 D6 D7

ASCII character sent

With LSB first in time

Optional

Parity Bit

-12V

+12V
Bit value = 0

Bit value = 1

Bit Duration = 1 / Bit Rate

10

Accessing the Serial Port

• PC specification allows up to four serial ports

– COM1: base address is 0x3F8

– COM2: base address is 0x2F8

– Each has up to eight port addresses

– Usually use six of these addresses

• Base: Receive buffer on read / Transmit buffer on write

• Base+1 Interrupts and FIFO buffer

• Base+2: Interrupt ID

• Base+3: Line control (set up by Tutor for us)

• Base+4: Modem control

• Base+5: Line status

• Base+6: Modem Status

11

Accessing the Serial Port

• Examples:

– Send an ‘A’ out on COM2: (port mtip connected to)

ps 2f8 41 (ASCII A = 0x41)

– And you will see:

ATutor> (Character A then prompt)

– Read a character from COM2:

pd 2f8

– And you will see:

02f8 00 00 c1 03 0b 00 00 00 ff ff ff ff ff ff ff ff

12

Accessing the Serial Port

• Port access support for C programs

– Can use functions specific to the PC

– We have our own library ($pcinc/cpu.h)

• Look at example $pcex/echo.c

• Function prototypes are in cpu.h
void outpt(int port, unsigned char outbyte);

unsigned char inpt(int port);

– Port address < 0xFFFF

– Unsigned char is the 8-bit character

– Example for COM2:

outpt(0x2F8, 0x41);

13

Accessing the Serial Port

• Don’t want to use hard coded numbers!

• Look at $pcinc/serial.h for symbolic constants
#define COM1_BASE 0x3f8

#define COM2_BASE 0x2f8

#define UART_TX 0 /* send data */

#define UART_RX 0 /* recv data */

. . .

#define UART_LCR 3 /* line control */

#define UART_MCR 4 /* modem control */

#define UART_LSR 5 /* line status */

#define UART_MSR 6 /* modem status */

14

Accessing the Serial Port

• Construct addresses using symbolic constants
unsigned char status;

outpt(COM1_BASE + UART_TX, ‘A’);

status = inpt(COM1_BASE + UART_LSR);

15

Parallel Port (LPT1:)
• LPT1: a DB25 connector on back of computer

– Data appears on pins 2-9

– Control/Status on pins 1 & 10-17

– Pins 18-25 are ground

– “TTL” level signals

• 0-1volts is considered low and a logic 0

• 3-5volts is considered high and a logic 1

• Very simple interface to understand and use

– Provides 8 bits of output (one byte at a time)

– No transformation of data

– Simple handshake protocol

13 1

1425

16

Parallel Port

• The “inside story” on a parallel port:

Interface

LSI Chip(s)

See Note

Control Bus (M/IO# and W/R#)

Address Bus (16 bits)

8 Data Lines (D0–D7)

5 Status Lines (Busy)

4 Control Lines (Strobe#)

Data Bus (up to 32 bits)

To/From

Processor

Chip

Physical

Connector

Ground Reference Lines

+5V

Note: Implemented inside a “mother board” chip today, but backward compatible

17

Parallel Port Printer Handshake

• Data byte sent to parallel data port (all 8 bits at once)

1. Printer indicates ready for next data byte (Busy = 0)

2. PC sets up data bits on data lines D0-D7

3. PC tells printer that data is ready Strobe# = 0

4. Printer acknowledges or “acks” (Busy = 1) and takes data

5. PC sets Strobe# =1 to be ready for next cycle

D0-D7

(from PC)

Strobe#

(from PC)

Busy

(from Prtr)

(Data valid for Byte N)

* * *

* * *

* * *

1

2

3

4

5

1

2

35

Byte N-1 Byte N+1

One Handshake CycleSignals on Pins

18

Accessing Parallel Port
• IBM defines up to three parallel port addresses

• We will use “LPT1:” with 0x378 as base address
– Base used to send data to printer (D0-D7)

– Base+1 used to get status byte (with MSB = Busy# signal)

– Base+2 used for control (with LSB = Strobe signal)

• Can access parallel port using Tutor ‘ps’ command
– ps 378 FF to set all data output bits to ones

– ps 378 0 to set all data output bits to zeros

0x378

0x37a

0x379

Write Read

D7D6 D5 D4 D3 D2 D1 D0 D7D6 D5 D4 D3 D2 D1 D0

Bsy#Ack# PE SL Err# IRQ

D IQ SI IN# AF ST

- - -

D IQ SI IN# AF ST

19

Accessing the Parallel Port

• Examples:

–Note that status port address is “read only”
pd 378

0378 00 7F E0 . . .

ps 378 55

pd 378

0378 55 7F E0 . . . {has effect on 378}

ps 379 66

pd 378

0378 55 7F E0 . . . {no effect on 379}

20

Accessing Parallel Port

• Port access support for C programs

– Can use functions specific to the PC

– We have our own library ($pcinc/cpu.h)

• Look at example $pcex/testlp.c

• Function prototypes are in $pcinc/cpu.h
void outpt(int port, unsigned char outbyte);

unsigned char inpt(int port);

– Port address < 0xFFFF

– Unsigned char is the 8-bit character

– Example:

outpt(0x378, 0xFF);

21

Accessing the Parallel Port

• Don’t want to use hard coded numbers!

• Look at $pcinc/lp.h for symbolic constants
#define LPT1_BASE 0x378

#define LP_DATA 0 /* 8 bits of data */

#define LP_STATUS 1 /* in: status bits */

#define LP_CNTRL 2 /* in, out: control bits*/

• Construct addresses using symbolic constants
unsigned char cntrl, status;

outpt(LPT1_BASE + LP_CNTRL, cntrl);

status = inpt(LPT1_BASE + LP_STATUS);

